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Abstract

Heterogeneity in cell signaling pathways is increasingly appreciated as a fundamental feature 

of cell biology and a driver of clinically relevant disease phenotypes. Understanding the causes 

of heterogeneity, the cellular mechanisms used to control heterogeneity, and the downstream 

effects of heterogeneity in single cells are all key obstacles for manipulating cellular populations 

and treating disease. Recent advances in genetic engineering, including multiplexed fluorescent 

reporters, have provided unprecedented measurements of signaling heterogeneity, but these vast 

data sets are often difficult to interpret, necessitating the use of computational techniques to extract 

meaning from the data. Here, we review recent advances in computational methods for extracting 

meaning from these novel data streams. In particular, we evaluate how machine learning methods 

related to dimensionality reduction and classification can identify structure in complex, dynamic 

datasets, simplifying interpretation. We also discuss how mechanistic models can be merged with 

heterogeneous data to understand the underlying differences between cells in a population. These 

methods are still being developed, but the work reviewed here offers useful applications of specific 

analysis techniques that could enable the translation of single-cell signaling data to actionable 

biological understanding.
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Introduction

Genetically identical cells, exposed to identical stimuli, exhibit markedly different 

responses. One key manifestation of this non-genetic heterogeneity is in signaling pathway 

activation, where individual cells display a range of behaviors in both basal activity and 

responsiveness to a stimulus. The drivers that control signaling heterogeneity and the 

behavioral outcomes of signaling heterogeneity are not well characterized, and fundamental 

questions remain. Heterogeneity in signaling activity is thought to drive cellular behaviors, 

some of which are binary, such as division or cell death [1–3]. Thus, one area of 

research focuses on what control points and mechanisms translate continuous variation 

in some components into binary decisions downstream (Figure 1A). Another focus of 

research is determining to what extent heterogeneity represents randomness, caused by a 

cell’s intrinsic inability to faithfully interpret a stimulus. Alternatively, perhaps different 

responses are caused by pre-existing differences among cells with some poised to strongly 

activate a signaling pathway (Figure 1B–E). This is an important biological question with 

deep implications relating to the limitations of signaling pathways and communication in 

multicellular organisms. Non-genetic heterogeneity also has urgent clinical implications. 

Heterogeneity drives some of the most disastrous features of cancer, including metastasis 

[4], invasion [5], and the emergence of drug-resistant cells [6,7]. Therefore, understanding 

the causes of heterogeneous cell signaling and identifying ways to control it are crucial steps 

toward effective cancer therapy [8]. To start to answer these questions, researchers have used 

an array of live-cell microscopy techniques to measure behaviors in single cells. However, 

interpretation of these data has proven difficult, and an array of modeling techniques have 

emerged to make meaning out of heterogeneous, single-cell data.

In genetically identical cells, heterogeneity is thought to arise from both intrinsic and 

extrinsic sources [9–11]. Intrinsic heterogeneity occurs due to random fluctuations inherent 

to individual intermolecular collisions that underlie the chemical reactions that regulate 

biological processes. These fluctuations are present in any chemical reaction, but they 

decrease in influence as concentration increases and randomness in intermolecular collisions 

is smoothed out. However, intrinsic noise can be significant in some biological contexts, 

typically cellular processes involving low abundance molecules like gene transcripts (below 

100 copies in mammalian cells, as a rough estimate) or rare events [12,13]. Intrinsic noise 

places fundamental limits on the ability of cells to sense their environment and control gene 

expression [14,15].

Extrinsic noise refers to pre-existing differences in cell state and are thus “extrinsic” from 

the fundamental fluctuations of chemical reactions. Cells that appear identical may in fact 

exhibit differences in cell-cycle timing, kinase pathway activation, or the concentration 

of receptors or other signaling pathway molecules [16,17]. When exposed to a stimulus, 

these cells will respond in various ways predicated on their pre-existing state. If cells 

were completely identical, extrinsic noise could be eliminated, but they would still respond 

differently due to intrinsic noise.

The clinical goals of controlling heterogeneity, e.g. to improve cancer treatment, require 

that researchers understand the sources of heterogeneity. Therefore, distinguishing between 
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intrinsic and extrinsic noise is a key challenge, which can be addressed with computational 

and experimental tools. It may be possible to mitigate or alter heterogeneous populations 

of cells if extrinsic noise is driving their heterogeneity [18,19]. However, if intrinsic 

stochasticity is the root cause of heterogeneous phenotypes, interventions may not be 

possible or may need to target a downstream effector that is less impacted by intrinsic 

noise.

In this mini-review, we outline several methods used to analyze live-cell, time-lapse, 

fluorescence microscopy data. Given the key role that dynamic processes can play in 

controlling cellular behaviors, we focus here on live-cell, time-lapse methods, as opposed 

to endpoint methods including cyclic immunofluorescence, flow cytometry, or single-cell 

RNA-seq, all of which have been reviewed elsewhere e.g. [20,21]. Dynamic experimental 

methods can quickly generate hundreds of observations for thousands of cells, necessitating 

the use of computational methods to answer even simple questions about the data relating 

to the population level behaviors and variance among cells. Furthermore, watching cells in 

real time leads to new questions about the dynamics of cellular processes in single cells 

and their synchronization, which can be answered using dynamic computational models. We 

discuss data-driven methods that extract patterns from data, which can be quickly and easily 

applied to quantify and compare heterogeneous signaling behaviors. We then discuss model-

driven methods, where researchers construct mechanistic models with varying degrees of 

complexity to explain heterogeneous behaviors in their data. Throughout this review, we 

provide examples of specific biological questions that are addressed.

Single-cell Signaling Data Acquisition

Single-cell time domain data can be obtained from any live single-cell imaging modality. 

Using bright-field microscopy, data about morphology, movement, lineage, and cell 

division can be measured for individual cells over time [22]. Using fluorescence 

to monitor biochemical processes including cell signaling can be accomplished with 

dyes or endogenously expressed fluorescent reporter proteins [23,24]. Ideal fluorescent 

measurement systems will feature a high quantum yield to minimize light exposure 

and rapid activation and deactivation kinetics to accurately track the underlying cellular 

process of interest. Other key factors are the photostability of the reporter protein and 

maximizing the overlap between reporter emission spectra and detector absorption spectra 

while minimizing overlap in emission spectra among different reporter proteins. Balancing 

these considerations is difficult and has been reviewed at length elsewhere [25].

Automated image processing is another key aspect of the experimental pipeline. Although 

ImageJ [26] can be used to extract intensities and calculate reporter activities, manually 

processing images will typically not scale effectively to larger datasets. Automated methods 

such as CellProfiler [27] have been developed to identify individual cells, extract reporter 

activities, and track cells from frame to frame [28,29]. Ideally, tracking will be consistent 

even in dense, confluent cultures, and cell division and lineage will be tracked. These 

programs generate trajectories for each cell tracked based on the activity of the reporters 

in that cell. These trajectories can be summarized quickly in kymographs, which display 
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individual cell trajectories as rows in a colormap, with the intensity in each column 

corresponding to the reporter value at that time (Figure 1F).

Data-Driven Inference

Given a heterogeneous distribution of cell trajectories (Figure 2A), the simplest analytical 

approach is to mitigate the heterogeneity using summary statistics such as averages, 

medians, and percentiles (Figure 2B). This approach is quick and readily understood, 

providing a useful start to any analysis of heterogeneous data. However, there are two main 

problems with applying summary statistics to heterogeneous signaling data. Firstly, they blur 

the heterogeneity present in the data, leaving the researcher with aggregate behaviors that 

can be measured with other methods. One solution to this problem is to look not just at 

means or medians, but instead at various percentiles or outliers, which are only accessible 

from single cell data [30]. The second issue with mean or median behaviors is that they may 

not represent any real cells. For instance, if cell responses are binary (either high or low), the 

average of all cells will be a medium response, behavior that is not exhibited by any actual 

cells observed (Figure 2B) [31]. It can be difficult to know when aggregate data can provide 

insight or when aggregation obscures meaningful single-cell behaviors. For instance, Goglia 

et. al. found meaningful differences in drug responses by aggregating cells and looking 

at mean population behaviors [32]. However, when deciding what types of aggregation to 

use, researchers should consider if they are interested in studying collective or individual 

behaviors and should also balance the potential for greater explanatory power of single-cell 

data against the increased noise that can come from single cell trajectories. The methods 

discussed below can provide researchers with more flexibility when considering some of 

these issues.

Clustering algorithms (Table 1) can summarize signaling trajectories while ensuring that 

the aggregation is representative of real behaviors. Clustering finds families of distinct 

trajectories within the data by first calculating the distance between individual trajectories 

and then identifying clusters of trajectories that have low within-cluster distances and high 

between-cluster distances. This allows data aggregation within each cluster (Figure 2C). 

Euclidean distance is often used as a distance metric to calculate the similarity of each 

cell with every other cell. However, cells may display dynamics at different times, or 

for different durations, despite undergoing the same biological processes. For instance, 

clustering dividing and non-dividing cells would require a distance metric that is sensitive 

to asynchronous divisions in cells and differences in the duration of cell division. Therefore, 

distance metrics using dynamic time warping or other algorithms may do a better job of 

describing similarities in time series data [33]. After defining a distance metric, commonly 

used clustering algorithms such as hierarchical clustering or k-means are used to label 

individual observations based on cluster occupancy. Using clustering, researchers can ensure 

that the aggregate behaviors that compose each cluster are representative of real cell 

behaviors. Blum et. al. wanted to determine if different growth factors induced distinct 

ERK activation dynamics in single cells [34,35]. They clustered ERK trajectories from 

cells activated by various growth factors, allowing them to represent over 1000 signaling 

trajectories using 6 clusters, drastically simplifying the analysis and presentation of their 

data. They found that the clustered behaviors were growth-factor dependent. Interestingly, 
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their analysis also showed that for even low doses of growth factors, some cells would 

respond strongly, and at high doses, the occupancy of this cluster increased (Figure 2D, E). 

In this work, clustering was useful because it separated cells that had qualitatively different 

dynamics (e.g. transient vs. sustained activation). However, this may be an inappropriate 

constraint when cells occupy a continuum of responses.

Another method that can summarize an arbitrarily large number of trajectories is functional 

principal component analysis (fPCA, Table 1) [36,37]. fPCA decomposes a set of 

trajectories into two different parts, harmonics and principal component scores. The 

harmonics of fPCA are orthogonal time-dependent trajectories representing times when 

there is the most variance in the data The key difference between fPCA and PCA is 

that fPCA captures time-dependence in trajectories, as opposed to principal components 

that ignore the time-dependence of the data. fPCA will also calculate a numerical score 

for each individual trajectory provided, based on how much each harmonic represents a 

specific trajectory. For instance, if some cells exhibited a transient increase in signal, while 

others had a sustained increase, these would be represented as different functional principal 

components, with transient cells scoring highly along one axis and sustained cells scoring 

highly along the other. By representing trajectories in lower-dimensional space, they can 

be visualized and compared more easily (Figure 2F). Sampattavanich et. al. used fPCA 

to identify differences in transcription factor FOXO3a dynamics in response to a variety 

of growth factors [38]. fPCA identified that key variation in trajectories existed through 

variation in the basal level, the post-stimulus steady-state, and the transient response. 

Furthermore, the authors were able to cluster responses to ligands based on their dynamics 

as represented by fPCA. A potential shortcoming of clustering is that it labels each cell 

discretely, implicitly erasing heterogeneity that may exist within clusters. Since fPCA 

relaxes this constraint and projects cells along a spectrum of PC scores, this heterogeneity is 

preserved, which may provide a clearer picture of the data. Furthermore, fPCA can serve as 

a pre-processing step for later clustering.

Clustering and fPCA focus on revealing structure within heterogeneous data by reducing 

dimensionality in a discrete or continuous manner. These are related to unsupervised 

machine learning methods, but supervised learning, where different observations are labeled, 

can also be applied to heterogeneous cell signaling. For example, by extending experimental 

acquisition times to several hours or days, cells can be labeled based on cell division, 

death, or migration. This gives researchers another way to categorize signaling data based 

on material observations and has the added benefit of reflecting phenotypes that are 

oftentimes of interest. However, this approach has attendant difficulties, including increased 

photodamage from long-term microscopy and the increased difficulty of tracking cells over 

long times. Miura et. al. showed that in cells exposed to UV light, p38 and JNK respond 

heterogeneously, with p38 suppressing JNK in some cells [2]. They extended imaging to 

6–12 hours, and were able to identify JNK-high cells as apoptotic, while p38-high cells 

survived. This behavioral classification allowed them to associate signaling patterns with 

functional outputs.

Given that signaling pathways communicate the presence and amount of a ligand in the 

extracellular space to the cell, key questions are: How effective is this communication, and 
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what tradeoffs do cells make to control effectiveness? Information theory answers these 

questions by quantifying how severely noise (both extrinsic and intrinsic) corrupts the ability 

of a signal sender to communicate with a receiver (Table 1). Information theory measures 

communication in units of bits, which correspond to the amount of information gained 

about an input from measurement of an output. In a system with high information transfer, 

measuring an output will give a high-confidence estimate of the input signal, while in a low 

information transfer system, noise will corrupt the output, making it difficult to determine 

a specific input based on a measured output. Most commonly, information theory has been 

used to quantify the ability of cells to differentiate between different doses of a ligand, 

given that each dose provokes a distribution of responses across different cells. Early work 

using this approach from Cheong et al. calculated information transfer for experimental 

measurements of NF- κB activation by TNF and compared them with theoretical results 

from statistical models incorporating different signaling pathway architectures and noise 

sources, finding that signaling architecture and the integration of a signal over time by cells 

can mitigate information loss [39]. In an expansive study, Selimkhanov et. al. quantified 

information transfer in ERK, calcium, and NF-kB signaling pathways [40]. They showed 

that information transfer can be much higher if signaling responses at multiple time points 

are considered, offering one explanation of the previous, static measurements of information 

transfer, which were surprisingly low. They also used a combination of information theory 

and experimental perturbation of the ERK pathway to quantify intrinsic and extrinsic 

sources of noise, finding that extrinsic sources of heterogeneity dominated. More recent 

work has built on these foundations, measuring information transfer by stimulating the same 

cells repeatedly [41,42]. These experiments and analyses have revealed that different cells in 

a population may have very different information capacities. Information theory facilitates 

the quantification of intrinsic and extrinsic contributions to heterogeneity, and summarizes 

heterogeneous data in a way that is consistent with signaling pathway function - to transmit 

information and enable cells to respond accordingly.

Mechanistic Models of Heterogeneity

The data-driven methods described above detail ways of extracting patterns or meaning 

from within a dataset. However, a separate class of methods involves constructing 

mechanistic models of cellular behavior, and synthesizing model and experimental data 

to draw conclusions about observed heterogeneity. Mechanistic modeling requires numerical 

parameters and information about mechanisms that are oftentimes difficult or impossible 

to obtain, which can make modeling significantly more difficult and time-consuming 

than data-driven methods. However, mechanistic models provide unique opportunities to 

computationally control the relative effects of biological mechanisms and parameters, which 

can yield deeper insights into the causes and consequences of heterogeneity. Models can 

be stochastic or deterministic, and can range from simple and qualitative to sprawling and 

numerically precise. In general, model building should be directed by specific questions that 

can dictate the specific interactions that need to be included in the model.

To model stochastic sources of intrinsic noise, specific frameworks have been developed that 

simulate individual molecular events (Table 1) [43]. The framework for these simulations 

uses the Gillespie algorithm, which calculates the probability of different events occurring 
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based on their pre-defined interaction rate constants and species number. To run stochastic 

simulations, the researcher must define the species involved, the stoichiometry of each 

interaction between species, and probabilistic rate constants of each interaction. After these 

parameters are defined, simulations can be run, which produce individual realization of the 

random process being modeled. This approach was utilized to study heterogeneity in the 

ERK response to hormone stimulation by Garner et. al. They constructed a simple model of 

ERK signaling that incorporated multiple sources of feedback control [44]. They combined 

this model with calculations of information transfer carried out on their experimental and 

simulated data, and varied different sources of feedback to study how different regulatory 

mechanisms could influence information transfer. Their model enabled them to make 

experimentally testable predictions about the factors that influence information transfer in 

the presence of intrinsic noise. Notably, stochastic simulations were also used by Iwamoto 

et. al. to explore variability in EGFR signaling to ERK, as measured by flow cytometry 

[45]. They found that stochasticity caused by intrinsic noise was insufficient to explain 

the variability in their data because they measured sufficiently high concentrations of 

molecules for all components. This highlights the potential complexity of modeling intrinsic 

and extrinsic factors underlying heterogeneity, and shows how modeling can be used to 

differentiate between the two. A similar approach was used by Wang et. al. in analyzing 

p53 dynamics, where they found that in mammalian cells, p53 variability was consistent 

with extrinsic cell-to-cell differences [46]. These two examples illustrate how computational 

models can help identify extrinsic, and potentially controllable sources of noise, compared to 

intrinsic noise.

As consciousness of the role of pre-existing differences in seemingly identical cells grew, 

other work began to focus on using deterministic mechanistic models based on ordinary 

differential equations to understand which cellular components were different from cell 

to cell (Table 1) [11,16,43,47,48]. Yao et. al. observed heterogeneous calcium signaling 

dynamics (Figure 3A) [48]. They used summary statistics to summarize and cluster their 

data, but they followed up on those observations by constructing a differential equation 

model of calcium signaling (Figure 3B). They derived parameter sets that provided good fits 

to individual cellular responses, and recorded the parameter distributions that were extracted 

from the population of single-cell fits (Figure 3C, D). They found clusters of parameter 

distributions that corresponded to clusters of cellular responses. Observed heterogeneity of 

responses arose from differences in interactions between IP3 import to the endoplasmic 

reticulum and related regulation of this process by calcium. This approach required the 

construction of a mechanistic model, which has intrinsic difficulties and complications, 

but it uniquely facilitated a granular, mechanistic understanding of calcium signaling 

heterogeneity.

The approach taken by Yao et. al., in varying every model parameter, implies a particular 

assumption about pre-existing cellular states - that cell state occupancy is pseudo-random, 

and that variability is equally likely in all components [49]. However, some pathway 

components are affected by many different inputs, while others are more confined to 

individual pathways [50]. Furthermore, different components are subject to different 

regulatory mechanisms which may be better or worse at suppressing variation [51]. 

Therefore, it is plausible that variability in kinase activation could be due to a small number 
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of highly variable species. Spinosa et. al. explored this hypothesis when studying ERK and 

Akt signaling in response to CXCL12 (Figure 3B) [16]. They built a differential equation 

model including both pathways and accounted for the variability observed by varying just 

three parameters, corresponding to extrinsic noise leading to variable activation in specific 

pathway components Ras, PI3K, and mTORC1 (Figure 3C,D). This approach allowed them 

to locate each cell in an experiment to a specific point in 3D space corresponding to pre-

existing cell state, and to make measurable predictions about the effects of various inhibitors 

in moving the population of cells around in state space (Figure 3E). Identifying key nodes of 

heterogeneity may be useful for inferring treatable therapeutic targets facilitating the control 

of heterogeneous cell states, or understanding why some cells are resistant to targeted 

inhibitors (Figure 3F).

Continuing Challenges and Promising Approaches

As experimental methods advance, we will have access to ever-growing forms of data, 

including multiplexed reporters that can be deployed in new ways and observed at new 

timescales. Making meaning from all of this data may be a daunting task, but it will yield 

unprecedented insights into the sources of cellular heterogeneity and means by which it 

can be controlled. Fortunately, extracting meaning from heterogeneous time-series data is 

central to the field of signal processing, and many challenges associated with single-cell 

signaling data are present in other fields. Some techniques, including information theory and 

functional data analysis, were borrowed from signal processing and creatively applied to 

single-cell signaling data. Researchers in many fields are studying heterogeneous, dynamic 

data to answer questions ranging from the geographic differences in bird calls to fault 

diagnosis in mechanical systems [52,53]. Novel machine learning techniques to extract 

features from time-series data are an open field of study [54]. All of this suggests that 

interdisciplinary collaboration inspired by work in many different fields may yield creative 

methods of analysis for heterogeneous cell signaling data.

There are also key biological challenges to address in order to fully realize the potential 

of single-cell imaging modalities. Specific challenges, which will require realizing novel 

computational and experimental methods, include the incorporation of disparate timescales, 

cellular systems, and streams of data. Meaningful signaling dynamics can occur on the 

seconds to minutes time scale, as shown by transient ERK pulses that can drive proliferation, 

on the minutes to hours timescale associated with ligand-receptor signaling, and on the 

several hour scale associated with cell division [55,56]. Connecting these timescales in 

a multi-scale model that explains variation in single-cell behaviors represents a major 

challenge, but also holds the key to understanding how cells integrate information to 

make decisions. Furthermore, signaling pathways are affected by numerous other cellular 

processes, including metabolism and cell cycle progression, all of which may help determine 

a cell’s pre-existing state. Understanding how cell-to-cell variation in these other systems, 

such as variations in glucose utilization, affect heterogeneity in signaling, and vice versa, 

will require merging computational models for each individual system [57]. Finally, 

heterogeneity is understood in a variety of ways, and single-cell sequencing technologies 

have exploded in recent years. Understanding how observable signaling dynamics shape 

heterogeneity in RNA transcript number is another major challenge, which again requires 
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merging mechanistic signaling models with data-driven models of heterogeneity in RNA 

expression [58]. By extending our understanding of the situational balance between various 

sources of heterogeneity, we will be able to identify targets that will enable control over 

cellular populations, and possible dead-ends where intrinsic noise dominates over any 

plausible intervention. Clinically, identifying sources of heterogeneity may enable temporal 

treatment strategies that first shift heterogeneous cells to a more homogeneous set of 

states, making the whole population vulnerable to a second drug (Figure 3G) [18]. Another 

approach might identify treatments that affect specific subpopulations based on an identified 

axis of variation and combine those treatments to kill all populations simultaneously (Figure 

3H). Creative combinations of experimental and computational methods are the key to 

making progress on all of these fronts.
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Highlights:

• Multiplexed fluorescent reporters offer unprecedented measurements of 

single-cell data.

• Data-driven methods can reveal subpopulations with distinct dynamics or 

outcomes.

• Mechanistic models enable discovery of drivers of heterogeneity.

Kinnunen et al. Page 13

Curr Opin Syst Biol. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Sources of heterogeneity. A) Cells can exhibit continuous variation, for instance in 

signaling response (middle). This continuum may be converted into binary outcomes for 

phenotypes like cell death. B-E) Comparing the effects of intrinsic and extrinsic noise. 

Columns represent two cells in different pre-existing states based on the amount of an 

inhibitory protein in the cell. Rows represent differences in ligand concentration, with low 

ligand concentration leading to significant differences in response based on stochasticity 

of receptor-ligand binding. Insets represent signaling responses in 3 separate cells for 
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each condition. F) A kymograph or colormap is commonly used to represent single-cell 

signaling data. Left: Two individual cell responses, one sustained and one transient. Right: A 

kymograph summarizing responses of 3000 cells.
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Figure 2: 
Analysis of dynamic, single-cell data. A) Each line indicates a cellular response from a 

single-cell experiment, showing two families of responses with variation in each family. B) 

Mean and percentile measures can capture some dynamics, but no experimental cells behave 

like the mean. C) Taking the mean of cells assigned to clusters can yield representative 

dynamics. D, E) Hypothetical data from a dose response experiment. D) The mean increases 

with dose, but the dynamics are not captured. E) Clustering the data reveals that increasing 
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dose leads to more cells adopting fast, transient responses (blue cluster). F) Functional PCA 

can identify clusters of behavior while capturing variation within each cluster.
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Figure 3: 
Mechanistic modeling of heterogeneous signaling data. A) Heterogeneous single cell 

responses can differ in both magnitude and shape, with some cells exhibiting a sustained 

peak and others a transient response. B) A simplified schematic of an ODE model which 

can be used to study the heterogeneity shown in A. Two rate constants, k1 and k2, out 

of many are identified. C) Systemic variation of parameters in the model shows that k1 

increases the magnitude of the response, while changes in k2 tune the duration of the 

response. D) Model and experimental outputs can be compared (top) with different cells 
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fitting well with different model outputs. This procedure can be completed for all cell/model 

combinations (bottom) to extract a parameter set which represents the pre-existing cell state. 

E) Model-based inference of parameter values – and therefore cell state - enables population 

of cells to be placed on a spectrum of heterogeneous mechanistic processes, and compared 

between two different experimental conditions (black distribution vs. red distribution). F) 

Understanding cell state can provide mechanistic explanations for why some subpopulations 

of cells are sensitive to a drug and others aren’t. Treating with a drug that only targets some 

of the cells (green circle) will leave behind an insensitive population of cell. G) Using this 

knowledge, we can combine drugs temporally, giving one drug (orange) to sensitize the 

entire population to a second drug (green). H) We can also combine drugs (blue and green) 

to target two subpopulations simultaneously, eliminating the whole population of cells.
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Table 1:

Computational techniques for dimensionality reduction and mechanistic understanding of single-cell 

heterogeneous signaling data

Method Output Benefits Shortcomings Software Applications

Clustering Labels for each cell 
corresponding to cluster 
belonging.

Aggregates based 
on real cell 
behavior, relatively fast, 
interpretable.

Inappropriate or 
unhelpful for continuous 
responses

Time course 
inspector R 
package and web
application [35]

[22], [34], [47]

FPCA Low-dimensional 
projection of each cell 
along axes of variation in 
the data.

Enables easy 
visualization of 
heterogeneity to identify 
patterns in data.

Primary axes of 
variation may not 
be physiologically 
meaningful.

FDA package 
[36,37]

[38]

Information 
Theory

Numerical quantification 
of mutual information 
between input (dose 
or ligand) and output 
(reporter activity)

Summarizes 
heterogeneous outcomes 
in a single number with 
a physical meaning.

Mutual information may 
be of limited interest for 
particular study.

SLEMI R package 
[59], EstCC Scala 
package [60]

[11,39–42,44]

Stochastic 
Dynamic 
modeling

A distribution of species 
dynamics corresponding 
to each parameter set 
used by modeler.

Can explicitly model 
the effects of intrinsic 
stochasticity and low 
molecular number.

Requires knowledge of 
rate constants and species 
interactions, along with 
simplifying assumptions 
to make system tractable.

Simbiology 
MATLAB 
package, Hy3S 
[61], PySB 
Python package 
[43]

[43,44,46]

ODE 
modeling

A set of deterministic 
species dynamics 
corresponding to each 
parameter set used by 
modeler.

Can vary parameters to 
test hypotheses about 
sources of heterogeneity, 
suggest mechanistic 
drivers.

Requires knowledge of 
rate constants and species 
interactions, along with 
simplifying assumptions 
to make system tractable.

Simbiology 
MATLAB 
package, PySB 
Python package 
[43]

[11,16,43,47,48]
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