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Abstract: Gradient Boosting Machines (GBM) are among the go-to algorithms on tabular data, which
produce state-of-the-art results in many prediction tasks. Despite its popularity, the GBM framework
suffers from a fundamental flaw in its base learners. Specifically, most implementations utilize
decision trees that are typically biased towards categorical variables with large cardinalities. The
effect of this bias was extensively studied over the years, mostly in terms of predictive performance.
In this work, we extend the scope and study the effect of biased base learners on GBM feature
importance (FI) measures. We demonstrate that although these implementation demonstrate highly
competitive predictive performance, they still, surprisingly, suffer from bias in FI. By utilizing cross-
validated (CV) unbiased base learners, we fix this flaw at a relatively low computational cost. We
demonstrate the suggested framework in a variety of synthetic and real-world setups, showing
a significant improvement in all GBM FI measures while maintaining relatively the same level of
prediction accuracy.

Keywords: gradient boosting; feature importance; tree-based methods; classification and regression
trees

1. Introduction

In recent years, machine learning (ML) has gained much popularity and became an
integral part of our daily life. Current state-of-the-art algorithms are complex models that
are difficult to interpret and rely on thousands, and even billions of parameters. Gaining
insight into how these complex algorithms work is a key step towards better understanding
our environment. Further, it is a crucial step for enabling ML algorithms to support and
assist human decision making in complex fields (for example, as in medicine [1]). FI is one
of the basic tools for this purpose. The general FI framework scores input variables by their
contribution to the predictive model, allowing us to gain insight into which features are
important for this task. GBM [2] is an ensemble of base (weak) learners. These learners are
typically standard implementations of tree-based models such as CART [3], C4.5 [4], and
others. GBMs are among the current state-of-the-art ML techniques on tabular data in a
variety of tasks such as click prediction [5], ranking [6], and others. Besides its accuracy,
the GBM framework holds many virtues, which makes it a favorable choice for many
learning tasks. It is efficient, can handle categorical variables and deals with any kind of
differential loss function. Further, it supports missing values and invariants to feature
scaling. However, it is well known that GBM base learners are biased towards categorical
variables with large cardinalities [3]. As a consequence, ensemble methods that rely on
such biased learners suffer from the same flaw [7].

In this work, we study the effect of base learners’ bias on FI measures, in standard
GBM implementations. We show that in the presence of categorical features with large
alphabets, most FI measures are typically biased. This results in misinterpreted models.
To overcome this caveat, we utilize a cross-validated boosting (CVB) framework. CVB
addresses the tree’s bias through a simple modification: during the training stage of the
tree, a variable is selected for splitting based on its cross-validated performance, rather
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than on its training sample performance (see [8], for example). This way, we conduct a
”fair” comparison between features, utilizing only high cardinality categorical features that
are demonstrated to be informative, in terms of their estimated generalization abilities.

The rest of this manuscript is organized as follows, in Section 2, we review previ-
ous related work. In Section 3, we formalize and define cross-validated boosting (CVB).
Section 4 outlines the experiment design in which we compare CVB to other GBM frame-
works. In Section 5, we compare CVB to common open-source GBM implementations and
demonstrate that CVB is the only algorithm that does not suffer from biased FI in high car-
dinality features through simulation studies. Finally, Section 6 contains two comprehensive
real data case studies, demonstrating that CVB FI is more reliable than alternative schemes.
We conclude the manuscript in Section 7.

2. Background
2.1. Decision Trees

Decision trees are a longstanding staple of predictive modeling. Popular tree building
algorithms can handle both numerical and categorical variables, and build models for
regression, binary and multi-class classification. Decision trees are built recursively to mini-
mize a given loss function. At each step, the split that optimizes a given criterion is selected
from all possible splits over on all variables. We hereby present the CART approach, which
is one of the most widely used tree implementations in current GBM implementations.

Let {xi, yi}N
i=1 be a training set with N samples , where xi ∈ Rp, yi ∈ R. The standard

CART approach is a binary tree which utilizes either squared error loss impurity criterion
(regression) or the Gini index (classification) to evaluate a possible split. At each internal
node of a tree, a split s is a partition of n observations to two disjoint subsets R(s) and L(s).
In regression tress, the squared error impurity criterion is defined as

I(s) = Σi∈L(s)(yi − ȳL)
2 + Σi∈R(s)(yi − ȳR)

2, (1)

where ȳL, ȳR are the means of the response y over the sets L(s), R(s) respectively. The split
gain (SG) is defined as the amount of decrease in the impurity of the split:

SG(s) = Σn
i=1(yi − ȳ)2 − I(s). (2)

At each node, CART examines all possible splits for each feature and selects the split
with the minimum impurity (maximum gain). For each variable j, we denote the set of
possible splits by Sj and their cardinality by |Sj|. Let Kj be the number of categories in
a categorical feature j. For each numerical/ordinal variable, CART considers only splits
along the sorted variable. Therefore, there are |Sj| ≤ n − 1 possible splits between its
unique sorted values. For a categorical variable, there are |Sj| = 2Kj−1 possible binary
splits, but it is sufficient to sort the categories by their mean response value and search for
splits along this axis [3], reducing the complexity to only Kj − 1 splits.

Without any regularization mechanism, terminal nodes are split and deep, and com-
plex trees are formed. Thus, stopping criteria are typically applied to prevent over-fitting
and reduce tree complexity. Several common stopping criteria are the maximum tree depth,
minimum samples to split, minimum samples leaf and minimum impurity decrease. It is
also possible to grow a tree to its maximum depth and then to prune it, such as in minimal
cost-complexity pruning [3].

An additional commonly used decision tree implementation is C4.5 [4]. C4.5 considers
K-way splits for categorical features (as opposed to binary splits in CART). C4.5 trees may
be problematic for large cardinality categorical features, as they result in splits with very
few samples, and henceforth induce variance. Further, C4.5 trees are not used in recent
GBM implementations. A comprehensive discussion on different splitting frameworks is
provided in [9].
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2.2. Gradient Boosting Trees

GBM is an ensemble model of M regression trees, trained sequentially one after the
other, in order to predict the previous trees’ errors. GBM may be viewed as a gradient
descent in a functional space, where in each iteration of GBM, a tree is grown to estimate
the gradient of the objective function. Let Fm : Rp → R be a predictive model at stage
m, where m = 1, . . . , M. Let L(yi, Fm(xi)) be a differentiable loss function. For example,
LSE(yi, Fm(xi)) = (yi − Fm(xi))

2 is the squared error loss in the standard regression case.
GBM initializes with a constant model by estimating a parameter that minimizes the

overall loss (for the squared error F0(xi) = ȳ). Then, at every iteration m, a regression
decision tree hm is trained to minimize the empirical risk

hm = argmin
h

ΣN
i=1L(yi, Fm−1(xi) + h(xi)).

hm is obtained by fitting a regression tree to the gradients of each sample with respect to
the current estimator at stage m. The optimal step size is calculated per each leaf by a line
search. hm can be considered as the best greedy step in order to minimize the empirical
risk. In order to reduce over-fitting, a learning-rate α is used and the model is updated,
Fm = Fm−1 + αhm. This process is repeated until M trees are grown. Later, inspired
by Breiman’s bootstrap-aggregating (bagging) [10], Friedman showed that a stochastic
modification to GBM can substantially improve the prediction error of GBM [11]. In its
stochastic form, GBM fits each tree on a sub-sample of the training-set, sampled at random
without replacement.

2.3. GBM Implementations

There are many implementations of GBM in the literature. Many of these imple-
mentations follow Friedman’s GBM, which is based on CART trees. In the age of big
data, modern ML tasks require very large datasets. Therefore, the need for more scalable,
distributed, GBM solutions arise (such as [12]). This line of work mostly focuses on the
efficient implementation of GBM in distributed environments such as MapReduce [13].
Here, the most notable implementation is XGBoost [14]. XGBoost has two main advantages.
First, it unifies previous ideas of distributed computing with novel optimisations such as
out-of-core-computation and sparsity-awareness. Thus, producing much lower run-time
both on a single machine and in a distributed environment. Second, XGBoost introduces a
new regularized learning objective, which penalizes the complexity of the model. The result
is a highly scaled end-to-end open-source implementation that produces state-of-the-art
results, winning multiple data science open competitions.

Unfortunately, the main drawback of the XGBoost framework is the lack of categor-
ical variables support. Specifically, in order to utilize a categorical feature, one needs
to transform it to numeric variables such as in one-hot-encoding or to use term statistics.
One-hot-encoding is a valid method to transform categorical features to numeric ones, but
in cases of high cardinality variables, it substantially increases the number of features and
henceforth the execution time. Term statistics is a method to transform a categorical feature
to numeric by using the target value. Here, each category is replaced with its respective
mean response value or a smoothed version of it [15]. The main problem with this approach
is that it implies an order among the categories, and limits the expressive power of CART
in categorical splits.

Following XGBoost, Microsoft introduced LightGBM (LGBM) [16]. LGBM is a faster
implementation of GBM that supports categorical features. LGBM uses sampling tech-
niques to exclude data instances with small gradients and exclusive feature bundling to
reduce the number of features tested to split at each node while achieving almost the same
accuracy. More importantly, LGBM supports categorical features out-of-the-box and follows
the original CART approach. Lately, CatBoost pushed the envelope of treating categorical
features in GBM even further. CatBoost addresses a target leakage (see [15]) to significantly
improve the prediction error. For categorical variables, CatBoost uses ordered term statistics
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and it is henceforth more memory efficient than LGBM. Further, CatBoost utilities oblivious
trees as base learners. Oblivious decision trees are decision trees for which all nodes at the
same level use the same feature to split. These trees are balanced, less prone to over-fitting,
and allow speeding up execution at testing time. Finally, CatBoost uses combinations of
categorical features as additional categorical features to capture high-order dependencies
between categorical features.

2.4. FI Methods

Understanding the decision-making mechanism of a ML algorithm is an important
task in many applications. First, in several setups, attaining the best prediction is not our
sole intent; we would like to know more about the problem and the data. Second, model
interpretability is a key step for achieving and quantifying other desirable properties in
artificial intelligence (AI) such as fairness, robustness, and causality [17]. Finally, as AI
enters new domains as health and transportation (autonomous vehicles), interpretation is
essential to trust those mechanisms and adopt them as an integral part of our lives.

While some ML algorithms are intrinsically interpretive (linear regression), they
tend to be over-simplistic and generally suffer from a high bias. As modern ML evolves
and computing power increases, complex algorithms are developed to attain superior
prediction capabilities but in turn provide little interpretation. For this reason, many
methods are developed to make these non-interpretable ML methods more understandable.
These methods typically provide summary statistics for each variable, which can also be
visualized for better understanding.

Global FI measures attempt to summarize to which extent each feature is important
for the prediction task. Given an algorithm, train and/or test data, a global FI method
outputs a single number per each feature that reflects its importance. A local FI measure
outputs a FI vector per each observation. Thus, it provides a more detailed, personalized FI.
Local explanations are crucial in fields such as personalized medicine. For instance, local
explanations can assist anesthesiologists to avoid hypoxemia during surgery, by providing
real-time interpretable risks and contributing factors [1]. Interaction FI are methods that
measure the strength of the interaction between two features. A FI method is said to be
model agnostic if it can be applied in the same manner for any ML algorithm. On the other
hand, a FI measure is said to be model specific if it only applies for a specific algorithm [18].

While FI aims to understand which features are important given a trained model,
feature selection methods usually train a model several times in order to reduce dimension-
ality for speed considerations [19] or to avoid over-fitting in cases such as “large-p small-n”
tasks. While FI measures can be used as a means for variable selection by taking the most
influential features, variable selection methods cannot always be used as FI measures. For
example, methods that rely on greedy backward elimination of features (such as [20,21]),
still need to use a FI measure to score each variable in the final selected feature subset.

2.4.1. Global FI Methods

As mentioned above, global FI measures can be agnostic or model-specific. A global
model-specific FI for GBM can be derived by evaluating its individual trees FI and averaging
them across all trees in the ensemble [2]. Given a tree, there are many methods to interpret
how important is a feature by inspecting the non-terminal nodes and their corresponding
features, which were used for splitting. The most prominent measures are:

• Split count—the number of times a feature is selected for a split in a tree.
• Cover—the number of observations in the training set that a node had split. Specifi-

cally, for every feature j, Cover is the total number of observations in splits that involve
this feature.

• Gain or the decrease in impurity [3]—for every feature j, Gain is the sum of SG (2) that
utilize this feature.
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These measures are intuitive, simple and achieve a FI score that is often consistent
with other FI measures at a low computational cost. Unfortunately, they are also extremely
biased towards categorical variables with large cardinalities [7], as described in Section 2.5.

Among the model agnostic global FI methods, the Permutation FI (PFI) [22] is perhaps
the most common approach. Its rationale is as follows. By randomly permuting the jth
feature, its original association with the response variable is broken. Assume that the
jth feature is associated with the outcome. As we apply the permuted feature, together
with the remaining unpermuted features, to a given learning algorithm, the prediction
accuracy is expected to substantially decrease. Thus, a reasonable measure for FI is the
difference between the prediction error before and after permuting the variable. The PFI
measure relies on random permutations, which greatly varies. Unfortunately, to achieve a
reliable estimate, it is required to conduct multiple permutations, which is computationally
demanding. PFI can be calculated both on the train-set and on the test-set, where each
approach has its advantages [18]. The train-set can be used to estimate the amount of model
reliance on each feature. However, model error based on train data is often too optimistic
and does not reflect the generalization performance [18]. Using the PFI on the test-set
reflects the extent to which a feature contributes to the model on unseen data, but may not
reflect cases where the model heavily relies on a feature (see Section 5). A key problem
with PFI is in cases where the data-set contains correlated features. Here, forcing a specific
value of a feature may be misleading. For example, consider the case of two given features,
Gender and Pregnant. Forcing the gender variable to be Male might result in a pregnant
male as a data point. Further, it was demonstrated that correlated features tend to "benefit"
from the presence of each other and thus their PFI tends to inflate [23].

The leave one covariate out (LOCO) [24] is another type of a model agnostic FI
measure, which resembles, in spirit, the PFI. LOCO evaluates the variable importance as
the difference between the test-error of a model that was trained on all the data, and a
model which is trained on all the data but the specified variable. Since training a model
can be time consuming, this method may not be suitable in the presence of large data
with many observations and features. Similarly to the PFI, LOCO may vary quite notably.
Therefore, to obtain a reliable estimate, it is better to repeat this procedure a large number
of times. Unfortunately, it substantially increases the execution time. Another popular
global FI measure is the surrogate model. A global surrogate model trains an interpretable
ML model in order to estimate the predictions of a black-box model. Then, the FI of the
black-box model derived from the interpretable surrogate model. Finally, it is important to
mention that global FI can also be obtained by averaging the results of local FI measure
(see Section 2.4.2 below) measures across observations. Specifically, a global FI of a feature
is just the mean of the local FI for this variable, over all observations.

2.4.2. Local FI Methods

Similarity to global FI, the local methods are also either model-specific or model-
agnostic. The model-specific measures typically obtain an FI score for each tree, and
average the scores along the ensemble. Saabas [25] was the first to propose a local FI
for decision tree ensembles. Inspired by Gain FI, Saabas [25] evaluates the change of the
expected value before and after a split in non-terminal nodes.

To attain a model-agnostic local FI measure, it is possible to utilize a local surrogate
model. For example, local surrogate model interpretable model-Agnostic (LIME) [26] was
proposed to attain an FI for a specific observation by training an interpretable model in the
proximity of this observation. Specifically, for each observation, LIME creates an artificial
data-set and trains an interpretable model on these data. The observation FI is estimated as
the global FI of the interpretable model. In SHapley Additive exPlanations (SHAP) [27] unify
surrogate models with ideas from cooperative game-theory by estimating the Shapely value.
The Shapely value of each prediction is the average marginal contribution of a feature to
the prediction over all possible feature subsets. The Shapely value has many theoretical
guarantees and desirable properties. In general, obtaining the exact Shapely value in a
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model agnostic scenario requires exponential time. Later, Lundberg et al. [28] introduced
an exact polynomial-time algorithm to compute the SHAP values for trees (TreeSHAP) and
tree ensembles. Although theoretically promising, TreeSHAP can assign a non-zero value
to features that have no influence on the prediction [18].

Along the global and local FI methods, there are graphical approaches to further
interpret the decision-making principles of a black- box ML algorithm [18].

In this work, we focus on global FI measures since they are more popular, and demon-
strate the bias of high cardinality categorical features most clearly and concisely. For the
rest of the paper, and unless stated otherwise, global FI is referred to as FI.

2.5. Bias in Tree-Based Algorithms

It is well known that decision trees are biased towards categorical features with many
categories. The reason for this phenomenon is quite obvious. During the training process,
a node is split according to the variable that minimizes the error on the train-set (2). Since
categorical features allow more possible splits than numerical ones, they are more likely to
be selected for a split. For example, an ID feature, which consists of a unique category for
each observation, would minimize the spitting criterion compared to any possible feature.
Based on this observation, most contributions that aim to achieve an unbiased FI measure
focus on eliminating the bias on the tree level [7,8].

A variety of solutions to tree-bias were suggested over the years. The first line of work
focuses on unbiased variable selection using hypothesis testing frameworks [29–31]. For
example, in QUEST [31], the authors test the association of each feature with the labels
and choose the variable with the most significant p-value to split. For numerical features,
the p-values are derived from an ANOVA F-statistics, while in categorical features they
are derived from a χ2 test. Later, Hothorn et al. generalized these methods by conditional
inference trees (CIT), which utilities non-parametric tests for the same purpose [32]. These
approaches are built on a well-defined statistical theory, which either assumes a priori
modeling assumptions on the distribution of the features [31] or using permutation or
non-parametric tests such as in CIT [32]. One of the main problems with these methods
are the a priori assumptions, which are not always reasonable. On the other hand, non-
parametric statistical tests may be computationally demanding. When an ensemble of trees
is sequentially built (as in GBM), this problem becomes more evident. Further, notice that
the most “informative” feature at each node is the one that splits the observations such that
the generalization error (GE) is minimal. This is not necessarily the variable that achieves
the smallest p-values under the null assumption [8]. Thus, these methods may decrease the
predictive performance of CART.

For these reasons, a second line of work suggests ranking categorical features by their
estimated GE. Ranking categorical features according to their GE was previously proposed
for trees with k-way splits by [33] using Leave-One-Out (LOO) cross-validation [34,35].
Recently, Painsky and Rosset [8] introduced adaptive LOO variable selection (ALOOF) that
is applicable for binary trees. ALOOF constructs an unbiased tree by conducting a “fair”
comparison between both numerical and categorical variables, using LOO estimates. This
way, a large cardinality categorical feature is selected for a split if it proves to be effective
on out-of-sample observations.

3. Formulation of CVB

CVB introduces a single modification to the original GBM framework. We hereby
present the K-fold approach that is used in our CVB implementation. At the node selection
phase, CVB selects the split based on cross-validation, and then splits it similarly to CART.
LetA be the collection of all observations in a given node. We randomly divide the samples
in A to T equal sets of observations. Let {At}T

t=1 be the T (non-overlapping) sets. For
each set At we denote Āt as the set of all observations that are not in At. Specifically,
Āt = A \ At. For every t = 1, . . . , T, we find the optimal split over Āt, according to (1).
Then, we evaluate the permanence of the split on At. The rank of the feature is the average
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performance over all t = 1, . . . , T. We choose the split with the lowest rank and split it
following CART’s splitting rule. Notice that CVB is similar in spirit to [8], as it applies a
K-fold CV to evaluate every possible split. A Python implementation of CVB is publicly
available at Github (https://github.com/aba27059/unbiased_fi_for_gb, accessed on 10
May 2022).

3.1. The Rationale behind CVB

The CVB criterion described above directly estimates the generalization error for
splitting on each variable, using a CART impurity criterion: for each observation in the kth
fold, the best split is chosen based on the observations in the remaining k− 1 folds, and
judged on the (left out) observations in the kth fold. Hence, the criterion is an unbiased
estimate of the generalization impurity error for a split on a variable, based on a random
sample of n(k− 1)/k observations. The selected splitting variable is the one that gives the
lowest unbiased estimate. Since we eventually perform the best split on our complete data
at the current node (n observations), there is still a gap remaining between the “n(k− 1)/k
observations splits” being judged and the “n observations split” ultimately performed.
This introduces a simple trade-off. Larger values of k provide more accurate estimations,
while smaller values of k are more computationally efficient.

3.2. CVB Stopping Criteria

Tree algorithms such as CART require a stopping criterion to avoid over-complex
models that typically overfit. In GBM, it is most common to restrict the tree depth rather
than using pruning approaches for speed considerations. Another common regularization
technique in trees is the minimum gain decrease as shown in (2). If the gain of the best split
is less than a predefined hyper-parameter, the tree branch stops to grow and becomes a
leaf. Although using the minimum gain decrease is a valid method to avoid over-fitting,
it is more difficult for humans to interpret, as it is measured in units that depend on the
impurity criterion and change greatly from one data-set to the other. In CVB, a tree ceases
to grow if the best estimated GE across all features is greater than the impurity before the
split. The result is a built-in regularization mechanism, which resembles minimum gain
decrease. In practice, it leads to more interpretable models; CVB demonstrates a significant
reduction in the number of trees, as well as a reduction in the number of leaves.

4. Methods

In the following sections, we compare different FI measures in current GBM imple-
mentations on binary classification and regression tasks. We use GBM implementations
that provide built-in categorical variables handling. Specifically, CatBoost, LGBM, and
Friedman’s GBM (Vanilla GBM). We leave XGBoost outside the scope of this paper, as it
requires one-hot-encoding, which results in unfeasible run-time on the studied problems.

We use the following FI measures: Gain, PFI and SHAP. Since SHAP is a local method,
we derive its global FI (https://github.com/slundberg/shap, accessed on 10 May 2022). It
is important to emphasize that these FI measures are not (directly) integrated in some of
the GBM implementations mentioned above. Specifically, CatBoost interface does not offer
Gain FI nor node inspection data. Therefore, we use its Gain-inspired default FI, as in the
official documentation (https://CatBoost.ai/docs/concepts/fstr.html, accessed on 10 May
2022). Further, since the SHAP FI official package has built-in integration for CatBoost and
LGBM open-source implementations, we report it when possible or refer to its results in
the Appendix A.

We set the following hyper-parameters across all our experiments (and for all the stud-
ied algorithms): maximum tree depth = 3, number of base learners (number of trees) = 100,
learning rate (shrinkage) = 0.1. We do not change other default hyper-parameters’ values
and do not apply bagging (stochastic GBM). We focus on the mean squared error (MSE)
to measure the regression error and log-loss [36] to measure the binary classification error.
When evaluating PFI, we apply twenty permutations to estimate the decrease in model

https://github.com/aba27059/unbiased_fi_for_gb
https://github.com/slundberg/shap
https://CatBoost.ai/docs/concepts/fstr.html
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performance. On real data-sets, we use K-fold cross-validation to compute error and FI
metrics (with K = 30, unless stated otherwise). In CVB, for the node selection phase, we
use T = 5. Throughout our experiments, we report the scaled FI. That is, we scale the FI
values over all variables, so they sum to one (in some cases, the PFI can also be negative;
we consider this case as zero importance ).

5. Bias in Gradient Boosting FI

We start with a simple synthetic data experiment that demonstrates the FI bias in
current GBM implementations. We follow the setup introduced by [7], which studied a
binary classification task with five features. In their setup, X0 is a numeric feature which
follows a standard normal distribution, and X1 to X4 are four categorical features that follow
a uniform distribution over alphabet sizes 10, 20, 50 and 100, respectively. In our experiment,
we draw n = 6000 observations, train a GBM model and compare the corresponding FI
measures. We repeat this experiment 100 times and report the average merits.

5.1. Null Case

In the first experiment, which we refer to as the null case, the target variable is inde-
pendent of the features and follows a Bernoulli distribution with a parameter p = 0.5. In
this setup, none of the features are informative with respect to the response variable. Thus,
a perfect FI measure shall score each feature a zero score.

Figure 1 demonstrates the PFI and Gain FI results. The Gain FI (left) illustrates the
discussed bias in categorical variables. Specifically, we observe that categorical features
with high cardinality tend to attain a greater FI than the rest, despite the fact that all features
are not informative. In vanilla GBM and LGBM, this phenomenon is more evident where
X3 and X4 account together for almost 90% of the overall FI, whereas in CatBoost we
observe a more subtle and monotone effect. CVB reliably recognizes uninformative features
and scores zero importance for each feature. It is important to emphasise that although
the reported scores are scaled, CVB attains zero FI scores. The reason lies on the standard
convention, stating that if all scores are zero defined (which corresponds to stub trees), then
their scaled score is zero as well.

The right charts in Figure 1 demonstrate the PFI. Here, the mean FI of uninformative
variables is around zero. This is not quite surprising, as the PFI is measured on the test-set.
Nevertheless, we observe that features with high cardinality result in a greater variance
than the rest, both in LGBM, Vanilla GBM and CatBoost. CatBoost outperforms LGBM and
Vanilla GBM and obtains around 10 times smaller FI for the uninformative variables. CVB
outperforms CatBoost and again scores the uninformative features with zero importance.
For LGBM and CatBoost, the SHAP FI (Appendix A) demonstrates the same monotonic
behavior and scores similarly to the CatBoost Gain FI. Although in LGBM the slope is
greater, CatBoost demonstrates a much greater variance.

5.2. Power Case

In the second experiment, Y depends on X1 in the following manner:

Y =

{
Ber(0.5 + α), X1 ∈ {0, 1, 2, 3, 4}
Ber(0.5− α), X1 ∈ {5, 6, 7, 8, 9}

(3)

where Ber is a Bernoulli distribution and α is a predefined parameter. In this experiment,
for α > 0, a perfect FI measure would assign a positive importance to X1 whereas the rest of
the features shall attain zero importance. Figure 2 demonstrates the results we achieve for
the uninformative features (all but X1) for the case where α = 0.2. The Gain FI (left) assigns
only 37% and 42% FI to X1 for Vanilla GBM and LGBM, where CatBoost performs better
with 91% FI for X1. CVB outperforms all the baseline schemes with 99.5% FI assigned to
the informative feature. As with the null case, LGBM and Vanilla GBM over-fit the train-set
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in cases where high cardinality features are present, and attain a significantly greater FI for
X3 and X4. In CatBoost, this phenomenon is considerably more subtle.
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6. Real Data Case Studies

We now apply the CVB approach to real-world datasets and compare it to CatBoost,
LGBM, and Vanilla GBM. We examine a collection of datasets (see Tables 1 and 2) which
typically consists of categorical features with a relatively large number of categories. As
opposed to Section 5, we do not know the “true" FI values in these real-world problems.
Therefore, we focus our attention to datasets for which the studied methods disagree.
Specifically, we evaluate the FI and examine the results with respect to the predictive
performance. We expect that features with low FI may be discluded from the model, with
no significant effect on its performance (and vice versa).

It is important to emphasize that the examined datasets undergo a preprocessing stage
which eliminates allegedly uninformative features (such as indexing, or different group
membership indicators). These features typically cause severe FI inaccuracies in currently
known methods, as opposed to our proposed framework (as demonstrated in Section 5).
We do not report these results for brevity, and only focus on the more insightful examples.
We start with a comprehensive case study of the Amazon dataset1.

6.1. Amazon Dataset

The Amazon dataset is a binary classification task where the purpose is to predict
whether a specific employee should get access to a specific resource. The dataset contains
n = 32, 769 observations and p = 9 categorical variables, including Resource - an ID for each
resource (7518 categories), and Mgr_id - the manager ID of the employee (4243 categories).

1 https://www.kaggle.com/c/amazon-employee-access-challenge

Figure 2. Scaled Gain FI (left) and PFI (right) for the power case experiment where only X1 is
informative. Since X1 is informative, it is on a different scale and it is therefore omitted to improve
visualization. Its mean values are 0.186, 0.181, 0.166 and 0.145 for Vanilla GBM, LGBM, CatBoost and
CVB, respectively.



Entropy 2022, 24, 687 10 of 17

Similarly to the null case, the PFI (right) variance increases with the category size, for
all the algorithms besides CVB. CatBoost outperforms the baselines with a variance that is
an order of magnitude smaller than LGBM and Vanilla LGBM. Let us now focus on the
scaled PFI. LGBM and Vanilla GBM assigns 95.4% importance for X1, whereas CatBoost
assigns 99.4% for it. CVB outperforms CatBoost and assigns 99.9% FI for X1. Finally, SHAP
FI (Appendix A) scores 55.3% and 90.0% FI for X1 in LGBM and CatBoost, respectively.

Following Strobel’s study [7], we conclude that all GBM implementations exhibit FI
bias to some extent. Specifically, Vanilla GBM and LGBM perform the worst and are highly
prone to over-fit large cardinality categorical features. CatBoost is one scale better then the
former, attaining a significantly smaller bias than its alternatives. Finally, CVB is superior
even to CatBoost, and demonstrates a reliable FI measure with almost no bias.

6. Real Data Case Studies

We now apply the CVB approach to real-world data-sets and compare it to CatBoost,
LGBM and Vanilla GBM. We examine a collection of data-sets (see Tables 1 and 2), which
typically consists of categorical features with a relatively large number of categories. As
opposed to Section 5, we do not know the “true” FI values in these real-world problems.
Therefore, we focus our attention to data-sets for which the studied methods disagree.
Specifically, we evaluate the FI and examine the results with respect to the predictive
performance. We expect that features with low FI may be discluded from the model, with
no significant effect on its performance (and vice versa).

It is important to emphasize that the examined data-sets undergo a preprocessing
stage that eliminates allegedly uninformative features (such as indexing or different group
membership indicators). These features typically cause severe FI inaccuracies in currently
known methods, as opposed to our proposed framework (as demonstrated in Section 5).
We do not report these results for brevity, and only focus on the more insightful examples.
We start with a comprehensive case study of the Amazon data-set (https://www.kaggle.
com/c/amazon-employee-access-challenge, accessed on 10 May 2022).

6.1. Amazon Dataset

The Amazon data-set is a binary classification task where the purpose is to predict
whether a specific employee should obtain access to a specific resource. The data-set
contains n = 32,769 observations and p = 9 categorical variables, including Resource-an ID
for each resource (7518 categories), and Mgr_id—the manager ID of the employee (4243
categories).

We begin our analysis by applying different GBM algorithms and corresponding
FI measures (Figure 3). The reported results are obtained by a 30-fold cross validation
procedure, to attain statistically meaningful results. As we study the results that we attain,
we observe the following:

1. As in the simulation experiments, Vanilla GBM mostly utilizes high cardinality fea-
tures and attains large values of FI for higher cardinality features (which appear on
the left side of the plots).

2. The Resource variable attains a significantly large FI value in all methods besides CVB
(in a significance level of 1%).

3. As we further study the Resource variable, we observe that Vanilla GBM, LGBM and
CatBoost demonstrate a significant gap between the PFI on the train-set and the PFI
on the test-set. Since both are in the same units, a gap in favor of the former suggests
that this feature is quite dominant in the train-set, but has less effect on the test-set.
This may suggest an over-fitted model.

To validate the alleged over-fitting, we conduct the following experiment. We compare
the prediction error of each GBM implementation with and without the Resource variable.
Figure 4 illustrates the results we achieve. We observe that Vanilla GBM and LGBM perform
better without the Resource variable. CatBoost and CVB demonstrate quite similar results—
while the median error in CatBoost is smaller than CVB, its variance is greater. In all cases,

https://www.kaggle.com/c/amazon-employee-access-challenge
https://www.kaggle.com/c/amazon-employee-access-challenge
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it is quite evident that the Resource variable does not introduce a significant improvement
to the model performance. However, CVB is the only method that reflects it in its FI (with
almost zero FI assigned to this variable).

Overall, we observe that CVB FI methods are consistent and equal to each other. This
means that even simple approaches as Gain FI perform well without the need for more
complex FI methods.
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6.2. Criteo CTR Dataset

The Criteo Click-Through Rate (CTR) challenge (https://www.kaggle.com/c/criteo-
display-ad-challenge, accessed on 10 May 2022) is a binary classification task where the
goal is to predict whether a user clicks on an online ad. The data-set contains n = 40,428,967
observations and p = 23 categorical variables. Due to run-time considerations, we decrease
the size of the data-set in the following manner. We randomly sample 30,000 observations,
such that half of them have a positive label and the others are negative (following [37]).
We remove the ID feature which is a unique identifier of each observation. We remain
with p = 22 variables including: Device_ip (25,573 categories), Device_id (4928 categories),
Device_model (2154 categories). We apply different GBM methods and obtain the cor-
responding FI measures. Figure 5 summarizes the results we obtain. We observe the
following:

1. As in the previous experiment, Vanilla GBM is biased towards high categorical vari-
ables and over-fits the train-set with Gain and PFI on train data close to one for the
Device_ip feature.

2. The results for LGBM and CatBoost are quite similar and score high cardinality
features with larger scores compared to CVB results. They also over-estimate high
cardinality features with a relatively small difference between the PFI on train data
and PFI on test data for high cardinality features.

3. In LGBM, Device_ip attains a large SHAP value in contrast to other FI measures, while
in CatBoost SHAP FI is more consistent with other metrics, especially Gain and PFI
on test data. As in the previous experiment, we examine whether CVB FI results
are reliable by comparing the model errors with and without a feature set. Figure 6
demonstrates the results we achieve by comparing the set of all features to the set of
features CVB scores with a positive FI. The results are quite similar to the Amazon
data-set experiment.
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6.3. Prediction Accuracy

Open-source implementations such as CatBoost and LGBM have many hyper-parameters
that are tuned to obtain the best results in practice. Further, some implementations intro-
duce different enhancements to the original GBM implementation to achieve a even better
prediction accuracy as discussed in Section 2.3. Since improving the prediction accuracy
is not the main focus of this study, we demonstrate that CVB is competitive with LGBM,
CatBoost and Vanilla GBM in a fixed hyper-parameters setting (number of trees = 100,
learning rate = 0.1, maximum tree depth = 3). Table 1 summarizes the 10-fold mean RMSE
of each algorithm on four different well-known data-sets-Allstate claim severity, Bike rentals,
Boston house pricing and Kaggle house pricing.

Table 1. Mean and standard deviation of the RMSE across 10 folds. For visibility reasons we applied
log transformation on the target. HP refers to house pricing.

Regression RMSE

Dataset CVB CatBoost LGBM Vanilla GBM

Allstate 1 0.3115 0.3242 0.3120 0.3123
(0.0036) (0.0036) (0.0038) (0.0041)

Bike Rentals 2 0.2554 0.4484 0.2376 0.2470
(0.021) (0.0415) (0.0096) (0.0173)

Boston HP 1 0.0276 0.0241 0.0238 0.0243
(0.0143) (0.0102) (0.0108) (0.0115)

Kaggle HP 1 0.0185 0.0187 0.0162 0.0159
(0.0038) (0.0042) (0.0034) (0.0034)

1 https://www.kaggle.com, accessed on 10 May 2022; 2 https://archive.ics.uci.edu/ml/datasets, accessed on 10
May 2022.
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Table 2 demonstrates the classification error over six classification data-sets—Amazon
Breast cancer, Don’t get kicked, Criteo CTR, KDD upselling and Adult.

https://www.kaggle.com
https://archive.ics.uci.edu/ml/datasets
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We focus our attention to k = 10 folds, as this number of folds is a popular default in
many benchmark implementations. On the other hand, we report the results for k = 30 for
the Amazon and Criteo CTR data-sets, as we utilize this number of folds in the previous
sections. As discussed in Section 3.1, smaller values of k are more computationally efficient
and are henceforth more suitable for extensive experimental studies. Alternatively, larger
values of k are preferable in terms of accuracy and bias, and are therefore demonstrated in
the two cases studied.

In all of our experiments, the CVB demonstrates competitive (and sometimes even
superior) prediction accuracy to state-of-the-art methods.

Table 2. Mean and standard deviation of the log loss across 10 folds (30 on Amazon and Criteo CTR).

Classification Log-Loss

Dataset CVB CatBoost LGBM Vanilla GBM

KDD upselling 1 0.1686 0.1681 0.1733 0.3416
(0.0074) (0.0072) (0.0071) (0.0145)

Amazon 2 0.1716 0.1606 0.1724 0.2795
(0.0186) (0.0216) (0.0243) (0.0355)

Breast Cancer 3 0.1091 0.0933 0.1080 0.1043
(0.0872) (0.0682) (0.1008) (0.1008)

Don’t Get Kicked 2 0.3425 0.3433 0.3416 0.3584
(0.0064) (0.0066) (0.0071) (0.0070)

Criteo CTR 0.6161 0.6157 0.6241 0.9150
(0.0083) (0.0095) (0.0124) (0.0376)

Adult 3 0.2982 0.3021 0.2892 0.2917
(0.0043) (0.0095) (0.0088) (0.0038)

1 https://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data, accessed on 10 May 2022; 2 https://www.kaggle.
com, accessed on 10 May 2022; 3 https://archive.ics.uci.edu/ml/datasets, accessed on 10 May 2022.

7. Discussion and Conclusions

Although common implementations of GBM utilize biased decision trees, they typi-
cally perform quite well, and demonstrate high prediction accuracy. Unfortunately, their
FI is demonstrated to be biased. To overcome this basic limitation, we introduce a CVB
framework that utilities unbiased decision trees. We show that CVB attains unbiased FI
while maintaining a competitive level of generalization abilities. Further, we demonstrate
that FI is not model-agnostic or universal. In fact, it is a unique property of each GBM
implementation; given a prediction task, two different implementations may introduce
relatively the same error but much different FI scores.

CVB is a naive, not optimized implementation of GBM. Our experiments demonstrate
that even this simple implementation results in better FI and a competitive accuracy. One
may wonder how an optimized version of CVB may perform. For example, it is interesting
to examine more efficient validation schemes, and introduce state-of-the-art GBM enhance-
ments to our current CVB implementation. For example, a future enhancement of CVB
may consider stochastic GBM with feature selection using out-of-bag examples. Finally,
CVB may also be applied to correct the bias in local FI measures. This would result in an
accurate local FI measure for personalization purposes.

Author Contributions: Conceptualization, A.I.A. and A.P.; methodology, A.I.A. and A.P.; software,
A.I.A.; validation, A.I.A.; formal analysis, A.I.A. and A.P.; investigation, A.I.A. and A.P.; writing—
original draft preparation, A.I.A.; writing—review and editing, A.I.A. and A.P.; visualization, A.I.A.;
supervision, A.P.; project administration, A.P.; funding acquisition, A.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

https://www.kdd.org/kdd-cup/view/kdd-cup-2009/Data
https://www.kaggle.com
https://www.kaggle.com
https://archive.ics.uci.edu/ml/datasets


Entropy 2022, 24, 687 15 of 17

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A

Entropy 2022, 1, 0 15 of 16

Appendix A

Figure A7. SHAP FI for the null case.

Figure A8. SHAP FI for the power case.

SHAP FI - Amazon SHAP FI - Criteo CTR

Figure A9. FI on the Amazon and Criteo CTR datasets,including SHAP FI.

References
1. Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.W.; Newman, S.F.; Kim, J.; et al.

Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2018, 2, 749–760.
2. Friedman, J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.
3. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
4. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106.
5. Richardson, M.; Dominowska, E.; Ragno, R. Predicting clicks: estimating the click-through rate for new ads. In Proceedings of

the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 521–530.
6. Burges, C.J. From ranknet to lambdarank to lambdamart: An overview. Learning 2010, 11, 81.
7. Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and

a solution. BMC Bioinform. 2007, 8, 25.
8. Painsky, A.; Rosset, S. Cross-validated variable selection in tree-based methods improves predictive performance. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 2142–2153.
9. Loh, W.Y. Fifty years of classification and regression trees. Int. Stat. Rev. 2014, 82, 329–348.
10. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140.
11. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378.
12. Tyree, S.; Weinberger, K.Q.; Agrawal, K.; Paykin, J. Parallel boosted regression trees for web search ranking. In Proceedings of the

20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 387–396.
13. Condie, T.; Conway, N.; Alvaro, P.; Hellerstein, J.M.; Elmeleegy, K.; Sears, R. MapReduce online. In Proceedings of the 7th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 2010), San Jose, CA, USA, 28–30 April 2010;
Volume 10, p. 20.

Figure A1. SHAP FI for the null case.

Entropy 2022, 1, 0 16 of 17

Figure A2. SHAP FI for the power case.

SHAP FI - Amazon SHAP FI - Criteo CTR

Figure A3. FI on the Amazon and Criteo CTR datasets,including SHAP FI.

References
1. Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.W.; Newman, S.F.; Kim, J.; et al.

Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2018, 2, 749–760.
2. Friedman, J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.
3. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
4. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106.
5. Richardson, M.; Dominowska, E.; Ragno, R. Predicting clicks: estimating the click-through rate for new ads. In Proceedings of

the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 521–530.
6. Burges, C.J. From ranknet to lambdarank to lambdamart: An overview. Learning 2010, 11, 81.
7. Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and

a solution. BMC Bioinform. 2007, 8, 25.
8. Painsky, A.; Rosset, S. Cross-validated variable selection in tree-based methods improves predictive performance. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 2142–2153.
9. Loh, W.Y. Fifty years of classification and regression trees. Int. Stat. Rev. 2014, 82, 329–348.

Figure A2. SHAP FI for the power case.



Entropy 2022, 24, 687 16 of 17

Entropy 2022, 1, 0 16 of 17

Figure A2. SHAP FI for the power case.

SHAP FI - Amazon SHAP FI - Criteo CTR

Figure A3. FI on the Amazon and Criteo CTR datasets,including SHAP FI.

References
1. Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.W.; Newman, S.F.; Kim, J.; et al.

Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2018, 2, 749–760.
2. Friedman, J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.
3. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
4. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106.
5. Richardson, M.; Dominowska, E.; Ragno, R. Predicting clicks: estimating the click-through rate for new ads. In Proceedings of

the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 521–530.
6. Burges, C.J. From ranknet to lambdarank to lambdamart: An overview. Learning 2010, 11, 81.
7. Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and

a solution. BMC Bioinform. 2007, 8, 25.
8. Painsky, A.; Rosset, S. Cross-validated variable selection in tree-based methods improves predictive performance. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 2142–2153.
9. Loh, W.Y. Fifty years of classification and regression trees. Int. Stat. Rev. 2014, 82, 329–348.

Figure A3. FI on the Amazon and Criteo CTR data-sets, including SHAP FI.

References
1. Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.W.; Newman, S.F.; Kim, J.; et al.

Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2018, 2, 749–760.
[CrossRef] [PubMed]

2. Friedman, J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
3. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984.
4. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
5. Richardson, M.; Dominowska, E.; Ragno, R. Predicting clicks: estimating the click-through rate for new ads. In Proceedings of

the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 521–530.
6. Burges, C.J. From ranknet to lambdarank to lambdamart: An overview. Learning 2010, 11, 81.
7. Strobl, C.; Boulesteix, A.L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and

a solution. BMC Bioinform. 2007, 8, 25. [CrossRef]
8. Painsky, A.; Rosset, S. Cross-validated variable selection in tree-based methods improves predictive performance. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 2142–2153. [CrossRef]
9. Loh, W.Y. Fifty years of classification and regression trees. Int. Stat. Rev. 2014, 82, 329–348. [CrossRef]
10. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
11. Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [CrossRef]
12. Tyree, S.; Weinberger, K.Q.; Agrawal, K.; Paykin, J. Parallel boosted regression trees for web search ranking. In Proceedings of the

20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 387–396.
13. Condie, T.; Conway, N.; Alvaro, P.; Hellerstein, J.M.; Elmeleegy, K.; Sears, R. MapReduce online. In Proceedings of the 7th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 2010), San Jose, CA, USA, 28–30 April 2010;
Volume 10, p. 20.

14. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

15. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: unbiased boosting with categorical features. In
Proceedings of the Advances in Neural Information Processing Systems 31 (NIPS 2018), Montreal, QC, Canada, 3–8 December
2018; pp. 6638–6648.

16. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision
tree. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9
December 2017; pp. 3146–3154.

17. Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608.
18. Molnar, C. Interpretable Machine Learning; Lulu Press: North Carolina, NC, USA, 2020.
19. Pan, F.; Converse, T.; Ahn, D.; Salvetti, F.; Donato, G. Feature selection for ranking using boosted trees. In Proceedings of the 18th

ACM Conference on Information and Knowledge Management, Hong Kong, China, 2–6 November 2009; pp. 2025–2028.
20. Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [CrossRef]

http://doi.org/10.1038/s41551-018-0304-0
http://www.ncbi.nlm.nih.gov/pubmed/31001455
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1186/1471-2105-8-25
http://dx.doi.org/10.1109/TPAMI.2016.2636831
http://dx.doi.org/10.1111/insr.12016
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.18637/jss.v036.i11


Entropy 2022, 24, 687 17 of 17

21. Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678.
[CrossRef]

22. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
23. Nicodemus, K.K.; Malley, J.D.; Strobl, C.; Ziegler, A. The behaviour of random forest permutation-based variable importance

measures under predictor correlation. BMC Bioinform. 2010, 11, 110. [CrossRef]
24. Lei, J.; G’Sell, M.; Rinaldo, A.; Tibshirani, R.J.; Wasserman, L. Distribution-free predictive inference for regression. J. Am. Stat.

Assoc. 2018, 113, 1094–1111. [CrossRef]
25. Saabas, A. Tree Interpreter. 2014. Available online: http://blog.datadive.net/interpreting-random-forests/ (accessed on 10

May 2022).
26. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

27. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural
Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774.

28. Lundberg, S.M.; Erion, G.G.; Lee, S.I. Consistent individualized feature attribution for tree ensembles. arXiv 2018,
arXiv:1802.03888.

29. Loh, W.Y. Regression tress with unbiased variable selection and interaction detection. Stat. Sin. 2002, 12, 361–386.
30. Kim, H.; Loh, W.Y. Classification trees with bivariate linear discriminant node models. J. Comput. Graph. Stat. 2003, 12, 512–530.

[CrossRef]
31. Loh, W.Y.; Shih, Y.S. Split selection methods for classification trees. Stat. Sin. 1997, 7, 815–840.
32. Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat.

2006, 15, 651–674. [CrossRef]
33. Sabato, S.; Shalev-Shwartz, S. Ranking categorical features using generalization properties. J. Mach. Learn. Res. 2008, 9, 1083–1114.
34. Frank, E.; Witten, I.H. Selecting Multiway Splits in Decision Trees; Working Paper 96/31; University of Waikato, Department of

Computer Science: Hamilton, New Zealand, 1996.
35. Frank, E.; Witten, I.H. Using a permutation test for attribute selection in decision trees. In Proceeding of the 15th International

Conference on Machine Learning, Madison, WI, USA, 24–27 July 1998.
36. Painsky, A.; Wornell, G. On the universality of the logistic loss function. In Proceeding of the 2018 IEEE International Symposium

on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 936–940.
37. He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data 2009, 21, 1263–1284.

http://dx.doi.org/10.1007/s11222-016-9646-1
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1186/1471-2105-11-110
http://dx.doi.org/10.1080/01621459.2017.1307116
http://blog.datadive.net/ interpreting-random-forests/
http://dx.doi.org/10.1198/1061860032049
http://dx.doi.org/10.1198/106186006X133933

	Introduction
	Background
	Decision Trees
	Gradient Boosting Trees
	GBM Implementations
	FI Methods
	Global FI Methods
	Local FI Methods

	Bias in Tree-Based Algorithms

	Formulation of CVB
	The Rationale behind CVB
	CVB Stopping Criteria

	Methods
	Bias in Gradient Boosting FI
	Null Case
	Power Case

	Real Data Case Studies
	Amazon Dataset
	Criteo CTR Dataset
	Prediction Accuracy

	Discussion and Conclusions
	 
	References

