| Algorithm 1: SFMOABC |
|
Input: the number of the food sources ; the dimension of problems ; a count parameter representing the number of times the current solution has not been improved ; the maximum number of not be improved ; the number of hub nodes in the scale-free network ; the number of edges when the node joins the network . Output: the optimal solution . 01. Initialize food sources to form a population ; 02. Calculate the fitness value of each solution ; 03. Build a scale-free network with node, and number each node in the network. 04. While the stopping criteria is not satisfied do 05. for do 06. if then 07. ; 08. Find the neighbor with the largest degree of ; 09. 10. ; 11. Calculate the fitness value of the . 12. ; 13. Calculate the fitness value of ; 14. if then 15. ; ; 16. else 17. ; ; 18. end 19. if then 20. ; ; 21. else 22. ; 23. end 24. else 25. ; 26. Find the neighbor with the largest degree of ; 27. ; 28. Repeat (Steps 10–23) 29. end 30. end 31. Calculate the probability of ; 32. ; ; 33. while do 34. if then 35. repeat (Steps 06–30) 36. end 37. ; 38. if then 39. ; 40. end 41. end 42. Find the individual with the maximum trail value; 43. if then 44. Randomly generated a new food source to replace the -th food source; 45. end end |
| Return the optimal solution with the largest fitness value. |