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Abstract

The potential impact of natural factors on the runoff of intermittent rivers and ephemeral

streams (IRES) has been largely ignored in the Tarim Basin, China. A representative exam-

ple is the Keriya River. To quantify the long-term dynamic variations in lower reach surface

runoff of IRES, river length, defined as the distance between a selected fix point along the

perennial river segment to its dynamic, ephemeral end, was used as an indicator. Using a

total of 272 remote sensing images, we digitized and measured the distance (river length)

between the center of Yutian County and the river’s end point on each image, and then cal-

culated monthly inter-annual and intra-annual variations in length of the lower Keriya River

from 2000 to 2019. Hydrometeorological data were combined with descriptors of anthropo-

genic disturbances to assess the relative influence of natural factors and anthropogenic dis-

turbances on lower reach river runoff. The results showed that intra-annual variations in river

length fluctuated seasonally, with the minimum value occurring in June; two main peaks

occurred in March and August. The minimum June value in river length was closely linked to

an increase in agricultural water demand and a decrease in upper reach runoff. The August

peak in river length was related to the peak values in upper reach runoff and agricultural

water demand; upper reach runoff made a significant contribution because the former was

about 20% more than the latter in summer. The March peak corresponded to elevated lower

reach groundwater levels and to the melting of ice along river channels. Inter-annual varia-

tions in river length were due to inter-annual variations in upper reach runoff and middle

reach agricultural water use which increased slightly during the study period. Inter-annual

variations in frequency and amplitude of the fluctuations in river length were mainly controlled

by changes in upper reach runoff. The minimum in river length in 2009 was consistent with

the low in upper reach runoff of the Keriya River and other rivers in the Tarim Basin. The

most significant factors controlling variations in river length are natural in origin.
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1. Introduction

Drylands encompass areas where the climate is classified as dry subhumid, semiarid, arid or

hyper-arid; they cover about 41% of Earth’s terrestrial surface, and feed more than 38% of the

global population [1]. They are also one of the most ecological fragile areas on the planet [2, 3]

and contain intermittent rivers and ephemeral streams (IRES). IRES are defined as streams

that cease to flow at some point along the river’s lower (downstream) reach [4]; they provide

important ecological services that play a vital worldwide role in supporting biodiversity and

human societies [5, 6]. IRES are often one of the most important sources of water in arid

regions and constitute a large proportion of the total number and length of the planet’s rivers

[7, 8]. The number and length of IRES are continuously increasing in global drylands as a

result of climate change and human-induced water abstractions [4, 8]. Thus, the IRES of arid

regions are becoming the focus of academic investigation. Nonetheless, most studies on rivers

in arid regions have focused on perennial streams and rivers; there have been far fewer investi-

gations of IRES [9]. The studies of IRES that have been conducted to date have mostly: (1)

debated the definition of an IRES [4, 8, 10], (2) described their hydrological characteristics [7,

11–16], (3) developed conceptual models of stream flow [17, 18], (4) outlined the driving fac-

tors for their development [19–21], (5) assessed their hydrological connectivity [6, 22–24], and

(6) discussed their management and protection [5, 9, 25–27]. The long-term change of IRES

has not been strictly quantified on a global scale, and the universality, importance and fate of

IRES have been neglected [6]. The limited study of IRES is partly due to the limited number of

hydrological observation stations and limited monitoring data that are available [6]. An excep-

tion is the long-term and freely available time series data that can be obtained from remotely

sensed images such as Landsat [28–32] and MODIS [33–35]. Both can provide effective sup-

plemental ground observations. In fact, the analyses of these remote-sensing images provide a

viable approach to quantify the long-term dynamic variations in runoff through IRES. For

example, river length, defined as distance from a given datum to the end of the channel along

its lower reach where water ceases to flow (and disappears), can be visually extracted from

remote sensing images and used as a surrogate for surface runoff. Moreover, the data are rela-

tively easy to obtain; only one remote sensing image is often needed for the digital measure-

ment of river length per month. While the use of river length as documented herein may serve

as a relatively effective approach, the number of studies specifically using this indicator to

quantify runoff in IRES in arid regions remains small.

The Tarim Basin, located in an arid region in northwestern China, is the world’s largest

inland arid basin, and possesses the planet’s second largest shifting sand desert [36, 37]. IRES

are very common within the Tarim Basin [38]. During the past few decades, the basin has been

affected by global climate change and intensified anthropogenic disturbances [39–41] that are

associated with rapid population growth, large-scale land reclamation, and the mass exploita-

tion of riverine surface water resources. As a result, water use and water shortages have become

increasingly apparent [42]. Hence, the academic community has conducted numerous studies

on the impact of human activities on runoff allocation and runoff change in the Tarim Basin

[43–46]. Most rivers in the Tarim Basin represent IRES; thus, these recent investigations can

be regarded as the study of IRES. Among them, many studies have argued that human activi-

ties in oases within the upper reach of the Tarim River are the main cause of decreased lower

reach runoff [43–45, 47–56]. Admittedly, human activities have an influence on hydrological

processes that have led to the lower reach reduction in surface runoff within IRES. Nonethe-

less, relatively little attention has been directed towards the analysis of natural hydrological

processes on runoff, particularly the potential impacts of natural changes within the upper

reaches of the basins flows on lower reach runoff [57].
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The Keriya River is an important seasonal tributary of the Tarim River [58]; it originates in

the Kunlun Mountains (above 6,100 m a.s.l.) along the northern margin of the Tibetan Plateau

[59] (Fig 1a). The Yutian agricultural oasis was developed along the middle reaches of the river

[60] and is located where upper reach runoff flows out of the mountains (Fig 1a). Within

downstream sections of the middle reaches of the river (used for human activities), the remain-

ing water in the Keriya River flows into a natural oasis in the Daliyaboyi area (about 170 km

away from the Yutian oasis). The Daliyaboyi area is located in the hinterland of the Taklima-

kan Desert [61] (Fig 1b). Variations in the length of the lower Keriya River can therefore be

used to decipher the contributions of anthropogenic disturbances and natural variations in

runoff on water availability and flow.

This study developed a long-term (2000–2019) time-series of the seasonal variations in

river length from remotely sensed images of the lower reaches of the Keriya River. Combined

with hydro-meteorological and other statistical data, the impacts of both natural and anthro-

pogenic factors on the frequency and magnitude of temporal variations in runoff in the river

basin were analyzed. This paper provides a new perspective for comprehensively understand-

ing the impacts of anthropogenic disturbances and natural factors on hydrological changes

along the lower reaches of the Keriya River. This study also advances and enriches our under-

standing of long-term variations in runoff within IRES in the Tarim Basin.

2. Materials and methods

2.1. Regional setting

The Keriya River has a length of about 740 km, including both a perennial and ephemeral

stream reach [62]. The mean annual runoff in the upper Keriya River Basin is 7.57×108 m3

(1958–2013) (provided by the Hotan Hydrology and Water Resource Survey Bureau of Xin-

jiang Uygur Autonomous Region, China). Runoff during the spring, summer, autumn and

winter accounted for 11.7%, 66.4%, 14.7% and 7.2% of the total annual flow, respectively [63].

Annual flows are characterized by a single period of peak flow. The inter-annual variation in

runoff of the Keriya River is limited (the coefficient of variation is 0.17) (1957–1984), even

though its seasonal variation is significant [59]. The Keriya River Basin is divided into three

general elevational zones: an upper zone of ice, snow and permafrost (altitude of 6100–2600 m

a.s.l.); a zone dominated by an agricultural oasis in the middle reach of the basin (altitude of

2600–1400 m a.s.l.); and a zone characterized by desert along its lower reaches (altitude of

1400–1100 m a.s.l.) [62] (Fig 1c).

In the headwaters of the Keriya River Basin, there are 173 glaciers that cover a total area of

520 km2 and possess a total volume of 490×108 m3 [63]. Seventy one percent of the Keriya Riv-

er’s discharge is derived from the melting of glaciers and snow in its mountainous headwater

regions; 9% is derived from precipitation, which is also mainly concentrated in the mountains.

Groundwater contributes about 20% of the river’s flow [63]. The period of high (flood) flows

within the upper reaches of the river is between July and August [59]. The mean annual precip-

itation is 129.2 mm in upper reach areas, while the mean annual evaporation between 1986–

2013 was approximately 1902.4 mm (measured at the Langan Hydrological Station) (provided

by the Hotan Hydrology and Water Resource Survey Bureau of Xinjiang Uygur Autonomous

Region, China).

Within the zone possessing the middle reach agricultural oasis (approximately 1716 km2),

the mean annual temperature is 11.8˚C, the mean annual precipitation is 52.56 mm, and the

mean relative humidity is 44.9% (calculated using the records from 1961 to 2019 at the middle

reach meteorological station). The largest consumer of water is agriculture, which comprises

about 98% of Yutian’s total water withdrawals; the combined use of water for industrial and
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Fig 1. (a) Location of the Tarim Basin in China, and land cover in 2018 in the Tarim Basin. Land-cover map is available for download

through the Copernicus Climate Change Service (C3S) Climate Data Store (CDS), at a spatial resolution of 300-m. The China map was

downloaded from http://bzdt.ch.mnr.gov.cn/, and the grant number is GS(2020)3183; (b) The Landsat 8 OLI images based on a

composite of Band 7 (Red), 5 (Green) and 2 (Blue). Images show the location of the Keriya River Basin. The river channel north of

Misalai is ephemeral; south of Misalai the channel is perennial. (c) Conceptual model describing the controls on the variations in
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domestic purposes represents only about 2% of the total [64]. The agricultural irrigation water

is obtained from rivers, reservoirs and groundwater (springs and wells). Surface water bodies

comprise about 86% (4.63×108 m3 yr –1) of the total, whereas groundwater only accounts for

14% (0.74×108 m3 yr –1) [64].

The ephemeral river section of the Keriya River is located north of Misalai in most years

[61] (Fig 1b). The flow to the oasis depends on the amount of surface water discharged from

the middle reaches of the Keriya River. During the flood period, streamflow can traverse the

ephemeral section and reach Daliyaboyi [60]. Daliyaboyi is the largest natural primitive desert

oases within a present-day area and covers about 324 km2 [65] in the central Taklimakan Des-

ert (Fig 1b). The oasis is maintained as a natural area [61]. There are no modern industrial and

agricultural activities in the oasis. The mean annual temperature is about 11.8˚C. The highest

and the lowest temperatures occur in July and January, respectively [66]. The mean annual

precipitation in the area is less than 10 mm; thus, the oasis is characterized by an extremely

arid climate [62] (Fig 2b). Vegetation along the current riverbanks is comprised mainly of

Populus, Tamarix, and Phragmites [67] (Fig 2a). The surrounding landscape is dominated by

extensively isolated composite desert dunes, among which settlements are scattered [68]. The

ecosystem of the oasis is extremely fragile [63] and covered by sparse vegetation that does not

recover easily if destroyed. In recent decades, mid-to lower-reach regions have experienced

severe competition in water demand [69] due to a significant increase in population and large-

scale land reclamation in middle reach areas [70]. Decreased river discharge to Daliyaboyi,

combined with declining groundwater levels, has had a particularly devastating, and possibly

irreversible, impact on the lower reach natural oasis. The oasis has also experienced serious

desertification [59, 65, 71–73] (Fig 2c and 2d).

2.2. Remote-sensing data collection

Remote sensing data (a total of 272 scenes) were obtained from Landsat images (240 scenes)

(S1 Table), MODIS images (32 scenes), and Google Earth images (with a high-resolution of

0.47 m) (Table 1). More specifically, we used 45 Thematic Mapper (TM) images, 126 Enhanced

Thematic Mapper Plus (ETM+) images, and 69 Operational Land Imager (OLI) images taken

between January 1, 2000, and December 31, 2019. These images were obtained from the

United States Geological Survey (USGS) (Fig 3). The study area is covered by two scenes

(path/row 145/33 and 145/34) of the Landsat Worldwide Reference System (WRS-2). Landsat

5/7/8 Surface Reflectance (SR) products are standard level 1 Terrain-corrected (L1T) orthorec-

tified Landsat images. A total of 32 Landsat images between 2000–2012 were unavailable. For

these, we used MODIS images (MOD02QKM, Level 1B), which were obtained from NASA

(National Aeronautics and Space Administration). The spatial resolution of MOD02QKM is

250 m. Thus, to cover the entire study area, one scene was required (horizontal/vertical 24/05),

and these data were collected every 8 days.

2.3. Geometric correction

The mosaicked Landsat 8 OLI images of 26 April 2015 (path/row: 145/33 and 145/34) were

first transformed to a common ground coordinate system (Universal Transverse Mercator

(UTM), World Geodetic System (WGS 84) projection). The system is based on a 1:100,000

surface runoff, including factors within the mountains, the agricultural oasis, and the desert in Keriya River Basin. Land-cover map

and Landsat image were downloaded from the website https://land.copernicus.eu/global/products/lc [2018], and http://landsat.

visibleearth.nasa.gov/, respectively. Because the map and image downloaded from these websites are free and open to scholars, our

study does not need to supply a copyright notice.

https://doi.org/10.1371/journal.pone.0269132.g001
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Standard Topographic Map of the People’s Republic of China and was created using the ENVI

5.1 image–processing software. Then we used a topographic map as the base image to geocor-

rect the mosaicked image (Landsat 8 OLI of 26 April 2015). Geocorrection used Ground Con-

trol Points (GCPs) of permanent features (such as settlements, dried channels, intersections of

water bodies, and the interior of Daliyaboyi oasis) from the topographic map. The analysis

used a second-order polynomial function with the nearest neighbor resampling method to

Fig 2. Photographs of Daliyaboyi natural oasis at the lower reaches of the Keriya River. (a) The vegetation

(consisting of Tamarix and Populus) that surrounds the isolated dunes; the settlements are scattered in the delta; (b)

Observed intra-annual variations in precipitation and temperature between 1961 and 2019 at the Yutian

meteorological station located along the middle reach of Keriya River catchment; (c) Photograph of large-scale

degradation and the general lack of desert riparian forests; (d) Photographs showing abandoned dwellings in the

hinterland of the Taklimakan Desert. The study area is open to Chinese scholars for observation, and permits are not

required to enter. Because these photographs were acquired during field observations by the authors of this article, the

copyright belongs to this article.

https://doi.org/10.1371/journal.pone.0269132.g002

Table 1. Summary of the remote-sensing data and data sources used in the analysis.

Data type Year Resolution Data source

Landsat (TM, ETM+, OLI) Path/Row: 145/33, 145/34 2000–2019 30 m http://landsat.visibleearth.nasa.gov/

MODIS (MOD02QKM) Tile ID: h24v05 2000–2012 250 m http://earthobservatory.nasa.gov/

Global land cover map 2018 300 m https://land.copernicus.eu/global/products/lc

https://doi.org/10.1371/journal.pone.0269132.t001
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produce an average Root Mean Square Error (RMSE) of less than 1 pixel [74, 75]. Approxi-

mately 100 GCPs were selected. The geometric corrected Landsat image (Landsat 8 OLI of 26

April 2015) was then used to rectify other Landsat images using GCPs (approximately 50–100).

These images were also transformed using a second-order polynomial function and a nearest

neighbor resampling method to produce an average RMSE of less than 1 pixel. The MODIS

images were only used as a reference to distinguish the river end’s location on the correspond-

ing geocorrected image (Landsat 8 OLI of 26 April 2015) for the river length calculation. There-

fore, the MODIS images were not geometrically corrected.

2.4. Lower reach river length extraction, validation and statistical analysis

The location of the river’s end point (site of flow termination) was visually identified on each

Landsat image. The interpreted end points on the MODIS images were also marked on the

geometric corrected Landsat images. The distance (river length) between the center of Yutian

County (81˚40’39" E, 36˚51’20" N) and the river’s end point on each image (Fig 4a and 4b) was

then digitized and measured using ArcGIS 10.1 (ESRI) software. We also used two high-reso-

lution (0.47 m) Google Earth images captured on 26 August 2009 and 16 March 2016 to ensure

our interpretations of the river end point were correct. The results were consistent with the

Google Earth images. We also calculated statistical descriptors of the variations in river length,

such as departure, accumulative departure, moving average, and coefficient of variation and

correlation coefficient (Table 2), for the analyses (Fig 5).

Due to the Landsat series of satellites having an 8-day or 16-day repeat cycle, up to three sat-

ellite images can be acquired for a given month but on different dates; although the longest

interval between satellite images was 32-days, most images were taken at 16-day, 24-day inter-

vals. Images with this temporal resolution are sufficient to capture the river length change in

the lower part of the study area (Keriya River). Taking the data of Landsat imagery used in

2016 as an example (Table 3), the river length values digitized and measured from the three

images in the same month are broadly continuous. In this paper, for those months with 2–3

Fig 3. (a) Number of annual Landsat images. (a) by sensor type (Landsat 4–5 TM, Landsat 7 ETM+, and Landsat 8 OLI) and (b) by season (spring,

summer, autumn, and winter) for the study area between 2000–2019. Note: the blank area in the figure represents missing Landsat images.

https://doi.org/10.1371/journal.pone.0269132.g003
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image scenes, we used the mean value of river length; for the remaining months, one image

scene was adopted. When both, one image and multiple scenes were used per month, actual

variations in river length could be determined (Table 3). Therefore, our results of the visual

interpretation and measurement of river length are reliable.

Fig 4. Measurement of river length and data validation process. (a) Raw Landsat images (pre-processed); (b)

Extracted of river length between the center of Yutian County (yellow dot) and the river’s end (yellow arrow); the blue

line represents mapped river length. Landsat image was downloaded from the website http://landsat.visibleearth.nasa.

gov/. Because the images downloaded from this website are free and open to scholars, our study does not need to

supply a copyright notice.

https://doi.org/10.1371/journal.pone.0269132.g004
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2.5. Hydro-meteorological data and statistical analysis

Monthly and annual runoff and precipitation data (1958–2013), which were recorded at the

Langan Hydrological Station in the upper sections of the Keriya River (Fig 1b), were provided

by the Hotan Hydrology and Water Resource Survey Bureau of Xinjiang Uygur Autonomous

Region, China. Monthly and annual temperature data, precipitation data, and relative humid-

ity data (1961–2019) collected at the middle reach meteorological station, were downloaded

Table 2. Description of the statistical indicators used in this study.

Indicators Formula Description

Departure x ¼ xi � �x xi is the value in i-th year, and �x is the average value during a specific period.

Accumulative

departure
LPi ¼

PN

i
Ri �

�Rð Þ
LPi is the cumulative anomaly in i-th year, Ri is the value in i-th year, �R is the average value during a specific

period.

Coefficient of

variation

CV ¼ m

s
CV is the coefficient of variation, μ is the standard deviation, σ is the mean value.

Correlation

coefficient r ¼ s2
xy

sxsy
¼

P
x� �xð Þ y� �yð Þ

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x� �xð Þ2

n

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
y� �yð Þ2

n

q
r is the Pearson product-moment correlation coefficient, s2

xy is the covariance of variables x and y, and σx and σy
is the standard deviation of x and y, respectively.

Moving average SMA ¼ A1þA2þ���þAn
n

SMA is the simple moving average, where A is the average in period n; n is the number of time periods.

https://doi.org/10.1371/journal.pone.0269132.t002

Fig 5. Schematic diagram of overall workflow, including processing of the remote-sensing data, the mapping and measurement of river length,

and the analyses of the collected data.

https://doi.org/10.1371/journal.pone.0269132.g005
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from the China Meteorological Data Service Center (http://data.cma.cn/). The middle reach

meteorological station is located about 40 km south of the Langan Hydrological Station (Fig

1b). The difference in elevation between the meteorological and hydrological stations is about

500 m. Given the limited elevation difference, the temperature data can be effectively used to

represent upper reach areas.

Seven social and economic indicators were also obtained for the analysis of the impacts of

anthropogenic disturbances. These data were obtained from the Xinjiang Statistical Yearbook

(2001–2020) and included the total population (defined as the number of people in the area),

the agricultural population (the total number of people engaged in agricultural activities such

as farmers and herdsmen), as well as factors describing agricultural production (sown area of

crops, or the total area of land used by the crops harvested during the year), cultivated area

(the area of land for planting crops), total drive of agricultural machines (the total rated capac-

ity of all agricultural machinery in the area), and descriptors of the regional economy (regional

gross domestic product (GDP) and the value of total agricultural production) (the above defi-

nitions are from the Xinjiang Statistical Yearbook). The indices that represent water utilization

at the Yutian oasis were also collected, including water usage from springs, wells, reservoirs,

and river water (2000–2011) (provided by the Yutian Water Conservancy Bureau of Xinjiang

Uygur Autonomous Region, China). Data pertaining to the agricultural water demand in 2009

in the middle reach of the basin were obtained from the Planning Report of Irrigation and

Table 3. Data information of Landsat imagery used and the results of river length in 2016.

Acquisition date Sensor type River length (km)

7-January-2016 Landsat 8 OLI/TIRS 315

31-January-2016 Landsat 7 ETM+ 253

8-February-2016 Landsat 8 OLI/TIRS 315

16-February-2016 Landsat 7 ETM+ 313

24-February-2016 Landsat 8 OLI/TIRS 323

3-March-2016 Landsat 7 ETM+ 332

11-March-2016 Landsat 8 OLI/TIRS 361

27-March-2016 Landsat 8 OLI/TIRS 312

12-April-2016 Landsat 8 OLI/TIRS 265

6-May-2016 Landsat 7 ETM+ 232

14-May-2016 Landsat 8 OLI/TIRS 244

22-May-2016 Landsat 7 ETM+ 209

15-June-2016 Landsat 8 OLI/TIRS 186

1-July-2016 Landsat 8 OLI/TIRS 248

17-July-2016 Landsat 8 OLI/TIRS 251

25-July-2016 Landsat 7 ETM+ 245

10-August-2016 Landsat 7 ETM+ 236

11-September-2016 Landsat 7 ETM+ 470

19-September-2016 Landsat 8 OLI/TIRS 468

5-October-2016 Landsat 8 OLI/TIRS 334

13-October-2016 Landsat 7 ETM+ 334

29-October-2016 Landsat 7 ETM+ 335

6-November-2016 Landsat 8 OLI/TIRS 319

14-November-2016 Landsat 7 ETM+ 339

8-December-2016 Landsat 8 OLI/TIRS 340

16-December-2016 Landsat 8 OLI/TIRS 266

https://doi.org/10.1371/journal.pone.0269132.t003
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Water Conservancy Construction in Yutian County (we only found data for 2009). Data

regarding the area irrigated within the Yutian oasis from 2012 to 2017 were obtained from the

Xinjiang Statistical Yearbook and the Hotan Statistical Yearbook. The middle reach human

water use is defined in this study as the annual quantity of water withdrawn from surface- and

groundwater resources.

3. Results

3.1. Inter-annual and intra-annual variations of river length within the

lower reaches of the Keriya River

3.1.1. Inter-annual variations. We obtained 240 monthly river length values from the

lower reaches of the Keriya River over a period of 20 years. These values fluctuated around 291

km (the 20-year average between 2000–2019) (Fig 6a). Overall, there is a gradual increase in

the amplitude of variations from 2000 to 2019 (Fig 6a). The river length of the Keriya River

Fig 6. Observed changes in river length measured along the lower reaches of the Keriya River between 2000–2019 (a) and departures, accumulative

departure and 3-year moving average of river length from 2000 to 2019 (b). The horizontal axis (X-axis) tick marks show months for each year.

https://doi.org/10.1371/journal.pone.0269132.g006
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decreased from 2000 to 2009, before increasing to 2019 (Fig 6a). In 2009, there was a pro-

nounce turning point (at a minimum value) in river length over the past 20 years (Fig 6a); the

departure, cumulative departure, and the 3-year moving average all illustrate the nature and

timing of the turning point (Fig 6b). The rise and fall around the zero value of departure in

river length (Fig 6b) tended to increase toward 2019. However, the overall trend could be sub-

divided into different sections on either side of 2009. The frequency of years with a negative

departure was significantly higher than those with a positive departure before 2009, whereas

after 2009, the positive departure markedly increased. This indicates that length of the lower

Keriya River was higher than the long-term average annual value (291 km) in most years after

2009. Thus, 2009 appears to represent a turning point in river length over the past 20 years

(Fig 6b). The maximum value of departure from the mean occurred in 2001, whereas the mini-

mum value occurred in 2009. The 3-year moving average shows a significant decrease from

2003 to 2009, and a mild increase from 2010 to 2017 (Fig 6b). The coefficient of variation fluc-

tuated markedly between 2000–2019 and varied from 0.1 to 0.24 (Fig 7). The coefficients of

variation were relatively high in 2009, 2014, 2016 and 2017, indicating a higher dispersion,

which means that river length fluctuations intensified. The value of the coefficients of variation

Fig 7. Observed changes in the coefficient of variation of river length from 2000 to 2019.

https://doi.org/10.1371/journal.pone.0269132.g007
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in 2000 and 2008 were relatively small, indicating slightly lower variations in the change in

river length during these years.

3.1.2. Intra-annual variation. Intra-annual variations in the average river length over a

20-year period (from 2000 to 2019) along the lower reaches of the Keriya River also fluctuated

(Fig 8a). Three peaks (occurring in March, August and November) and two lows (occurring in

June and October) are apparent on the curve (Fig 8a). The annual maximum value of river

length between 2000 and 2019 occurred 7 times in March and August, whereas the annual

minimum value in river length appeared 6 times in May and 7 times in June. The peak in

March was slightly higher than that in August. The lower reach river length weakly changed

on the long-term time scale from November to December; no maximum or minimum values

occurred during this period (Fig 8b).

3.2. Relationship between variations in river length and natural factors

3.2.1. Inter-annual variation analysis. River length consistently increased with runoff

(r = 0.70, p<0.01) during the periods of 2000–2006 and 2010–2013 when maximum values of

each occurred. The opposite trend occurred between 2007–2009 (Fig 9a); river length reached

a peak while upper reach runoff was relatively low. River length and precipitation were posi-

tively correlated (r = 0.55, p<0.05), especially during the periods of 2001–2003, 2005–2006 and

2010. However, in 2000, 2004, 2007–2009 and 2011–2013, precipitation and river length were

negatively correlated, as the peak values of river length corresponded to lows in precipitation

(Fig 9b). River length was negatively correlated to air temperature (r = −0.44), especially

between 2001–2004 and 2007–2009, however, inconsistencies were identified in 2000, 2005–

2006 and 2010–2013 (Fig 9c).

3.2.2. Intra-annual variation analysis. Although the average (2000–2013) monthly lower

reach river length, upper reach runoff, precipitation and temperature were calculated for a

Fig 8. (a) Observed intra-annual changes of the 20-year average river length along the lower reaches of the Keriya River. (b) Occurrence frequency of

the minimum and maximum lower reach river length stratified by month (based on data from 2000 to 2019).

https://doi.org/10.1371/journal.pone.0269132.g008
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period of only 14 years, the intra-annual variations are clear. All four of these parameters fluc-

tuated seasonally (Fig 10). More specifically, precipitation occurs primarily from May to Sep-

tember. Two peaks, one in June and one in September, were identified during these months,

along with a minimum value in August (Fig 10c). The variations in upper reach runoff are

characterized by a single peak in July (Fig 10b). Runoff was concentrated during the summer

Fig 9. Observed changes between lower reach river length and hydro-meteorological data in the Keriya River Basin. (a), (b) and (c) represent the

dynamic changes between lower reach river length and upper reach runoff, precipitation, and temperature from 2000 to 2013, respectively.

https://doi.org/10.1371/journal.pone.0269132.g009
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Fig 10. Observed intra-annual changes between lower reach river length and natural upper reach factors in the

Keriya River Basin. (a), (b), (c) and (d) represent the seasonal changes in lower reach river length, upper reach runoff,

precipitation and temperature, respectively.

https://doi.org/10.1371/journal.pone.0269132.g010
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(from June to August). Temperature began to rise in March, and the highest peak formed

in July (Fig 10d). River length was elevated from July to August (Fig 10a) and lagged approxi-

mately two months behind the peak in precipitation; runoff was also elevated during this time.

The runoff peaks were consistent with temperature (both occurring in July) and lagged

approximately one month behind the peak in precipitation.

3.3. Relationships between river length and anthropogenic disturbances

3.3.1. Inter-annual variation analysis. The indices we used to represent anthropogenic

disturbances in the Yutian oasis included total population, agricultural population, cultivated

area, sown area, total drive of agricultural machines, amount of water consumption, GDP and

total agricultural production in the middle reaches of the Keriya River. The values of these

parameters increased from 2000 to 2019, and most increased linearly (Fig 11), while the river

length fluctuated significantly. Therefore, these indicators were inconsistent with the inter-

annual variations in lower reach river length (Fig 6a); the correlation coefficients between

Fig 11. Social and economic changes in Yutian County, located within the middle reaches of the Keriya River from 2000 to 2019, including population

(a), agricultural population (a), sown area (b), cultivated area (b), total drive of agricultural machines (c), water use (c), GDP (d), and total agricultural

production (d).

https://doi.org/10.1371/journal.pone.0269132.g011
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them and lower reach river length were insignificant at the 95% confidence level (p<0.05)

(Table 4).

3.3.2. Intra-annual variation analysis. Intra-annual variations in the average lower reach

river length during the 20-year study period (from 2000 to 2019) and the middle reach agricul-

tural water demand in 2009 both fluctuated seasonally. Three peaks and two minimum values

were both identified from the two curves (Fig 12). Peak values in river length occurred in

March, August and November, whereas peak values in agricultural water demand occurred in

May, August and November. The low values in river length and agricultural water demand

both occurred in June and October. Agricultural water demand increased significantly from

Table 4. Correlation results between river length and anthropogenic disturbances in the Keriya River Basin.

Parameter Period Correlation coefficient (r)
Population 2000–2018 0.06

Agricultural population 2000–2014 −0.16

Sown area 2000–2019 0.2

Cultivated area 2000–2019 0.03

Total drive of agricultural machines 2000–2019 0.2

Water use 2000–2011 −0.35

GDP 2000–2019 0.16

Total agricultural production value 2000–2019 0.05

https://doi.org/10.1371/journal.pone.0269132.t004

Fig 12. Observed intra-annual changes in lower reach river length (20-year average), upper reach runoff (14-year average) and middle reach

agricultural water demand (in 2009) of the Keriya River.

https://doi.org/10.1371/journal.pone.0269132.g012
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April to May, while the river length decreased sharply, before both reached a minimum value

in June. They then increased from July to August, before declining from September to Octo-

ber. A small peak in both formed in November.

4. Discussion

4.1. Factors influencing lower reach river length

The length changes in IRES in dryland regions mainly occur along their lower reaches [6],

especially in extremely arid desert regions; these lower reach variations in river length should

be directly related to the recharge in surface runoff (Fig 1c). Tang et al. [57] suggested that

lower reach changes in flow are greatly affected by runoff in the headwaters. In the current

study, a significant correlation between a change in length of the lower Keriya River and runoff

in the upper reach mountains (r = 0.70, p<0.01), combined with the consistency between the

inter-annual and intra-annual variations in river length and upper reach runoff in summer

(Figs 9a and 12), supports the argument by Tang et al. [57]. In terms of runoff in mountainous

headwater regions, the impact of humans is limited because of its low population density.

Thus, runoff processes in the mountains are mostly controlled by natural factors such as cli-

mate change; the most important climatic factors are precipitation and temperature [62] (Fig

9). The intra-annual and inter-annual variations in runoff generally lag behind precipitation

(Figs 9 and 10). This suggests precipitation should play an important recharge role in control-

ling runoff in the mountainous areas, which is consistent with a positive correlation (r = 0.66,

p<0.05) in the inter-annual changes between them. The positive correlation between upper

reach runoff and precipitation is broadly consistent with the results presented for the Tarim

River Basin [76–78]. Regarding the impact of temperature on runoff, Chen [63] and Zhou

et al. [62] believed that the rise in air temperature causes a significant increase in glacial and

snowmelt runoff in mountainous areas; Ling et al. [78, 79] found that runoff was significantly

positively correlated with temperature. Our data showed that the correlation between them

was negatively correlated (r = −0.52), which may be related to an insufficient time series in this

study. In conclusion, upper reach natural factors, including runoff, precipitation, and tempera-

ture, should affect lower reach variations in river length.

The artificial Yutian agricultural oasis in the middle reach area is the dominant zone of

water consumption along the Keriya River Basin [72]. Agriculture in the Yutian oasis primarily

consumes surface runoff that flows to lower reach areas, which affects variations in river length

along the lower reaches. The total amount of irrigation water consumed in Yutian oasis

reached 4.11–5.05×108 m3 yr –1 between 2000–2011 (Fig 11). The removal of water for irriga-

tion decreased about 63% of the water discharged to the lower reach area (Table 5). This indi-

cates that variations in lower reach river length are mainly affected by natural headwater

factors and middle reach anthropogenic disturbances. In addition, according to dynamic

Table 5. Calculation and description of upper reach runoff and water use in the Yutian oasis.

Parameter Formula Description

Percentage of total runoff consumed by

the Yutian oasis

A ¼ W1

R � 100% A is the percentage of total runoff consumed by the Yutian oasis; W1 is mean annual irrigation water

consumed in the Yutian oasis, or 4.76×108 m3 (2000–2011); R is the mean annual runoff (7.57×108 m3)

(1958–2013); B is the summer runoff in the upper reaches; W2 is the proportion total annual runoff by

summer flows (66.4%); C is the summer water consumption in the Yutian oasis; W3 is the proportion of

total annual water consumption during the summer in the Yutian oasis (53%).

Summer runoff in the upper reaches B ¼W2� R
Summer water consumption in the

Yutian oasis

C ¼W3� R

Note: calculations are based on Chen [63].

https://doi.org/10.1371/journal.pone.0269132.t005
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changes in water table depth, groundwater (discharged from the Yutian oasis in the middle

reaches) replenished lower reach surface runoff [80, 81] (Fig 13) and the influx of melt-water

from ice along lower reach river channels, which both affected changes in river length.

4.2. Inter-annual variation analysis of river length

The minimum in length of the lower Keriya River occurred in 2009 (Fig 6a), which coincides

with upper reach runoff along the Keriya River (Fig 9a). Upper reach runoff of other rivers in

the Tarim Basin includes the Aksu River, the Yarkand River, the Hotan River, and the Qarqan

River [46, 55, 56, 82–90], all of which exhibited similar variations in runoff and exhibited a

minimum in 2009. It can be concluded that the rivers within the Tarim Basin generally experi-

enced low runoff in 2009. We also compared runoff within the Keriya River Basin with the

main rivers and lakes of Central Asia (including the Amu Darya, Syr Darya, Aral Sea, and

Issyk-Kul Lake), and found the lowest value in 2009 in the Aral Sea (water surface area) [91–

93]. The Amu Darya, Syr Darya (upstream runoff) and Issyk-Kul Lake (water surface area)

exhibited a minimum in 2008 [94–97]. As mentioned above in section 4.1, large-scale agricul-

tural irrigation in the middle reaches usually leads to lower reach decreases in runoff, which

may have led to the low in 2009. However, the use of irrigation water along the middle reaches

of the Keriya River (Fig 11) and other rivers in Tarim Basin [55] have increased slightly since

2000, in spite of an absence of an abrupt large increase in water abstractions. The agricultural

economic indicators in the middle reach oasis are also inconsistent with the inter-annual vari-

ations in lower reach river length (Figs 6a and 11); the correlations between them and lower

reach river length are surprisingly low (−0.35<r<0.03) and are not statistically significant

(Table 4). These relations imply that middle reach anthropogenic disturbances have a limited

impact on the variations in lower reach river length.

4.3. Intra-annual variation analysis on river length

Seasonal variations (Fig 10a) imply that there are different impacts between upper reach natu-

ral factors (Fig 10b–10d) and middle reach anthropogenic disturbances (Fig 12) on the length

of the lower Keriya River. The upper reach runoff dropped to a low value in March (Fig 10b);

in contrast, the lower reach river length increased to a peak value (Fig 10a). Two possible rea-

sons for this inconsistency include: (1) the two highest peaks in groundwater levels occurred

in February-March of the year during the monitoring period (from 2012 to 2018) in the

Daliyaboyi oasis (Fig 13a) and during the monitoring period (from 2013 to 2014) in the

upstream section of the lower reach (Fig 13b) respectively [80, 81], which suggests that

groundwater may have recharged downstream runoff; and (2) air temperature begins to climb

in March (Fig 10d), and therefore ice along the river will gradually melt begins in the lower

reaches and continue continues into the middle reaches in accordance with elevation (Fig 1c).

The approximately 200–400 m decrease in elevation from the south (middle reach Yutian

oasis) to the north (lower reach Daliyaboyi oasis) (Fig 1c) should facilitate the influx of melt-

water and groundwater to the channel. In summer, the marked rise in air temperature (Fig

10d) causes a significant increase in glacial and snowmelt runoff in the mountainous areas

[63] (Fig 10b). Rainfall in mountainous areas also significantly contributes to upper reach run-

off [63]. These two natural factors may cause the upper reach runoff to reach its maximum

value of approximately 5.02×108 m3 [63] (Table 5). Intra-annual variation in middle reach

water consumption also reaches its highest peak (Fig 12) during the summer, which was

approximately 4.01×108 m3 (the peaks mainly occurred in August) [63] (Table 5). Agricultural

water consumption in areas along the middle reach reduced the water discharge to lower

reach areas by about 80%. The peak value in river length occurred in summer because (1) the
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Fig 13. (a) Dynamic variation in the depth to the groundwater table in the monitoring well in Daliyaboyi oasis (based on data

from 2012 to 2018); (b) Dynamic variation of the surface water level and groundwater table depth in the monitoring well in the

upstream section of the lower reach (based on data from 2013 to 2014) [80, 81].

https://doi.org/10.1371/journal.pone.0269132.g013
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peak values in upper reach runoff and middle reach water consumption both occurred in sum-

mer, and the former is higher than the latter by about 20% in summer; and (2) the inter-annual

variation (12-year) in middle reach water use changed steadily (Fig 11). Although there are

missing data on middle reach water consumption from 2012 to 2019, data on population, culti-

vated area, and effective irrigated area after 2011 show that the inter-annual variations in mid-

dle reach water consumption in recent years were not significant. Moreover, these trends show

that seasonal variations in river length reflect the frequency and amplitude of fluctuations in

upper reach runoff (Fig 12). Human water consumption affects the fluctuation magnitude of

river length to a certain extent, which is well illustrated by the lowest value in river length

occurring in June. The minimum value in June (Fig 10a) might be related to both the decrease

in upper reach runoff (Fig 10b) and large-scale irrigation in the middle reach areas (Fig 12).

The data show a small peak in river length in November of each year (Fig 10a). This minor

increase in river length may be caused by decreasing truncation of autumn floods in the mid-

dle reach areas (Fig 12), which increases the amount of river water that flows to lower reach

areas. Although there is only one year of agricultural water demand data, the inter-annual vari-

ations in water consumption are minor (Fig 11); thus, the data in this study is representative.

Natural factors in the upper reaches mainly control trends in the overall inter-annual and

intra-annual variations in the magnitude of river length of the Keriya River (Figs 9, 11 and 12),

though anthropogenic disturbances in the middle reaches contribute to the fluctuations. Nev-

ertheless, with an increase in the development of water conservation technology, the anthropo-

genic impacts on lower reach runoff processes will increase [98], whereas the impact of natural

factors will gradually weaken. These changes are well-illustrated by variations in length of the

lower Keriya River after 2018, when the Jiyin Reservoir within the upper reach (Fig 1b) was

put into use. The removal of the flood peak discharge during the summer within the lower

reaches of the Keriya River from 2018 to 2019 (Fig 6a) is related to the regulation of river flow

by the Jiyin Reservoir.

5. Conclusions

River length can be used as a novel indicator to reveal the dynamic variations in lower reach

surface runoff in IRES in dryland areas. We digitized and measured the distance (river length)

between the center of Yutian County and the river’s end point on 272 remote sensing images

and then constructed monthly lower reach inter-annual and intra-annual variations in length

of the lower Keriya River over a 20-year period (2000–2019). The results showed that: (1)

upper reach runoff, the quantity of water consumed by humans along the middle reaches, and

groundwater and meltwater influx along lower reach river channels all contribute to the intra-

annual variations in length (20-year average) of the lower Keriya River. The minimum value in

river length occurred in June, because of the increase in middle reach agricultural irrigation

and a low in upper reach runoff. The peak in river length occurred in August because of

increased upper reach runoff, despite the maximum values of agricultural water demand also

occurring at the same time within the year. The former (upper reach runoff) is about 20%

higher than the latter in summer. In March, the peak value in river length may be due to ele-

vated lower reach groundwater levels and the influx of meltwater from ice along river chan-

nels; (2) the overall trends in inter-annual variations in river length, including the frequency

and amplitude of its fluctuations, are closely correlated with upper reach changes in runoff as

well as middle reach water consumption, which increased slightly during the study period.

The inter-annual variations in the frequency and amplitude of fluctuations in river length are

mainly controlled by upper reach runoff. In addition, the lowest value in river length occurred

in 2009, consistent with the low value in upper reach runoff of the Keriya River and other
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rivers in the Tarim Basin. Collectively, natural factors control the inter-annual and intra-

annual variations in length of the lower Keriya River. This research differs from previous stud-

ies that focused exclusively on the impacts of anthropogenic disturbances on surface runoff

within the Tarim River Basin.
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