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Abstract: The world production of olive oil represented 3.1 million tons in 2021 and the choice aimed
at high quality extra virgin olive oils is increasingly appearing (IOC, 2022). Moreover, the production
of a product of quality with environmental respect is grown in demand. Consequently, the so-called
“ecological” processes mostly interest the production market of extra virgin olive oils. Despite the
current processing and extraction technologies, the characteristics of olive oil can still be optimized.
In this regard, interesting technology to produce olive oil remains the stone removal of the olives
before the extraction of the oil. Recently, the destoners preserved a less low oil yield. In light of
recent progress, the review focuses on the influence of destoning on the quality of extra virgin olive
oil, using a systematic approach. Interest in this technology is increasing and many researchers
report that destoned olive oils show superior characteristics confronting with those obtained by the
traditional method. These data indicate that destoning is one of the most significant advantages for
the improvement of the oil qualitative traits and the system’s sustainability.

Keywords: extra virgin olive oil; destoned; environmental sustainability; quality

1. Introduction

Many factors influence the quality of virgin olive oil: olives, harvesting methods, ex-
traction technologies from the crushing of the olives to the separation of the oily phase [1,2].
All the operations required in the oil extraction process are aimed at obtaining the highest
quality of oil from the fruits. In this context, the preparation phase of the olive paste is
very fundamental [3]. Over time, traditional pressure extraction has been replaced with
the centrifugation system; this system has some disadvantages, due to the addition of hot
water to the olive paste. Therefore, a two-phase centrifugal decanter has been manufac-
tured which can separate oil from pasta without adding water [4]. Extra virgin olive oil of
high-quality presents both very special sensory characteristics and health benefits, therefore
there is an increased consumers demand for this product. The goal of increasing the quality
standards for virgin olive oil has stimulated the research for new technologies. Twenty
years have passed since various producers have developed technological procedures that
include removing the stone before the olive oil extraction process [5–11]. In the production
plants of extra virgin olive oil from pitted olives, the pit removal machines are placed at
the beginning of the olive processing line [12]. The washed olives are placed in continuous
pitting machines which can be of two types [13,14]: total pitting machines (which eliminate
all the stones) and partial pitting machines (which eliminate part of the stones). Total
pitting machines had a limited diffusion because, despite adjustments of the decanter, the
extraction yield is always slightly lower than that obtained using a paste containing a
network of stone fragments. However, this problem is now reduced by controlling the
water content of the pitted pulp, to ensure optimal separation of the oil [15,16]. The pitting
takes place owing to the action of a rotating shaft (700–800 rpm) connected to metal bars
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coated in rubber, placed inside a horizontal perforated cylinder (holes from 4 to 6 mm) in
turn placed inside a cylindrical casing with a continuous wall with, underneath, a tank for
pulp collection (Figure 1).
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Figure 1. Destoning machine (photos courtesy of Clemente Industry, Olive oil Srl, Italy).

The olives enter the machine by means of an auger. The pulp comes out through the
holes in the internal cylinder and falls into the collection tank, while the rotating shaft
pushes the stones outwards, on the side opposite the feeder. The hourly capacity of the
machine is about 2000 kg/h of olives and the pulp does not undergo significant temperature
increases [13]. The partial pitting machines (Figure 2) consist of two sections [16,17]: In the
first, normal milling takes place through two counter-rotating toothed rollers at different
angular speeds (about 70 rpm and about 140 rpm); the second section is very similar to a
total pitting machine, with the difference that the holes in the internal cylinder have smaller
diameters (2.5–3.5 mm). In this way, some stone fragments remain in the paste (generally
50–70%). The hourly capacity of these machines varies between 2000 and 6000 kg/h of
olives [13]. With particular varieties of olives or with olives in the most advanced state
of ripeness, pitting can cause some problems: in fact, stone dust can be generated which
can clog the decanter, reducing the oil extraction yield [18]. The main advantage of using
the destoned paste is that it ameliorates the sensory properties and prolongs the shelf-life
of extra virgin olive oil. In the destoning process, the enzymes which were contained in
the seeds are turned away so that they do not catalyze the oxidative reactions of chemical
compounds [19–21].

Moreover, thermal activities, responsible for the decomposition of different con-
stituents present in oils, had a decrease [22]. In some research [23,24], it was observed that
the destoning technique noticeably affected the phenolic compounds, in fact the destoned
fruit oils were characterized by higher phenols content. These findings showed that owing
to the peroxidase (POD) activity observed, the seed influences the phenols oxidative re-
actions, above all in the extractive phase [25]. Ranalli et al. [26] investigated the oils from
destoned olives compared with non-stoned olives. Stone removal allowed the production
of highly nutraceutical oils, rich in biophenols. Results reported in the literature [3] showed
that the oil of destoned fruits had inferior values of free acidity and the spectrophotometric
indices (K232 and K270, which show UV absorption in 232 nm and 270 nm) than the oil
obtained by traditional methods, therefore, they had less oxidation. Both the phenolic
fraction and the volatile compounds increase in olive oils obtained from destoned olives,
leading to an improvement in the nutritional and sensory characteristics of the product. It
was observed that stone removal increased in the oils the volatile compounds bonded to the
“green” probably because the enzymes involved in the lipoxygenase (LOX) pathway led
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to different products depending on whether they are found in the pulp or in the seed [11].
Titouh, Mazari and Meziane [27] reported the effect of both destoning of olives and the
addition of talc as co-adjuvant, used in modern oil mills, during malaxation of the paste
on the yield of extracted oil. As expected, destoning carried out a slight decrease of about
1.1 percent point of the oil yield compared to the whole fruits. It was observed that the
addition of talc at 2.5% does not significantly improve the oil extraction from destoned
fruits; however, the destoning of olives allowed improvement of oil quality, valuing local
the traditional olive-growing by giving them bonding to the territory. In this sense, the
authors noted in fact an enhancement in qualitative traits of oil which could add value to
the local products distinguishing in comparison to those obtained by standard methods.
In another study conducted by Guermazi, Gharsallaoui, Perri, Gabsi and Benincasa [28],
the life cycle analysis was evaluated in a new olive oil technology process, consisting of
a destoning and a two-phase extraction system. They obtained both the pulp to produce
quality extra virgin olive oil and the stones to produce energy, thus concurring to reducing
the environmental impact. Romaniello, Leone, and Tamborrino [16] designed and built
an industrial prototype of a partial destoner machine. This machine did not completely
remove the stone, but only a quantity of about 50% of the olive stone fragments. The
authors investigated the extraction efficiency of the implant, the quality of the olive oil, and
the rheological aspects. The results pointed out that the partial destoner machine compared
to the total destoning allowed an increase in the extraction yield, a significant reduction
in the viscosity of the paste, and the stones can be recovered. Moreover, the oils from the
partial destoner machine were distinguished by the intensity of fruity flavor and aroma
in comparison to samples from whole olives. A recent work, particularly interesting [17],
introduced a new partial destoning machine (called Moliden), which had been placed in
an experimental trial to assess the impact on the quality and sustainability of the extrac-
tion process. The partial de-stoner machine proposed by the authors allows considerable
savings in the production process since it includes two sections: crushing and destoning.
This aspect is especially important since compared with the standard parameter of the
high-quality wood pellet it provides a higher quality stone to be used as a biomass fuel.
This could have a significant impact on the environmental sustainability of the process. The
destoning treatment also played an important role in the improvement of the aldehydes and
esters with a positive impact on extra virgin olive oil flavor. Moreover, the authors found
an increase in bioactive compound content that enhanced bitter and pungent sensory notes.
Yorulmaz, Tekin and Turan [29] evaluated the influence of stone removal and malaxation
in the nitrogen atmosphere on the oxidative stability of the oils. The findings highlighted
that the combined effect of malaxing under nitrogen and destoning made it possible to
obtain high-quality oils. Although the employment of the destoner can ameliorate the
working capacity of the mill plant, as it eliminates part of the solid waste before extraction,
a third-generation decanter is needed to separate the oil from the olive paste, since the
removal of the stone changes the rheology of olive paste [30]. Other authors [31,32] have
shown that de-stoner technology could represent a useful sustainability tool for olive oil
extraction plants. In particular, stones of the olives can be used as fuel allowing significant
energy savings [33]. In a recent study [34], the nutritional characteristics of destoned olive
oils have been considered. The authors concluded that destoning technology could enhance
both the sensory characteristics and nutritional value of the oil. The present work revisits,
in light of recent progress, the state-of-the-art of the influence of stone removal on the
quality of extra virgin olive oil with particular emphasis on phenols, volatile compounds,
and sensory characteristics. It is hoped to give new life to destoned technology, with a
significant advantage for the quality of the extra virgin olive oil and the sustainability of
the system. It is now evident, that the interest in olive oil from stone removal is growing,
since this technology allows a better working capacity, decreases waste generation, and
improves virgin olive oil quality. This review will help olive oil producers to do the best
choice for enhancing the qualitative characteristics of the product. An ulterior goal of our
work is also to represent an important resource for scientists. It can offer inspiration for
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one’s own research to other researchers. Finally, it is noteworthy to report that in destoned
olive oil production there are by-products with a lower environmental impact. In fact, due
to the stones being about 25% of the total olive paste volume, with the stone removal, the
solid waste processing quantity is considerably lesser [32].
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2. Fruit Characteristics Affecting Destoning

The virgin olive oil composition depends primarily on olives characteristics, bonded
on many parameters such as cultivar, ripening phase, and environmental conditions. An
important role is played by the size of the olives; large olives are more suitable for the
destoner machine. In fact, if the pulp is low, an excessive pulverization of the stone
occurs. This, by increasing the adsorbing capacity, causes the loss of the oily fraction. It
follows that the pulp must be thick and the stone small [35]. Kartas et al. [36] showed
that the genetic features of a variety have a significant impact on the pulp/stone ratio.
Varieties with a high fruit weight had a high pulp/stone ratio (8.25 to 6.07), while those
with small fruits had a lower pulp/stone ratio (4.40). An experiment was carried out
to study the influence of different amounts of irrigation water to olive trees of Coratina
and Dolce cultivars [37]. The authors found that the features of olive trees were mostly
influenced by irrigation; thus, the pulp/stone ratio gradually decreased with a lowering
amount of water during irrigation. Morales-Sillero, Fernández and Troncoso [38] studied
different doses of N-P-K fertilizer, and its effect on nutrient concentrations, yield, and oil
quality. The fruit weight and pulp/stone ratio increased with fertilizer dose. However,
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olive oil quality was negatively affected by increasing fertilizer: polyphenol total content,
bitterness, oxidative stability, and the relation of monounsaturated/polyunsaturated fatty
acids decreased. Rosati, Caporali and Paoletti [39] observed that olive trees treated with
N and K fertilization showed an increase in fruit weight and pulp/stone ratio. Another
study evaluated how all qualitative characteristics of olive oil were influenced by foliar
application with magnesium and potassium. Results showed that the pulp/seed ratio
of olive fruits significantly increased after the treatments [40]. As regards the harvesting
methods, many harvesting methods exist, and the choice depends on many factors [41].
Hand-picking is the slowest and most expensive method, but it allows the producer to get
the best quality of the fruit. Ahmad [42] studied the performance of mechanical systems
for the olive harvest and how they influenced the quality of the final product. Results
revealed that mechanical harvesting increased productivity, but caused higher percentages
of fruit damage, with respect to that obtained when the olives were manually harvested.
However, divergences between the data reported in several studies have been found. Some
researchers [43] compared different systems of harvesting olives from the tree (manual
and mechanical). These studies have shown that mechanical harvesting has achieved
the best results, with labor and time savings. Mechanically harvested olives were more
intact than those harvested with other systems and have produced oil of high quality. The
right choice of harvesting method is very important and must be taken not to damage the
olives. This is one of the key points for obtaining good results from the use of destoner
technology. In this regard, it is important to underline that, the damages caused to fruits due
to errata harvesting have harmful effects on endogenous oxidative enzymes and negative
consequences on oil quality. In all these cases, the enforcement of the destoning cannot
assure the mentioned positive effects [34]. Based on the considerations made, destoning
technology should be supported by suitable agronomic practices.

3. Importance of the Olives Endogenous Enzymes

To evaluate the impact of the de-stoner technology on the olive oil quality, the knowl-
edge of how the olive’s endogenous enzymes act represents a piece of indispensable
information [25]. Olives are made up of the exocarp or peel, the mesocarp or pulp, and
the endocarp or fossa. There are numerous studies concerning enzymes, including lipase,
peroxidase, glycosidase, lipoxygenase, and polyphenol oxidase [44–46]. The effects of the
use of de-stoner are linked to the different sharing of enzymes in the various sections of the
olive. The presence of peroxidase (POD) concentrated mainly (over 98% of the whole fruit)
in the olive seed was reported in several studies [14,45,47,48]. Therefore, the exclusion of
the seeds reduces the phenomena of enzymatic oxidation, especially POD oxidize main
phenolic compounds, localized principally in the pulp. So, the destoned process excluding
olive seeds with high peroxidase activity cut down the enzymatic degradation of phenols,
and the resulting oils have higher phenol content with better oxidative stability than those
obtained by whole drupes [49–52]. Polyphenoloxidase (PPO) is another endogenous en-
zyme of olive fruit, it is localized in the thylakoids and mitochondria. It is interesting that in
the drupe mesocarp, PPO activity widely carries out its chemical activity [11,45]. However,
among the enzymes, PPO plays an important role in the oxidation of phenolic substances
during crushing [49]. PPO and POD can oxidize both the phenolic glucosides present in
the drupe and the aglycone phenols that are formed during the processing technology to
obtain the oil [48]. For this reason, the reduction of POD obtained by removing the stones
had a great influence on the characteristics of the products. Lavelli and Bondesan [50]
evaluated the effect of olive stone removal in six monovarietal extra virgin olive oils. The
study showed that the effect of destoning was variety-dependent, and it was concluded
that an acknowledgment of the endogenous enzyme heritage could be important in the
management production of destoned extra virgin olive oil. Lipoxygenase (LOX) is among
the endogenous enzymes of the olive fruit, the one that catalyzes the oxidation of fatty acids,
in particular, linoleic and linolenic acids, with the production of volatile compounds in
oils. Already about twenty years ago, some researchers [53] highlighted that LOX is mostly
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concentrated in chloroplasts, thylakoids, and microsomes. Generally, in extra virgin olive
oils, the LOX pathway is the main cause of volatile compounds formation, responsible for
fruity flavor, freshly cut grass, green fruit or vegetables such as artichoke and tomato [49].
Servili et al. [11] evaluated that the stone removal influences the LOX activity in the pastes
and therefore modifies volatile composition in oils, increasing the concentration of the
volatile substances, especially of hexanal, trans-2-hexenal, and C6 esters, with a consequent
enhancement in “cut grass” and “floral” sensory notes [54,55]. Mazzuca, Spadafora and In-
nocenti [56] observed the two isoforms of oleuropein-degradative β-glucosidases present in
the mesocarp of olives. The enzyme β -glycosidase, present in the olive pulp, is implicated
in the conversion of secoridoids into aglycon forms, which demonstrated to be highly solu-
ble in oil [57]. Clodoveo et al. [25] suggested that knowledge of the appropriate conditions
of β-glucosidase activity, taking into account that the crushing system could inhibit the
activity of β-glycosidases, with consequent decrease of phenols. It follows that endogenous
enzymes of olives have a strong influence on the destoning process performance.

4. Effect of Destoning Technology on Phenolic Compounds

The interest in the phenolic compounds of olive oil is constantly growing, owing to
their multiple functions, antioxidant properties, nutraceutical properties, the high stability
that they provide to olive oil during storage and sensory characteristics [58,59]. Numer-
ous studies (Table 1) have been conducted to clarify the relationship between destoning
technology and the content of virgin olive oil phenolic compounds.

Table 1. Effects of destoning technology on virgin olive oil phenolic compounds.

Summary and Results References

Total phenols (mg/Kg) of virgin olive oils obtained from destoned and control (whole fruit)
pastes were evaluated at time 0 and after 12 months of storage at room temperature (25 ◦C).
Oils of destoned olive pastes had a content of 355 at the time 0 and 195 mg/Kg after 12 months,
vs. oils of whole fruit olive pastes, with values of 345 at the time 0 and 150 mg/Kg after
12 months. Destoning process consented in part to remove peroxidase activity in the pastes,
improving the concentration of the hydrophilic phenols in the oils, and their oxidative stability.

Servili et al., 2004 [59]

The authors studied the effect of olive stone removal before processing on the content in
secoiridoids and the antioxidant activity of monovarietal extra virgin olive oils. Results showed
that destoning increased the total secoiridoids and the antioxidant activity of oils (up to
3.5 times). The study also indicated that these effects depended on variety, assuming that the
influence of stone removal was associated with endogenous enzymes.

Lavelli and Bondesan, 2005 [50]

The study compared the phenolic compounds of 16 fresh commercial samples of extra virgin
olive oil derived from both stoned and whole fruits. For almost all the samples from stoned
fruits, higher concentrations of phenolic compounds were found in agreement with their higher
antioxidant capacity. Coratina cv showed values of 120 vs. 52.4 mg/L for 3,4-DHEA-EDA in oils
obtained from stoned and whole fruits respectively.

Mulinacci et al., 2005 [51]

The research evaluated the quality of virgin olive oils obtained by Coratina cv using de-stoner
for the olive paste preparation in comparison to the use of a traditional mill. The destoning
process caused an increase in the total phenol content of samples.

Amirante et al., 2006 [7]

The influence of destoning technology on minor components and antioxidant activity in two
extra virgin olive oils of Bosana cv, processed with a two-phase decanter, was investigated.
Destoned oils showed great stability and, consequently, had a longer shelf-life than whole fruits
oils. During storage, total phenol content was very similar in both oil samples.

Del Caro et al., 2006 [3]

The study reported the effect of fruit destoning on the virgin olive oil phenolic profile
determining whether olive seed plays any role in the phenolic content of olive oils. The results
showed that increases of about 25% of the total phenolic compounds in oils obtained from
de-stoned olive fruits in three Spanish cultivars (Picual, Manzanilla and Hojiblanca) were
observed. In fact, olive seeds have been found to contain a high level of peroxidase activity
(72.4 U g (−1) FW), responsible for phenols degradation.

Luaces et al., 2007 [47]
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Table 1. Cont.

Summary and Results References

The authors observed that removal of the olive stone from the corresponding oils shows a
considerable increase in the phenolic fraction, especially the secoiridoid derivatives such as the
dialdehydic forms of elenolic acid linked to (3,4 dihydroxyphenyl)ethanol and
(phydroxyphenyl)ethanol (3,4-DHPEA-EDA and p-HPEA-EDA, respectively) and the isomer of
the oleuropein aglycon (3,4-DHPEA-EA) whereas no significant variations of lignans
are observed.

Servili et al., 2007 [11]

The study evaluated the oils obtained from destoned olives (Gentile di Chieti, Caroleo, and
Coratina cultivars) compared to those with traditional extraction. The destoning has made it
possible to obtain highly nutraceutical oils, with a higher content of hydrophilic biophenols.
Coratina cv showed the highest content of secoiridoids (56 vs. 44 mg/Kg in the destoned and
traditional samples, respectively).

Ranalli et al., 2007 [60]

The authors evidenced the effect of the destoning technique on the concentration of bioactive
compounds. They found a significant increase in the content of oxidized oleuropein and
ligstruside derivates in two oils obtained by Leccino cv, destoned vs. stoned. The destoning
technique ensures a higher concentration of biophenols, and also richer quantity in α- and
γ-tocopherol and in α- and γ-tocotrienol, considering other important bioactive compounds. In
particular, oleuropein aglycon, dialdehydic form (9.2 vs. 4.3 mg/Kg in destoned and stoned
samples respectively), and ligstroside aglycon, dialdehydic form (24.1 vs. 10.0 mg/Kg in
destoned and stoned samples respectively).

Ranalli, A. and Contento, S.
2010 [24]

Antioxidant compounds of extra-virgin oils from Coratina cv were evaluated. The total
phenolic content of extra-virgin oils was found to be higher in destoned samples (450.7 mg/Kg),
versus those from whole olives (338 mg/Kg). Concerning the study of the phenol compounds,
destoning led to higher amounts of (+)-1-acetoxypinoresinol and 3,4-DHPEA-EA.

Gambacorta et al., 2010 [10]

This research investigated the effect of stone removal before processing on the antioxidant
properties of extra virgin olive oil from Cerasuola cv. The amounts were 2.65 and 1.53 µmol
GA/g polar extract for fractions from destoned and non-destoned respectively.

Restuccia et al., 2011 [21]

The destoning and malaxation in nitrogen atmosphere on oxidative stability of extra virgin
olive oil from olives of Edremit yaglik cv. were evaluated. Samples were processed, with or
without stones, in nitrogen or air atmosphere. Results have shown that the oils destonated and
malaxed in nitrogen flush had a higher total phenols content than those obtained, with the same
conditions but not destoned (328 vs. 282 mg/Kg respectively).

Yorulmaz et al., 2011 [29]

The paper reports bionutritional value of destoned (vs. whole) virgin olive oil from Olivastra di
Seggiano cv. The authors investigated from 2008 to 2010 and showed that removal of the stone
from the fruit before processing enhanced the high-quality level of oil, by increasing the
biophenols. Concentrations of total oleuropein derivatives were 128.32 vs. 109.11 mg/Kg
tyrosol in destoned and whole samples respectively.

Ranalli et al., 2012 [26]

The effects of olive pitting and variety (Greek varieties Koroneiki and Megaritiki) were
investigated on the phenolic content of olive oil. The phenols of the pitted olive oils were higher
than the whole olive oils in both varieties. The total phenol content of Koroneiki pitted olive
oils was 303.45 vs. 226.49 mg/Kg in destoned samples and whole samples respectively.

Katsoyannos et al., 2015 [20]

The authors analyzed phenols and terpenoids in two cultivars Arbequina and Picual after fruits
destoning. Destoning has been demonstrated to have different effects for cultivars and
especially on secoiridoid derivatives. When olive fruits were destoned concentration of
secoiridoids decreased in the Arbequina oil, while it increased in Picual oil

Criado-Navarro et al., 2021 [61]

Servili et al. [59] highlighted the importance of phenolic constituents due to their role
against the oxidation of compounds present in oils. In the paper are discussed the mechan-
ical technologies that influence their amount in the olive oil. Among these, mechanical
extraction from destoned pastes has improved the phenolic content of the oils. Total phe-
nols (mg/Kg) of virgin olive oils obtained from destoned and control (whole fruit) pastes
were evaluated at time 0 and after 12 months of storage at room temperature (25 ◦C). Oils
of destoned olive pastes had a content of 355 at the time 0 and 195 mg/Kg after 12 months,
vs. oils of whole fruit olive pastes, with values of 345 at the time 0 and 150 mg/Kg after
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12 months. The destoning process consented in part to removing peroxidase activity during
the extraction process, improving the phenolic compounds of oils and their oxidative
stability. Lavelli and Bondesan [50] studied the influence of destoning on the content
in secoiridoids and the antioxidant activity of oils obtained from the Leccino, Moraiolo,
Frantoio, Pendolino, Taggiasca, and Colombaia cultivars. Results showed that destoning
has grown the secoiridoids and the antioxidant activity of oils (up to 3.5 times). Extra virgin
olive, from destoned olives Leccino cv, had high phenolic content (1241 vs. 429 mg/Kg for
destoned and stoned samples respectively). Destoning caused a minor increase in the phe-
nolic content of Moraiolo cv (respectively 1072 vs. 1115 mg/Kg for the destoned and stoned
samples). So, the study also indicated that these effects depended on variety, assuming
that the influence of stone removal was associated with endogenous enzymes. Mulinacci
et al. [51] focused on comparing the phenolic compounds of 16 fresh commercial samples
of extra virgin olive oil obtained from both stoned and traditional methods. In the oils from
destoned olives, higher concentrations of phenolic compounds were found in agreement
with their higher antioxidant capacity. Among investigated cv, Coratina showed values of
120 vs. 52.4 mg/L for 3,4-DHEA-EDA in oils obtained from stoned and whole fruits respec-
tively. Peranzana cv showed values of 169.8 vs. 114.4 mg/L for 3,4-DHPEA-EDA in stoned
and traditional samples respectively. Del Caro, Vacca, Poiana, Fenu and Piga [3] evaluated
the impact of the destoning method on minor components and antioxidants in oils from
Bosana cv. In the destoned oils was found higher shelf-life with respect to these obtained
from traditional systems. Luaces, Romero, Gutierrez, Sanz and Perez [47] assessed whether
olive seeds played a role in the phenols of olive oils. The results showed an increase in total
phenols in stone removal samples produced by Spanish cultivars (Manzanilla, Hojiblanca
and Picual). The authors indicated that olive seeds carry the major peroxidase activity
(72.4 U g (−1) FW), responsible for the degradation of phenols. Therefore, olive seeds are
fundamental in determining the phenolic profile associated with their high peroxidase
activity. The increase in total phenols was noted to be superior in Picual (34%) with respect
to in Manzanilla and Hojiblanca (18%). Servili et al. [11] observed in the oils from destoned
olives a notable increase of the phenolic heritage, particularly the secoiridoid derivatives
such as the dialdehydic forms of elenolic acid linked to (3,4-dihydroxyphenyl) ethanol
and (phydroxyphenyl)ethanol (3,4-DHPEA-EDA and p-HPEA-EDA, respectively) and the
isomer of the oleuropein aglycon (3,4-DHPEA-EA) while the lignans have not undergone
any changes. The stone removal process affects especially phenolic composition in Coratina
cv, the secoiridoid derivates such as 3,4-DHPEA-EDA shows significant modifications
(365.2 mg/Kg in traditional and 507.1 mg/Kg in destoned oils). Ranalli et al. [60] evaluated
the oils obtained from destoned olives (Gentile di Chieti, Caroleo, and Coratina cultivars)
compared to those with traditional extraction. The destoning has made it possible to obtain
highly nutraceutical oils, with a higher content of hydrophilic biophenols. Coratina cv
showed the highest content of secoiridoids (56 vs. 44 mg/Kg in the destoned and traditional
samples, respectively); Caroleo cv showed 39 vs. 28 mg/Kg in the destoned and traditional
samples, and Gentile di Chieti cv had 56 vs. 44 mg/Kg in the destoned and traditional
samples. Ranalli and Contento [24] evidenced the effect of the destoning technique on
the concentration of bioactive compounds. They found significantly increased content in
oxidized oleuropein and ligstruside derivates in two oils obtained by Leccino cv, destoned
vs. stoned. In particular, oleuropein aglycon, dialdehydic form (9.2 vs. 4.3 mg/Kg in de-
stoned and stoned samples respectively), and ligstroside aglycon, dialdehydic form (24.1 vs.
10.0 mg/Kg in destoned and stoned samples respectively). This increase has been attributed
to the removal of the stone rich in polyphenoloxidase enzyme, which is the principal cause
of phenols’ oxidative phenomena in the oils. Hence, the destoning technique ensures a
higher concentration of biophenols, and also richer quantity in α- and γ-tocopherol and
in α- and γ-tocotrienol, entertained as important substances having a biological effect.
Discrepancies among data concentration of total tocopherols after destoning have been
reported. An increase of 4–27% in the findings of some authors [3,23] and a 1–12% decrease
for other ones [10,29,50] were reported. Amirante, Clodoveo, Dugo, Leone and Tambor-
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rino [7] considered the characteristics of Coratina cv oils both from destoned and in whole
olives. This research confirmed that the destoning process determined higher total phenols
in olive oils obtained. Phenolic content was 399 mg/kg in the oils obtained from destoned
olive pastes and 235 mg/Kg in those from the traditional techniques. Analogous findings
were also obtained by Gambacorta et al. [10]. In their research, the total phenols in oils from
Coratina cv were found to be higher in destoned samples (450.7 mg/Kg), versus those from
whole olives (338 mg/Kg). Concerning the phenol compounds, a significant difference
was highlighted mainly for hydroxytyrosol and, also in this study, stone removal produced
samples rich in phenols in comparison to these obtained from the traditional process (3.28
vs. 1.65 mg/Kg in destoned and whole oils respectively), (+)-1-acetoxypinoresinol (10.55
vs. 8.43 mg/Kg in destoned and whole oils respectively), and 3,4-DHPEA-EA (10.02 vs.
7.49 mg/Kg in destoned and whole oils respectively). Restuccia et al. [21] conducted
an investigation into the influence of destoning on the antioxidant properties of extra
virgin olive oil from Cerasuola cv. The comparison of the total phenolic content of the
destoned and whole samples confirmed an increase in oils from destoned pastes. The
amounts were 2.65 and 1.53 µmol GA/g polar extract for fractions from destoned and
non-destoned respectively. Yorulmaz, Tekin and Turan [29] analyzed the effect of stone
removal with malaxation in nitrogen atmosphere on the defense to oxidation of oils from
Edremit yaglik cv. Findings demonstrated the oils destonated and malaxed in nitrogen
flush had a higher total phenols content than those obtained with the same conditions but
not destoned (328 vs. 282 mg/Kg respectively). Using destoning and malaxation together
in the nitrogen atmosphere also increased the oxidative stability of oils (59.50 vs. 37.70% for
samples malaxed under nitrogen flush destoned and non-destoned). Moreover, the authors
highlighted that while destoning alone led to a 6% decrease in tocopherol concentration,
adding nitrogen washing induced a 16% increase. Ranalli et al. [26] observed phenolic
constituents in destoned (vs. whole) virgin olive oil from Olivastra di Seggiano cv. The
authors investigated from 2008 to 2010 and showed an increase in the biophenols due to the
destoning process by obtaining oils of elevated quality. They considered this fact probably
due to the lower thermoquinonization of the phenolic molecules and the lower activities of
oxidoreductase, present in greater quantities in the stone. Total ligstroside derivatives were
98.92 vs. 83.51 mg/Kg tyrosol for destoned and whole samples respectively. Destoned oils
had also higher oleocanthal levels, p-HPEA-EDA, compared to whole olive samples (23
vs. 21.4 mg/Kg tyrosol). Katsoyannos et al. [20] investigated the effects of stone removal
with different varieties (Greek varieties Koroneiki and Megaritiki) on the phenols of oils.
The phenols of oils from destoned pastes were greater with respect to these obtained by
the traditional method. Moreover, the total phenol content of Koroneiki from destoned
samples (303.45 vs. 226.49 mg/Kg in destoned samples and whole samples respectively)
was found to be significantly greater than that in Megaritiki pitted olive oils (258.05 vs.
222.99 mg/Kg in destoned samples and whole samples respectively). It was concluded
that the pitting technique maintains high content of bioactive compounds. These results
were recently confirmed by Criado-Navarro et al. [61], who evaluated the effects of stone
removal before processing on the bioactive constituents in virgin olive oil. In their work,
they analyzed “Arbequina” and “Picual” cultivars. Destoning has been demonstrated
to have different effects for cultivars and especially on secoiridoid derivatives. It was
observed that these compounds in “Arbequina” oil were present in minor quantities if
stone removal was conducted, while an increase was observed in “Picual” oil obtained
from destoned fruits. Thus, the metabolism of secoiridoids particularly β-glucosidases
and esterases resulted conditioned by the destoning of olives in a significant way. En-
lightenment for this fact would be that “Arbequina” oils from destoned olives had lost
enzymes which are contained in the stone. The opposite consequence was revealed for
flavonoids; in fact their concentration was enhanced in “Arbequina” oil from stone removal
whereas in “Picual” flavonoids decreased in virgin olive oil from destoned olives. The
authors established a direct incidence on the healthful effect bonded to the phenols; stone
removal contributed to decreasing the health benefits of olive oil “Arbequina” while not
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“Picual” cv. These findings were confirmed by other studies [62] that observed destoned
olives showed an improvement of extra virgin olive oil quality both for phenolic and
volatile composition with a significant enhancement of sensory characteristics. The authors
reported the influence of ultrasound technologies on the quality parameters and sensory
profile of extra virgin olive oils extracted from whole and destoned olives of the three
main Italian cultivars. In the studied cultivars, Canino, Coratina, and Peranzana there
was an improvement of total phenols of oils extracted from destoned olives compared
to the control test, with significant increases of 21, 19.7, and 15.8%, respectively. In this
regard, it was highlighted that the destoning process increased oleuropein and ligstroside
derivatives. The application of ultrasound coupled with the destoning process produced a
slight enhancement of phenolic concentration.

5. Effect of Destoning Technology on Volatile Compounds

Volatiles are very important compounds due to their impact on the flavor and sensory
characteristics of oils. Many factors influence the volatile components such as cultivar,
ripeness, geographic, and technological factors [54]. However, a significant proportion
of the volatiles derives the enzyme activity lipoxygenase, especially during crushing and
malaxation [63]. Angerosa, Basti, Vito and Lanza [5] observed that volatile components
deriving from the lipoxygenase pathway were very influenced by the destoned process. In
fact, volatile compounds of destoned oils from Coratina cv manifested a higher amount of
C6 metabolites than those obtained with the traditional method. The sum of all C6 com-
pounds, expressed as ppm, was 54.4 and 33.7 in destoned and whole samples, respectively.
In particular, trans-2-hexenal was the main metabolite accumulated (44.8 and 30.7 ppm
in destoned and whole samples). The authors concluded that the larger amount of C6
constituents in destoned oils would be related to a higher release of the membrane enzymes
involved in the LOX pathway, due to effective grinding of the pulp tissues. In Coratina
cv, Amirante, Clodoveo, Dugo, Leone and Tamborrino [7] reported an investigation on
the volatile components of destoned oils in comparison with the oil from whole olives.
Experimental data highlighted that the oils from destoning a greater quantity of C5 and
C6 formed and were characterized by the presence of intense flavor notes in confront to
these from the whole paste. Especially, trans-2-hexenal (185.4 vs. 110.8 mg/Kg in destoned
and whole samples, respectively) and cis-3-hexen-1-ol (4.8 vs. 8.6 mg/Kg in destoned
and whole samples). Servili et al. [11] investigated how destoning influenced volatile
components in Frantoio and Coratina oils. The results indicated the C6 aldehydes quantity,
such as trans-2-hexenal was higher in the crushed pulp, while C6 alcohols were greater
in the seed. The trial demonstrated that the LOX pathway embroils diverse enzymes in
various parts of the drupe. In fact, the seed showed a shorter hydroperoxide lyase and a
greater alcohol dehydrogenase activity, in comparison to the mesocarp. These findings
were in accordance with Luaces, Pérez and Sanz [64]. Moreover, C6 aldehydes amounts
were higher also for destoned samples, whereas in the oils from whole olives the level of C6
alcohols was higher. The consequence of this feature is that the C6 unsaturated aldehydes
positively enhance the cut grass notes of olive oil. Destoned oils from Gentile di Chieti,
Caroleo and Coratina cv were compared with those obtained from whole olives [60]. The
sample from stone removal showed greater amounts of volatile compounds, such as green
aromas C6 aldehydes, alcohols, esters, and C5 compounds. Moreover, of great interest was
the discovery of α-copaene and α-muurulene volatile components in destoned samples, in
agreement with Saitta et al. [22]. Runcio, Sorgonà, Mincione, Santacaterina and Poiana [65]
analyzed the influence of stone removal on volatile compounds in Carolea and Ottobratica
oils. Data indicated that the destoned oils by the two morphologic different varieties had a
greater content of C5 and C6, in comparison to whole oils, demonstrating that this charac-
teristic was variety independent. In particular, the sum of the C6 compounds in Carolaea
cv was 27.00 vs. 15.09 mg/Kg for destoned and whole samples, while in Ottobratica cv, it
was 14.87 vs. 4.24 for destoned and whole samples, respectively. Composition of volatile
fraction in destoned and whole Nocellara del Belice cv olives was reported by Ranalli and
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Contento [24]. Results suggested that destoning samples had higher concentrations of C5
and C6 volatile, responsible for the pleasant aromatic green notes in the oil. Unsaturated
aldehydes were major metabolites, especially trans-2-hexenal was 425.1 vs. 331.2 mg/Kg in
destoned and whole samples, respectively. This positive effect has been attributed by the
authors to the milder functioning with small amounts of thermal energy, so as not to inter-
rupt the hydro-peroxidelyase enzyme. Ranalli et al. [26] reported the differences of volatile
composition in Olivastra di Seggiano oil obtained by destoning and traditional process.
Stone removal from the fruit before processing displayed higher levels of C6 green volatiles,
such as trans-2-hexenal (963.1 vs. 658.9 mg/Kg in destoned and whole samples, respec-
tively). Moreover, in the destoned oil, the presence of new volatile molecules, α-copaene
and α-muurulene, not present in the oil extracted from whole olives, was confirmed. More
recently, Manganiello et al. [62] also found a growth in the total aldehydes, especially of
the trans-2-hexenal for destoned oils in comparison with oils from traditional methods.
The oils from Canino, Coratina, and Peranzana showed a different increment in aldehydes
(33.4%, 19.4%, and 13.8%, respectively). Overall, an improvement in the quality of the
pitted oils was confirmed also due to the increase in the volatile component. Several kinds
of research on the influences of destoning technology on virgin olive oil volatile compounds
are summed in Table 2.

Table 2. Effect of destoning technology on virgin olive oil volatile compounds.

Summary and Results References

The authors observed that the quantitative composition of volatiles deriving from the
lipoxygenase pathway was influenced by the olive fruit stones. Volatile compounds of oils
obtained from de-stoned olives of Coratina cv had a greater accumulation of C6 metabolites
than oils extracted by the whole fruits. The sum of all C6 compounds, expressed as ppm, was
54.4 and 33.7 in destoned and whole samples, respectively.

Angerosa et al., 1999 [5]

An investigation on volatile compounds of virgin olive oils Coratina cv obtained from the
de-stoner olive paste in comparison to the traditional stone mill was conducted. Data showed
that de-stoned oils had a higher amount of C5 and C6 volatile compounds, especially,
trans-2-hexenal (185.4 vs. 110.8 mg/Kg in destoned and whole samples, respectively) and
cis-3-hexen-1-ol (4.8 vs. 8.6 mg/Kg in destoned and whole samples).

Amirante et al., 2006 [7]

The study investigated the effect of stoning removal on the volatile compounds in pulp and
seed from Frantoio and Coratina olive cultivars. Data showed that for both the studied
cultivars, the amount of the C6 unsaturated aldehydes, such as trans-2-hexenal was higher in
the crushed pulp, while the crushed seed was richer in C6 unsaturated alcohols.

Servili et al., 2007 [11]

Destoned olives from Gentile di Chieti, Caroleo and Coratina cv were processed in confront
with traditional extraction. The de-stoned oils showed higher amounts of pleasant volatiles,
such as green aromas C6 unsaturated/saturated aldehydes, C6 alcohols, C6 esters, and C5
compounds. Moreover, in de-stoned samples, two new volatiles (α-copaene and α-murolene)
were present.

Ranalli et al., 2007 [60]

The authors analyzed the influence of stone removal on volatile compounds in extra virgin
olive oils obtained from Carolea, and Ottobratica cultivars. Data indicated that the oils obtained
from destoned olives by the two morphologic different varieties had a greater content of C5 and
C6 volatile compounds, compared to that obtained from whole olives, demonstrating that this
characteristic was varietal independent.

Runcio et al., 2008 [65]

Composition of volatile fraction in destoned and whole Nocellara del Belice cv olives was
reported. Results suggest that destoning samples had higher concentrations of C5 and C6
volatile, responsible for the pleasant aromatic green notes in the oil. Unsaturated aldehydes
were major metabolites, especially trans-2-hexenal was 425.1 vs. 331.2 mg/Kg in destoned and
whole samples, respectively.

Ranalli and Contento, 2010 [24]

The work reported the volatile composition of destoned (vs. whole) virgin olive oil from
Olivastra di Seggiano cv. Stone removal from the fruit before processing displayed higher levels
of C6 green volatiles, such as trans-2-hexenal (963.1 vs. 658.9 mg/Kg in destoned and whole
samples, respectively).

Ranalli et al., 2012 [26]
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6. Impact of the Destoning on Sensory Characteristics

Sensory traits of extra virgin olive oil depend primarily on the phenolic heritage of
olive cultivars and then on many other parameters, such as technological process. As
highlighted by many authors [7,10,11,24,50,51,59,60], the stone removal modifies the phe-
nolic concentration in virgin olive oil, and consequently, also influences the sensory notes.
Sensory analysis of destoned oils from Gentile di Chieti, Caroleo and Coratina cultivars was
conducted, in comparison with the oils produced with the traditional process [60]. Data
reported destoned oils had a delicate and harmonic flavor, characterized by marked green
fruitiness, with respect to the oils obtained from the traditional system. Moreover, these
positive sensory notes had scored higher by panelists (Coratina cv oils obtained a sensory
scoring of 8.1 vs. 7.6 in destoned and traditional samples, respectively). The stoned oils had
no marked bitter and astringent notes. This fact is favorable particularly for Coratina cv oils
since it is a variety distinguished for the high intensity of bitterness and pungency. These
results were in accordance with Gambacorta et al. [10]. They compared stoned and whole
Coratina oils by evaluating the sensorial analysis. Samples obtained with the traditional
process showed high notes in bitterness and pungency in comparison to destoned oils.
Destoned oils, which had a malaxation presented a greater sensorial appreciation since they
are very equable and fruity oils. Ranalli and Contento [24] confirmed that oils obtained
from destoning technique were scored more by the panelists, and had a higher fruitiness,
in comparison with whole olive oils. Ranalli et al. [26] reported the sensory characteristics
of Olivastra di Seggiano oil from destoned olives compared to those from the traditional
process. The sensory profile of the oil showed that among the sensory attributes, the arti-
choke taste was the most evident, and in the destoned samples, this sensorial attribute was
higher compared to control (the median values of the artichoke attribute were 5.7 vs. 5.0 in
destoned and whole oils respectively). In destoned oils, also the fruitiness flavor was more
than the whole oils (the median values of the fruitiness were 8.6 vs. 7.0 in destoned and
whole oils, respectively). Guermazi, Ghasallaoui, Perri, Gabsi and Benincasa [19] evaluated
the sensory characteristic of oil produced from the whole and stoned olives of Chemlali
cultivar, using the IOOC standard profile sheet method [66]. Results showed that the fruity
positive attribute in conventional oil presented the lower values (2.6) while in destoned
oils was almost double (5.1). For the pungent note, it was noted that the values had the
same trend, they were respectively 5.7 and 2.3 in stoned and conventional oils. The stoned
samples had lower values (2.1) for the bitter attribute in comparison with the conventional
oils (5.7). So, the stone removal process increased the fruity and the pungent attributes,
whereas it decreased oil bitterness. This fact improved the sensory quality of olive oil. In
recent work [16], a partial destoning and a whole process were confronted to evaluate
olive oil quality and its sensory characteristics. Data showed that the positive attributes
(fruitiness, bitter and pungent) in Coratina cv oils obtained from partial destoned and
whole olives were different. Particularly, the partial destoned oil had the fruitiness attribute
higher than oils from whole olives (fruity was 3.9 vs. 2.5 respectively). Furthermore, green
fruitiness and green almond were present in the partial destoned oil, while the whole oil
had ripe fruitiness and ripe almond. Overall, the partial destoned samples were more
harmonic in comparison with those produced using the traditional process, and for this
reason, they were in better acceptance by consumers. Manganiello et al. [62] analyzed
sensorial profiles of Peranzana, Coratina, and Canino cultivars highlighting that only for
the Coratina cultivar, the destoning coupled with ultrasound treatment has decreased in
bitterness and increased in herb sensation. In this regard, the increase in the “green” sensa-
tion contributed to enhancing the positive notes of the oil taste and the higher quantity of
phenolic and volatile compounds due to the removal of the seeds, have given oil a greater
sensorial score.

7. Future Perspectives and Conclusions

As highlighted in a previous section, the destoning of the olive paste reduces the
yield of oil compared to oils from whole olives. Indeed, the destoned process generally
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causes a reduction of the yield to about 1.5 kg of oil per 100 kg of olives compared to
traditional methods [7,14]. In the future, this negative effect could be overcome by emerging
technologies such as ultrasounds [62,67]. From its application coupled with destoning,
arises the opportunity to increase the oil yield without altering the nutraceutical profile [68].
In fact, the use of this emerging technology could meet the growing consumer attitude for
high-quality extra virgin olive oil with health and sensory properties bonded to a higher
content of phenolic and volatile compounds. An interesting future perspective is also
proposed by Toscano et al. [69] who have developed a newmade lab-scale prototype to
project a “low-speed” olive destoning process as an alternative to percussion and centrifugal
projection for the separation of pulp stones. This method has been founded on constriction
of the drupes and extrusion of their pulps by pressure. Further investigations are required
to assess whether it will be possible to develop real-scale industrial destoning, evaluating
all qualitative parameters of oils obtained in comparison to the current destoned method.
The analysis of the literature revealed that the destoned process caused improvements in
the quality of extra virgin olive oils, also owing to higher polyphenolic content. In this
consideration, it is important to convey to consumers the nutritional and health added
value that pitted olive oils have also by virtue of their high content of polyphenols. This fact
is very important because if extra virgin olive oil has a higher phenol amount it would allow
adding the health claim on the label, with a positive effect on consumers. Precisely with
regard to polyphenols, the European Food Safety Authority has adopted in the Commission
Regulation no. 432/2012 a series of claims regarding the advantages of constituents in
foods having a biological effect, such as olive oil polyphenols. “The claim may be used on
labels, only for olive oil which contains at least 5 mg of hydroxytyrosol and its derivatives
(e.g., oleuropein complex and tyrosol) per 20 g of olive oil”. As pointed out, the destoning
technology improves also the olive oil flavor, both for the greater concentration of volatiles
answerable for the “green” sensory notes and the reduction of the bitter taste. Thus,
destoned oils receive higher scores from those who particularly prize the harmonic aroma
of the oils. In addition, an ulterior advantage of using destoning, which could be very
important, is considering that stones can make use as biomass. At present, the purpose of
environmental sustainability is increasingly towards the employment of renewable energy,
and this consideration makes it very actual to re-evaluate the use of destoning technology.
In our opinion, the valorization of dried stoned pomace as supplements in animal feeding
seems a further point in favor of the destoned process.

Author Contributions: All authors contributed to manuscript writing. Conceptualization, review
and editing, R.M. and M.T.F.; supervision, M.C. and D.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Not applicable for studies not involving humans or animals.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ranalli, A.; Cabras, P.; Iannucci, E.; Contento, S. Lipochromes, vitamins, aromas and other components of virgin olive oil are

affected by processing technology. Food Chem. 2001, 73, 445–451. [CrossRef]
2. Veneziani, G.; Sordini, B.; Taticchi, A.; Esposto, S.; Selvaggini, R.; Urbani, S.; Di Maio, I.; Servili, M. Improvement of Olive

Oil Mechanical Extraction: New Technologies, Process Efficiency, and Extra Virgin Olive Oil Quality. In Products from Olive
Tree; Boskou, D., Clodoveo, M.L., Eds.; Book Citation Index in Web of Science™ Core Collection (BKCI); IntechOpen: London,
UK, 2016. [CrossRef]

3. Del Caro, A.; Vacca, V.; Poiana, M.; Fenu, P.; Piga, A. Influence of technology storage and exposure on components of extra virgin
olive oil (Bosana cv) from whole and de-stoned fruits. Food Chem. 2006, 98, 311–316. [CrossRef]

http://doi.org/10.1016/S0308-8146(00)00328-9
http://doi.org/10.5772/64796
http://doi.org/10.1016/j.foodchem.2005.05.075


Foods 2022, 11, 1479 14 of 16

4. Salvador, M.D.; Aranda, F.; Gomez-Alonso, S.; Fregapane, G. Influence of extraction system, production year and area on
Cornicabra virgin olive oil: A study of five crop seasons. Food Chem. 2003, 80, 359–366. [CrossRef]

5. Angerosa, F.; Basti, C.; Vito, R.; Lanza, B. Effect of fruit stone removal on the production of virgin olive oil volatile compounds.
Food Chem. 1999, 67, 295–299. [CrossRef]

6. Amirante, P.; Catalano, P.; Amirante, R.; Clodoveo, M.L.; Montel, G.L.; Leone, A. Prove sperimentali di estrazione di oli
extravergini di oliva da paste snocciolate. Olivo Olio 2002, 6, 16–22.

7. Amirante, P.; Clodoveo, M.L.; Dugo, G.; Leone, A.; Tamborrino, A. Advance technology in virgin olive oil production from
traditional and de-stoned pastes: Influence of the introduction of a heat exchanger on oil quality. Food Chem. 2006, 98, 797–805.
[CrossRef]

8. De Luca, M.; Restuccia, D.; Clodoveo, M.L.; Puoci, F.; Ragno, G. Chemometric analysis for discrimination of extra virgin olive oils
from whole and stoned olive pastes. Food Chem. 2016, 202, 432–437. [CrossRef]

9. Dugo, G.; Pellicano, T.M.; Pera, L.; Lo Turco, V.L.; Tamborrino, A.; Clodoveo, M.L. Determination of inorganic anions in
commercial seed oils and in virgin olive oils produced from de-stoned olives and traditional extraction methods using suppressed
ion exchange chromatography (IEC). Food Chem. 2007, 102, 599–605. [CrossRef]

10. Gambacorta, G.; Faccia, M.; Previtali, M.A.; Pati, S.; La Notte, E.; Baiano, A. Effects of olive maturation and stoning on quality
indices and antioxidant content of extra virgin oils (cv. Coratina) during storage. J. Food Sci. 2010, 3, 229–235. [CrossRef]

11. Servili, M.; Taticchi, A.; Esposto, S.; Urbani, S.; Selvaggini, R.; Montedoro, G. Effect of olive stoning on the volatile and phenolic
composition of virgin olive oil. J. Agric. Food Chem. 2007, 55, 7028–7035. [CrossRef]

12. Leone, A.; Romaniello, R.; Peri, G.; Tamborrino, A. Development of a new model of olives de-stoner machine: Evaluation of
electric consumption and kernel characterization. Biomass Bioenergy 2015, 81, 108–116. [CrossRef]

13. Leone, A. Olive milling and pitting. In The Extra-Virgin Olive Oil Handbook, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014;
pp. 117–126. [CrossRef]

14. Amirante, P.; Clodoveo, M.L.; Tamborrino, A.; Leone, A.; Paice, A.G. Influence of the crushing system: Phenol content in virgin
olive oil produced from whole and de-stoned pastes. In Olives and Olive Oil in Health and Disease Prevention; Victor, R.P., Watson,
R.R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 69–76. [CrossRef]

15. Leone, A.; Esposto, S.; Tamborrino, A.; Romaniello, R.; Taticchi, A.; Urbani, S.; Servili, M. Using a tubular heat exchanger to
improve the conditioning process of the olive paste: Evaluation of yield and olive oil quality. Eur. J. Lipid Sci. Technol. 2016, 118,
308–317. [CrossRef]

16. Romaniello, R.; Leone, A.; Tamborrino, A. Specification of a new de-stoner machine: Evaluation of machining effects on olive
paste’s rheology and olive oil yield and quality. J. Sci. Food Agric. 2017, 97, 115–121. [CrossRef] [PubMed]

17. Tamborrino, A.; Servili, M.; Leone, A.; Romaniello, R.; Perone, C.; Veneziani, G. Partial de-stoning of olive paste to increase olive
oil quality, yield, and sustainability of the olive oil extraction process. Eur. J. Lipid Sci. Technol. 2020, 122, 2000129. [CrossRef]

18. Leone, A.; Romaniello, R.; Zagaria, R.; Sabella, E.; De Bellis, L.; Tamborrino, A. Machining effects of different mechanical crushers
on pit particle size and oil drop distribution in olive paste. Eur. J. Lipid Sci. Technol. 2015, 117, 1271–1279. [CrossRef]

19. Guermazi, Z.; Ghasallaoui, M.; Perri, E.; Gabsi, S.; Benincasa, C. Characterization of Extra Virgin Olive Oil Obtained from Whole
and Destoned Fruits and Optimization of Oil Extraction with a Physical Coadjuvant (Talc) Using Surface Methodology. J. Anal.
Bioanal. Tech. 2015, 6, 278–286. [CrossRef]

20. Katsoyannos, E.; Batrinou, A.; Chatzilazarou, A.; Bratakos, S.M.; Stamatopoulos, K.; Sinanoglou, V.J. Quality parameters of olive
oil from stoned and nonstoned Koroneiki and Megaritiki Greek olive varieties at different maturity levels. Grasas Y Aceites 2015,
66, e067. [CrossRef]

21. Restuccia, D.; Spizzirri, U.G.; Chiricosta, S.; Puoci, F.; Altimari, I.; Picci, N. Antioxidant properties of extra virgin olive oil from
Cerasuola cv olive fruit: Effect of stone removal. Ital. J. Food Sci. 2011, 23, 62–71.

22. Saitta, M.; Lo Turco, V.; Pollicino, D.; Dugo, G.; Bonaccorsi, L.; Amirante, P. Oli di oliva da pasta denocciolata ottenuta da cv
Coratina e Paranzana. Riv. Ital. Sostanze Grasse 2003, 80, 27–34.

23. Ranalli, A.; Marchegiani, D.; Pardi, D.; Contento, S.; Pardi, D.; Girardi, F.; Kotti, F. Evaluation of functional phytochemicals in
destoned virgin olive oil. Food Bioprocess. Technol. 2009, 2, 322–327. [CrossRef]

24. Ranalli, A.; Contento, S. Analytical assessment of destoned and organic destoned extra-virgin olive oil. Eur. Food Res. Technol.
2010, 230, 965–971. [CrossRef]

25. Clodoveo, M.L.; Hbaieb, R.H.; Kotti, F.; Scarascia Mugnozza, G.; Gargouri, M. Mechanical Strategies to Increase Nutritional and
Sensory Quality of Virgin Olive Oil by Modulating the Endogenous Enzyme Activities. Compr. Rev. Food Sci. Food Saf. 2014, 13,
135–154. [CrossRef] [PubMed]

26. Ranalli, F.; Ranalli, A.; Contento, S.; Casanovas, M.; Antonucci, M.; Di Simone, G. Concentrations of bioactives and functional
factors in destoned virgin olive oil: The case study of the oil from Olivastra di Seggiano cultivar. J. Pharm. Nutr. Sci. 2012, 2, 83–93.
[CrossRef]

27. Titouh, K.; Mazari, A.; Meziane, M.Z.A. Contribution to improvement of the traditional extraction of olive oil by pressure from
whole and stoned olives by addition of a co-adjuvant (talc). Oilseeds Fats Crops Lipids 2020, 27, 23. [CrossRef]

28. Guermazi, Z.; Gharsallaoui, M.; Perri, E.; Gabsi, S.; Benincasa, C. Integrated approach for the eco design of a new process through
the life cycle analysis of olive oil: Total use of olive by-products. Eur. J. Lipid Sci. Technol. 2017, 119, 1700009. [CrossRef]

http://doi.org/10.1016/S0308-8146(02)00273-X
http://doi.org/10.1016/S0308-8146(99)00138-7
http://doi.org/10.1016/j.foodchem.2005.07.040
http://doi.org/10.1016/j.foodchem.2016.02.018
http://doi.org/10.1016/j.foodchem.2006.05.039
http://doi.org/10.1111/j.1750-3841.2010.01516.x
http://doi.org/10.1021/jf070600i
http://doi.org/10.1016/j.biombioe.2015.06.016
http://doi.org/10.1002/9781118460412.ch11
http://doi.org/10.1016/B978-0-12-374420-3.00008-5
http://doi.org/10.1002/ejlt.201400616
http://doi.org/10.1002/jsfa.7694
http://www.ncbi.nlm.nih.gov/pubmed/26927223
http://doi.org/10.1002/ejlt.202000129
http://doi.org/10.1002/ejlt.201400485
http://doi.org/10.4172/2155-9872.1000278
http://doi.org/10.3989/gya.0711142
http://doi.org/10.1007/s11947-008-0128-0
http://doi.org/10.1007/s00217-010-1245-3
http://doi.org/10.1111/1541-4337.12054
http://www.ncbi.nlm.nih.gov/pubmed/33412651
http://doi.org/10.6000/1927-5951.2012.02.01.12
http://doi.org/10.1051/ocl/2020017
http://doi.org/10.1002/ejlt.201700009


Foods 2022, 11, 1479 15 of 16

29. Yorulmaz, A.; Tekin, A.; Turan, S. Improving olive oil quality with double protection: Destoning and malaxation in nitrogen
atmosphere. Eur. J. Lipid Sci. Technol. 2011, 113, 637–643. [CrossRef]

30. Clodoveo, M.L.; Hbaieb, R.H. Beyond the traditional virgin olive oil extraction systems: Searching innovative and sustainable
plant engineering solutions. Food Res. Int. 2013, 54, 1926–1933. [CrossRef]

31. Rodrìguez, G.; Lama, A.; Rodrìguez, R.; Jiménez, A.; Guillén, R.; Fernàndez-Bolanos, J. Olive stone an attractive source of
bioactive and valuable compounds. Bioresour. Technol. 2008, 99, 5261–5269. [CrossRef]

32. Souilem, S.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; Sayadi, S.; Galanakis, C.M. live oil production sector: Environmental effects
and sustainability challenges. In Olive Mill Waste: Recent Advances for Sustainable Management; Elsevier Inc.: Amsterdam, The
Netherlands, 2017; pp. 1–28. [CrossRef]

33. Pattara, C.; Cappelletti, G.M.; Cichelli, A. Recovery and use of olive stones: Commodity, environmental and economic assessment.
Renew. Sustain. Energy Rev. 2010, 14, 1484–1489. [CrossRef]

34. Restuccia, D.; Clodoveo, M.L.; Corbo, F.; Loizzo, M.R. De-stoning technology for improving olive oil nutritional and sensory
features: The right idea at the wrong time. Food Res. Int. 2018, 106, 636–646. [CrossRef]

35. Rosati, A.; Cafiero, C.; Paoletti, A.; Alfei, B.; Caporali, S.; Casciani, L.; Valentini, M. Effect of agronomical practices on carpology,
fruit and oil composition, and oil sensory properties, in olive (Olea europaea L.). Food Chem. 2014, 159, 236–243. [CrossRef]
[PubMed]

36. Kartas, A.; Chliyeh, M.; Touati, J.; Ouazzani Touhami, A.; Gaboun, F.; Benkirane, R.; Douira, A. Evaluation of bio-agronomical
characteristics of olive fruits (Olea europaea L.) of the introduced varieties and local types grown in the Ouazzane areas (Northern
Morocco). Int. J. Adv. Pharm. Biol. Chem. 2016, 5, 39–43.

37. Atta, N.M.M.; Mohamed, E.; Ahmed, A.A.; Gourgeose, K.G. Influence of Different Rates of Irrigation to Olive Trees on Fruits
Yield, Quality and Sensory Attributes of Olive Oil Output. Ann. Agric. Sci. Moshtohor J. 2019, 57, 67–76. [CrossRef]

38. Morales-Sillero, A.; Fernández, J.E.; Troncoso, A. Pros and Cons of Olive Fertigation: Influence on Fruit and Oil Quality. ISHS
Acta Hortic. 2011, 888, 269–276. [CrossRef]

39. Rosati, A.; Caporali, S.; Paoletti, A. Fertilization with N and K increases oil and water content in olive (Olea europaea L.) fruit via
increased proportion of pulp. Sci. Hortic. 2015, 192, 381–386. [CrossRef]

40. Mahmoud, T.S.M.; Mohamed, E.S.A.; El-Sharony, T.F. Influence of Foliar Application with Potassium and Magnesium on Growth,
Yield and Oil Quality of “Koroneiki” Olive Trees. Am. J. Food Technol. 2017, 12, 209–220. [CrossRef]

41. Mele, M.A.; Islam, M.Z.; Kang, H.M.; Giuffrè, A.M. Pre-and post-harvest factors and their impact on oil composition and quality
of olive fruit. Emir. J. Food Agric. 2018, 30, 592–603. [CrossRef]

42. Ahmad, R.L. Efficiency of Mechanical Tools for Olive Harvest and Effect on Fruit Quality. In Proceedings of the ISHS Acta
Horticulturae 1199, VIII International Olive Symposium, Split, Croatia, 10 October 2016; 2018. [CrossRef]

43. Abenavoli, L.M.; Proto, A.R. Effects of the divers olive harvesting systems on oil quality. Agron. Res. 2015, 13, 7–16.
44. Clodoveo, M.L.; Dipalmo, T.; Schiano, C.; La Notte, D.; Pati, S. What’s now, what’s new and what’s next in virgin olive oil

elaboration systems? A perspective on current knowledge and future trends. J. Agric. Eng. 2014, 193, 49–58. [CrossRef]
45. García-Rodríguez, R.; Romero-Segura, C.; Sanz, C.; Sánchez-Ortiz, A.; Pérez, A.G. Role of polyphenol oxidase and peroxidase in

shaping the phenolic profile of virgin olive oil. Food Res. Int. 2011, 44, 629–635. [CrossRef]
46. Sanchez-Ortiz, A.; Romero-Segura, C.; Sanz, C.; Perez, A.G. Synthesis of volatile compounds of virgin olive oil is limited by the

lipoxygenase activity load during the oil extraction process. J. Agric. Food Chem. 2012, 60, 812–822. [CrossRef] [PubMed]
47. Luaces, P.; Romero, C.; Gutierrez, F.; Sanz, C.; Perez, A.G. Contribution of olive seed to the phenolic profile and related quality

parameters of virgin olive oil. J. Scence Food Agric. 2007, 87, 2721–2727. [CrossRef] [PubMed]
48. Peres, F.; Martins, L.L.; Ferreira-Dias, S. Influence of Enzymes and Technology on Virgin Olive Oil Composition. Crit. Rev. Food

Sci. Nutr. 2017, 57, 3104–3126. [CrossRef] [PubMed]
49. Cerretani, L.; Baccouri, O.; Bendini, A. Improving of oxidative stability and nutritional properties of virgin olive oils by fruit

de-stoning. Agro Food Ind. Hi-Tech 2008, 19, 21–23.
50. Lavelli, V.; Bondesan, L. Secoiridoids, tocopherols, and antioxidant activity of monovarietal extra virgin olive oils extracted from

destoned fruits. J. Agric. Food Chem. 2005, 53, 1102–1107. [CrossRef] [PubMed]
51. Mulinacci, N.; Giaccherini, C.; Innocenti, M.; Romani, A.; Vincieri, F.; Marotta, F.; Mattei, A. Analysis of extra virgin olive oils

from stoned olives. J. Sci. Food Agric. 2005, 85, 662–670. [CrossRef]
52. Servili, M.; Esposto, S.; Taticchi, A.; Urbani, S.; Di Maio, I.; Veneziani, G.; Selvaggini, R. New approaches to virgin olive oil quality,

technology, and by-products valorization. Eur. J. Lipid Sci. Technol. 2015, 117, 1882–1892. [CrossRef]
53. Salas, J.J.; Sanchez, J.; Ramli, U.S.; Manaf, A.M.; Williams, M.; Harwood, J.L. Biochemistry of lipid metabolism in olive and other

oil fruits. Prog. Lipid Res. 2000, 39, 151–180. [CrossRef]
54. Kalua, C.M.; Allen, M.S.; Bedgood, D.R., Jr.; Bishop, A.G.; Prenzler, P.D.; Robards, R. Olive oil volatile compounds, flavour

development and quality: A critical review. Food Chem. 2007, 100, 273–286. [CrossRef]
55. Servili, M.; Esposto, S.; Taticchi, A.; Urbani, S.; Di Maio, I.; Sordini, B.; Selvaggini, R.; Montedoro, G.; Angerosa, F. Volatile

compounds of virgin olive oil: Their importance in the sensory quality. In Handbook of Advances in Olive Resources; Berti, L., Maury,
J., Eds.; Transworld Research Network: Kerala, India, 2009; ISBN 978-81-7895-388-5.

56. Mazzuca, S.; Spadafora, A.; Innocenti, A.M. Cell and tissue localization of β-glucosidase during the ripening of olive fruit
(Olea europaea) by in situ activity assay. Plant Sci. 2006, 171, 726–733. [CrossRef]

http://doi.org/10.1002/ejlt.201000481
http://doi.org/10.1016/j.foodres.2013.06.014
http://doi.org/10.1016/j.biortech.2007.11.027
http://doi.org/10.1016/B978-0-12-805314-0.00001-7
http://doi.org/10.1016/j.rser.2010.01.018
http://doi.org/10.1016/j.foodres.2018.01.043
http://doi.org/10.1016/j.foodchem.2014.03.014
http://www.ncbi.nlm.nih.gov/pubmed/24767050
http://doi.org/10.21608/assjm.2019.42206
http://doi.org/10.17660/ActaHortic.2011.888.30
http://doi.org/10.1016/j.scienta.2015.05.018
http://doi.org/10.3923/ajft.2017.209.220
http://doi.org/10.9755/ejfa.2018.v30.i7.1742
http://doi.org/10.17660/ActaHortic.2018.1199.49
http://doi.org/10.4081/jae.2014.193
http://doi.org/10.1016/j.foodres.2010.12.023
http://doi.org/10.1021/jf204241e
http://www.ncbi.nlm.nih.gov/pubmed/22175798
http://doi.org/10.1002/jsfa.3049
http://www.ncbi.nlm.nih.gov/pubmed/20836182
http://doi.org/10.1080/10408398.2015.1092107
http://www.ncbi.nlm.nih.gov/pubmed/26466636
http://doi.org/10.1021/jf048848k
http://www.ncbi.nlm.nih.gov/pubmed/15713026
http://doi.org/10.1002/jsfa.1982
http://doi.org/10.1002/ejlt.201500138
http://doi.org/10.1016/S0163-7827(00)00003-5
http://doi.org/10.1016/j.foodchem.2005.09.059
http://doi.org/10.1016/j.plantsci.2006.07.006


Foods 2022, 11, 1479 16 of 16

57. Velázquez-Palmero, D.; Romero-Segura, C.; García-Rodríguez, R.; Hernandez, L.; Vaistij, F.E.; Graham, I.A.; Pérez, A.G.; Martínez-
Rivas, J.M. An Oleuropein β-Glucosidase from Olive Fruit Is Involved in Determining the Phenolic Composition of Virgin Olive
Oil. Front. Plant Sci. 2017, 8, 1902. [CrossRef] [PubMed]

58. Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Effect of light exposure on the
quality of extra virgin olive oils according to their chemical composition. Food Chem. 2017, 229, 726–733. [CrossRef] [PubMed]

59. Servili, M.; Selvaggini, R.; Esposto, S.; Taticchia, A.; Montedoro, G.F.; Morozzi, G. Health and sensory properties of virgin olive oil
hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A
2004, 1054, 113–127. [CrossRef]

60. Ranalli, A.; Benzi, M.; Gomes, T.; Delcuratolo, D.; Marchegiani, D.; Lucera, L. Concentration of natural pigments and other
bioactive components in pulp oils from de-stoned olives. Innov. Food Sci. Emerg. Technol. 2007, 8, 437–442. [CrossRef]

61. Criado-Navarro, I.; Ledesma-Escobar, C.A.; Olmo-Peinado, J.M.; Parrado-Martínez, M.J.; Vílchez-García, P.J.; Espejo-Calvo, J.A.;
Priego-Capote, F. Influence of fruit destoning on bioactive compounds of virgin olive oil. LWT Food Sci. Technol. 2021, 145, 111354.
[CrossRef]

62. Manganiello, R.; Pagano, M.; Nucciarelli, D.; Ciccoritti, R.; Tomasone, R.; Di Serio, M.G.; Giansante, L.; Del Re, P.; Servili, M.;
Veneziani, G. Effects of ultrasound technology on the qualitative properties of Italian extra virgin olive oil. Foods 2021, 10, 2884.
[CrossRef]
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