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Abstract

PURPOSE OF REVIEW: We sought to: 1) examine common sources of measurement error 

in research using data from electronic medical records (EMR), 2) discuss methods to assess the 

extent and type of measurement error, and 3) describe recent developments in methods to address 

this source of bias.

RECENT FINDINGS: We identified eight sources of measurement error frequently encountered 

in EMR studies, the most prominent being that EMR data usually reflect only the health services 

and medications delivered within the specific health facility/system contributing to the EMR 

data. Methods for assessing measurement error in EMR data usually require gold standard or 

validation data, which may be possible using data linkage. Recent methodological developments to 

address the impact of measurement error in EMR analyses were particularly rich in the multiple 

imputation literature.

SUMMARY: Presently, sources of measurement error impacting EMR studies are still being 

elucidated, as are methods for assessing and addressing them. Given the magnitude of 

measurement error that has been reported, investigators are urged to carefully evaluate and 

rigorously address this potential source of bias in studies based in EMR data.
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Introduction

Medical record data offer key clinical details and include information on some aspects 

of health services that are not well-captured by other secondary data sources. Increasing 

adoption of electronic medical record (EMR) systems in both ambulatory and inpatient 
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clinical care settings has provided health researchers greater access to these data. EMR 

data often cover large and diverse patient populations, allowing for healthcare research to 

be conducted in a timely manner. However, their primary function is to facilitate clinical 

care, and thus their secondary use for pharmacoepidemiology research requires careful 

consideration. Medical coding and documentation in EMR databases is often driven by 

factors outside of clinical care, such as required fields in the EMR system, insurance 

reimbursement policies, and automated importation of historical information. These factors 

can drive systematic bias in these data, adding complexity to their use for healthcare 

research. Given their increasing use in pharmacoepidemiology research, we sought to 

examine common sources of measurement error in EMR data, discuss methods to assess 

the extent and type of error, and describe recently published methodological developments 

intended to address resulting biases. Throughout this paper, we define misclassification and 

missing data as special cases of measurement error.

Sources of Measurement Error

We identified eight domains of commonly encountered sources of measurement error and/or 

missing data that may affect research using EMR data:

1. EMR data reflect only the health services and medications delivered within the 

specific health care setting that contributes to the EMR system.[1-6] This leads 

to both left and right censoring, and uncertainty regarding the person-time at risk. 

This is particularly problematic in inpatient EMRs.

2. Prescription records in an ambulatory EMR reflect clinician orders for 

medications, which may not be filled or consumed by the patient.[7-9]

3. In EMR studies, defining treatment episodes / treatment duration / cumulative 

exposure is complex and requires many decisions which have unpredictable 

influence on exposure misclassification.[10-12]

4. Automated data entry in EMR systems may forward-propagate erroneous data 

and/or carry forward information that is no longer clinically relevant.[13-15]

5. Recent advances in natural language processing (NLP), which automate 

extraction of information from unstructured data, may introduce systematic 

errors.[16-19]

6. Performance of EMR-based clinical prediction algorithms may vary widely 

between different health systems.[20]

7. Temporal changes in the recording of EMR data elements may produce 

systematic differences in classification and/or missingness over time.[21]

8. Horizontal linkage of populations captured by different EMR systems produce 

systematic differences in classification and/or missingness between the linked 

populations.[22]

In Table 1, we summarize studies that characterized various sources of measurement error 

that are commonly encountered in studies conducted using EMR data. For each source of 
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measurement error, we identify the source of measurement error being described, how they 

assessed the problem, and summarize the key findings and/or proposed solutions.

Since the data reflected in EMR are a complex function of factors such as clinical context, 

organization structure, health business relationships, and patient privacy relations, EMR 

data across health providers have systematic differences in implementation and structure. 

Additionally, ambulatory and inpatient EMR systems tend to vary on another level in 

complexity and types of data recorded. While the majority of this paper pertains generally to 

commonly observed aspects of EMR data, we highlight specific areas which may be more 

relevant in ambulatory or inpatient settings.

Assessing Measurement Error

Identifying Erroneous Values using Validation Studies

When key variables may have been measured with error in the full study population, 

investigators frequently acquire additional data in a subset of individuals that can serve as 

an alloyed gold standard: an imperfect but still useful/superior indicator of the true value. 

To date, the most common alloyed gold standard used to assess the validity of EMR data 

is manual abstraction of paper (or electronic) charts by a clinician. However, this method 

is expensive and sometimes subject to the same forms of measurement error affecting EMR.

[23] Another common approach is to validate EMR data against self-report data (e.g. survey 

or interview data), though such data is rarely available for large patient populations.[24-27]

Common statistics used to quantify misclassification for dichotomous variables include 

sensitivity, specificity, positive predictive value, and negative predictive value.[28] Wang 

et al. used simulations to illustrate that under the assumption of no false positives, if 

misclassification of a variable is independent of its true value, measures of sensitivity 

are unbiased, however specificity will be underestimated.[1] If misclassification of an 

exposure or confounder is not independent of the outcome, then the bias in sensitivity 

and specificity are related to the association between misclassification and the outcome. The 

authors derive bias-corrected estimators of sensitivity and specificity under the condition 

that misclassification is independent of outcome status. However, these formulas require 

outcome prevalence and misclassification rate, statistics which may not be easily assessed if 

data is misclassified. Thus a priori knowledge is frequently used to guide sensitivity analyses 

and generate plausible ranges of values.

In practice, validation studies most frequently report the positive predictive value or the c-

statistic (i.e. the area under the ROC curve) after sampling all potential cases.[29] However, 

unless accompanied by additional statistics and measurements (e.g. prevalence), both the c-

statistic and the positive predictive value cannot be easily used to employ methods meant to 

repair or assess the impact that measurement error has on estimates (e.g. bias analysis).[30] 

Furthermore, estimates of positive and negative predictive value tend to be less transportable 

than estimates of sensitivity and specificity, since the former are functions of prevalence.
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Identifying Erroneous Values using Vertical Linkage

Linked administrative billing claims are an alternative, complimentary source of information 

to the data available in EMR systems. While claims are frequently available for large 

patient populations, linkage can be logistically challenging. However claims have a number 

of complimentary advantages: 1) claims identify care that occurs outside of the health 

system that the EMR data was drawn from, 2) claims indicate whether the patient had 

insurance coverage that determines eligibility for certain medical services, and 3) claims 

are more likely to be standardized across facilities than EMR, which are primarily intended 

to facilitate care within a given facility or health system. Since 2010, multiple studies 

have explored linkage of various EMR sources (single-center EMR systems, OptumLabs 

Data Warehouse[31], Sentinel[32]) to large population-based claims sources, including 

commercial insurance providers [33], Medicare[3], PC-Rx [31], Medicaid [34, 35], and 

Sentinel [32]).

Identifying Erroneous Values using Repeated Measures

There are some special settings under which measurement error may be evaluated without 

a gold standard for comparison. Recently developed methods provide some useful, albeit 

limited, tools to investigators seeking to identify erroneous or outlying values in longitudinal 

data (i.e. settings where a continuous variable is repeatedly measured). In 2016, Yang et 

al. described the conditional growth percentile method, which flags outlier observations by 

comparing the actual value of a continuous variable (e.g. body mass) to an expected value 

estimated using time-dependent hierarchical models.[36] In 2018, Shi et al. developed a 

related method for identifying errors in longitudinal data which seeks to determine which 

of two measurements is erroneous when a clinically implausible change occurs between 

two consecutive measurements.[37] Though Shi’s method out-performed Yang’s in terms of 

both sensitivity and specificity, it requires investigators be able to define clear rules for what 

constitutes a clinically implausible change.

Addressing Measurement Error

Bias analysis

Historically, methods for addressing measurement error in epidemiologic studies have relied 

heavily on bias analysis, most notably quantitative bias analysis. A more thorough review 

of the diverse methods that make up the bias analysis literature is available elsewhere.[30] 

However, compared to other methods used to address measurement error, bias analysis 

has seen relatively little recent development. This may be a result of the aforementioned 

difficulty of obtaining measures of sensitivity and specificity to inform bias analyses. 

Further research developing and applying bias analysis methods within EMR studies is 

needed.

However, two recent bias analysis studies merit brief mention. First, 2017 Corbin et 

al. compared the application of various approaches to account for measurement error 

including: bias analysis (fixed parameter and probabilistic), direct imputation (a mixed 

method which incorporated priors on the sensitivity and specificity of measurement into 

imputation models), and Markov-Chain (Monte-Carlo) Bayesian analysis.[38] They advise 
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investigators to use quantitative bias analyses and Bayesian analyses in any settings where 

informative priors can be specified and where accounting for all sources of uncertainty 

is critical. Second, Rudolph & Stuart have adapted two existing methods, propensity 

score calibration [30, 39, 40] and VanderWeele & Arah’s bias formulas [41, 42], which 

were originally developed to address unmeasured confounding, to now address imperfectly 

measured covariates.[43]

Extended Look-back Windows to Assess Medical History

Currently, it is common practice in database studies to assess medical histories within 

uniform or fixed look-back windows (e.g. 1-year). However, fixed look-backs require 

cohorts to be restricted to those meeting some definition of data continuity (e.g. continuous 

enrollment in claims studies) for the entire window, and potentially informative data 

occurring before the window are discarded.[44, 45] Observing all historical (pre-exposure) 

information available in a database while requiring only minimal baseline continuity has 

been proposed as an alternate approach which might improve capture of relevant medical 

history and selection of more inclusive, representative cohorts.[46, 47] Simulation studies 

indicated all-available look-backs may be superior to fixed look-backs in some settings.[47, 

48] However, concerns remain that the method may be prone to bias if the completeness and 

longitudinal breadth of available data might vary informatively between exposure (e.g. when 

comparing users to non-users) or outcome groups.

Only two papers have been published exploring use of all-available look-backs in actual 

data with multiple interrelated covariates; however, both studies focused on claims, not EMR 

data.[49, 50] In both studies, control for confounding was not substantially affected by the 

look-back used to assess confounders. However, the second study indicates that eligibility 

criteria (e.g. history of exposures, outcomes) may be better assessed using all-available 

data or a long (3-year) fixed look-back, as opposed to a short (1-year) fixed look-back.

[50] Further research is needed which explores the application of all-available look-back 

approaches in alternate data sources (e.g. EMR).

Follow-Up Contingent on Encounters

Loss to follow-up (or right censoring) is arguably one of the most common forms of missing 

data among studies using longitudinal data sources, especially when subjects are only 

observed periodically as they are in EMR. As mentioned above, censoring is particularly 

problematic in inpatient EMR settings. In 2018, Lewin et al. demonstrated that multiple 

imputation methods did no better than a complete-case analysis in a setting where the only 

missing data was non-ignorable right-censoring of time-to-event outcomes.[51] However, 

Lesko et al. provide new guidance to reduce bias affecting studies where events that occur 

after the last time a person was observed result in right-censoring and go unrecognized.[52] 

Based on both simulation and an applied example, they conclude that: 1) studies where 

events can only be recognized in an observed encounter should censor patients lost to 

follow-up at the time of their last encounter; 2) studies where events can be observed 

outside encounters (e.g. all-cause mortality obtained from a national death index) should 

censor when the patient meets the definition of loss to follow-up. They conclude that studies 
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conducted using EMR will be strongly affected by choice of censoring method, positing that 

bias is greatest when rates of the outcome and loss to follow-up are high.

Restricting to Patients with High Data Continuity

In response to the frequently encountered challenge in EMR research where some people 

have a high degree of data missingness for care delivered by health systems/providers not 

captured in the EMR, researchers have proposed methods of identifying cohorts with high 

data-completeness and medical record continuity.[2-4] These methods apply primarily to 

research using ambulatory EMRs, where continuity of coverage may be observed in patients 

returning for regular medical interactions. These methods require administrative claims data 

linked at the patient-level, allowing investigators to directly assess whether events observed 

in the linked claims are also observed in the medical record. For example, Lin et al. propose 

the statistic mean proportion of encounters captured (MPEC) which is equal to the average 

of two proportions: 1) proportion of outpatient visits recorded in claims that are also noted 

in EMR and 2) the proportion of inpatient admissions in claims that are also noted in 

EMR.[2] After restricting to patients in the top MPEC quintile, Lin et al. reported that 

misclassification for 40 different commonly used covariates was reduced by a factor of 3.5 

to 5.8.[3]

However, restricting to patients with complete data is potentially problematic, since doing so 

conditions effect estimates on those variables, potentially impacting 1) the internal validity 

of effect estimates (by conditioning analyses on observed data), and 2) the external validity 

(by altering the composition of the study population). Weber et al. demonstrated that such 

restrictions selected cohorts that were older, sicker, and more likely to be female.[4] As an 

alternative, they proposed a more flexible approach which only seeks to eliminate people 

whose data is incomplete for the type of variables needed in a specific study. They propose 

various heuristic filters (e.g. demographics, data fact types [e.g. diagnoses, vital signs, lab 

tests, medications, or outpatient visits), and time spans (e.g. data in first and last study 

month) which may be necessary for some study designs but can be relaxed for others.

Maximum Likelihood Approaches and Inverse Probability Weighting

Inverse probability weighting (IPW) for complete case analyses, which is often classified 

as a maximum-likelihood approach, is a common alternative to imputing missing data or 

restricting to those without missing values.[53-56] The simple complete-case analysis (i.e. 

assessing only subjects with complete data) can be conceptualized as the extreme case of 

weighting where subjects with any missing data receive a weight of zero. More sophisticated 

IPW applications, such as the aforementioned approach by Weber et al, weight subjects 

according to their probability of missing data relevant to the analysis, as indicated by models 

fit within the observed data. Recent research indicates performance of maximum-likelihood 

approaches may be superior to multiple imputation when missing data is infrequent and 

when multiple variables are non-normal. [56]

Sun et al. recently proposed an extension to the inverse probability weighting approach, 

which is capable of yielding valid inferences in analyses with non-monotone missing data.

[57] Their method requires that investigators specify the mechanisms of non-monotone 
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missingness. They outline procedures for discerning these mechanisms from the data itself, 

using either maximum likelihood estimation or constrained Bayesian estimation.[57] In 

settings with longitudinal missing data, Doidge et al. propose incorporating an indicator of 

previously observed responsiveness (i.e. likelihood of having missing data in prior study 

encounters) into IPW models predicting data missingness.[55] They assert that the method 

is likely to reduce bias when data is missing partially at random but caution that it may 

increase bias when data is missing completely at random.

Imputing Missing Data

In analyses where values can be explicitly identified as missing or misclassified, 

imputation can be used to assign corrected values based on conditional distributions 

assessed in the observed data. Multiple imputation, one of the most widely used 

methods to address missing data, refers to the practice of generating multiple hypothetical 

data sets containing various imputed values and then analyzing pooled results across 

them in order to appropriately incorporate the increase in variance due to imputing 

values.[58] Comprehensive reviews of the wide range of multiple imputation methods 

and their applications in pharmacoepidemiology are available.[59] Here, we summarize 

selected recent advancement in multiple imputation methods which are applicable to 

pharmacoepidemiologic studies. Given that imputation methods are often agnostic to 

temporal and analytical relationships between variables, most of these methods can be 

applied to impute variables of many different types (e.g. exposures, covariates, outcomes) 

and scales (e.g. categorical, continuous). When necessary, we will highlight when a method 

was intended to be applied in narrower setting.

General Multiple Imputation Developments—Currently, no clear guidance is 

available for investigators seeking to determine how much missing data is too much for 

imputations to be reliable. Such determinations are a complex function of the proportion 

of observations with missing data, the number of observations with non-missing data, the 

number of variables with missing data, and the covariance between the missing and observed 

values.[58, 60-63] For example, 95% missingness might not be problematic if imputation 

assumptions are satisfied and the 5% with complete data is comprised of a sufficient number 

of observations to inform the imputation.

In highly dimensional data, modeling the full joint distribution of a large covariate set may 

be infeasible. Multiple imputation by chained equations (MICE) can efficiently address 

this problem by imputing values for missing variables sequentially in different orders in 

each of the imputed data sets.[64, 65] Kunkel and Kaizar recently compared imputation 

approaches with full joint models against MICE and conclude that in scenarios with 

multivariate normal missing data, MICE models are easier to implement and often produce 

results similar to the fully specified joint model. However, the authors caution that the 

choice of prior distributions strongly affect results and advise testing them in sensitivity 

analyses.[66] Kline et al. also compared the two approaches for imputing longitudinal data 

at the person-level and found that MICE was only comparable to full joint models when 

the covariance structure of the missing variable was homogenous and correlations were 

exchangeable.[67] In high-dimensional data settings, covariates may be balanced using a 
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summary score (e.g. propensity score, disease risk score). However, methodologists have 

debated whether investigators imputing propensity scores should 1) average the propensity 

scores themselves across the multiple imputed datasets then estimate a single effect, or 

2) estimate effects in each of the multiple imputed datasets then average across them 

to produce a single effect.[68-70] In a recent paper, Leyrat et al. provide new guidance, 

recommending that investigators pool effect estimates, not propensity scores produced 

within the various imputed datasets, so long as imputation models include the outcome.[70]

Zahid et al. propose another approach to enable imputation in settings with a large 

number of missing covariates: multiple imputation with sequential penalized regression. 

The method is an extension of MICE which allows each imputed variable to take on a 

different distributional form using models specified using various ridge penalties.[71] The 

authors demonstrate via simulation that this method can be applied to both normal and 

non-normal response models, and performs well even in scenarios with large number of 

missing covariates and few observations. An R package (mispr) is also provided.

Another method that relaxes parametric assumptions is predictive mean matching (PMM).

[72] Under PMM, imputed values are drawn at random from a matched set of people 

with complete data and similar expected values generated by the model. Many assert that 

PMM leads to more realistic distributions than standard imputation approaches. Recent 

research indicates that predictive mean matching is particularly useful when imputing values 

for continuous variables with non-normal distributions and when plausible bounds can be 

placed on missing variables.[73, 74] However, further research comparing PMM to alternate 

approaches is needed.

Other miscellaneous developments in the imputation literature merit brief mention. In 2017, 

Sullivan et al. demonstrated that using standard imputation approaches based on logistic 

regression may produce biased / attenuated estimates in studies with missing data on binary 

outcomes.[75] It is plausible to expect that in some datasets, performance of imputation 

may depend on the value of the variable being imputed. For example, imputation may 

be relatively accurate when imputing patient incomes in the low to medium range but 

inaccurate when imputing extremely high incomes. Bak et al. introduce a machine-learning 

approach to multiple imputation which estimates an expected error for each imputed value.

[76] This method allows investigators to selectively impute values that fall below some 

minimum threshold for error.

Imputing Longitudinal or Time-Varying Data—In settings with high-dimensional 

longitudinal data, imputation models can quickly become complex, difficult to accurately 

specify, and frequently fail to converge. There are methods available which adapt the 

MICE procedure to impute data in time-to-event studies using Cox proportional hazards 

model, for example multiple imputation for joint modeling (MIJM). Moreno-Betancur et 

al. recently described the method in detail and distributed statistical programming tools 

for implementation in R.[77] In some instances, methods and programming tools have 

been specifically tailored for the imputation of specific clinical constructs, for instance 

longitudinal measures of body-mass-index).[78]
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An important consideration when imputing longitudinal data is leveraging information from 

between-person variation vs. within-person or longitudinal variation. Gottfredson et al. used 

multilevel multiple imputation (MMI), to impute values of missing data as a function 

of models fit between people and longitudinal models fit within-person.[79] Similar to 

their IPW method incorporating predictors of non-responsiveness in models of missing 

data, Doidge et al. also propose a corresponding imputation method which incorporates 

non-responsiveness observed in earlier data as a predictor.[55] This approach can be 

conceptualized as a simplified MMI model.

Forward Bridging—As the medical system continues to advance over time, data 

generation system and electronic health records dynamically evolve to meet the needs of 

healthcare providers and patients. Migrating data from older systems to newer systems is 

necessary to enable longitudinal analyses of healthcare data and poses a common challenge 

to investigators working with EMR. Thompson et al. introduce a forward bridging method 

using multiple imputation with multinomial logistic regression.[80]

Latent Variables and External Calibration Data—While missing data is often 

discussed in the context of vertical linkage, it is becoming increasingly common for 

researchers to use horizontal linkage, harmonizing data across different study populations to 

enable larger scale studies with improved generalizability and greater potential for detailed 

subgroup analyses (see Table 1). When two populations have a variable (e.g. functional 

status) measured in a similar but not directly comparable way, the combined data are subject 

to measurement error. As a solution Gu and Gutman propose latent variable matching, 

a novel method which draws upon both multiple imputation and item response theory. 

Latent variable matching imputes values for a third, hypothetically unmeasured variable 

representing the underlying truth that each of the differently measured variables indicate. 

Their method is an adaptation of predictive mean matching imputation and is appropriate 

for non-longitudinal data that is missing partially at random. [81] Using simulation, they 

demonstrate the method’s ability to provide valid inference with smaller bias than other 

methods.[82] An alternate solution has been proposed by Siddique et al., using as an 

example a meta-analysis of two studies with different outcome definitions.[83] Their 

method uses external calibration data, or a population where both outcome definitions were 

measured, to provide information on the relationship between the two measures. The authors 

propose a multivariate random-effect model that leverages the external calibration data, and 

jointly models the missing outcome measures, allowing estimation of the effect of time and 

treatment on the outcome.[83]

Confidence Intervals—Bootstrap estimation and multiple imputation are increasingly 

common in causal inference research. Shomaker et al. introduce methods to construct 

confidence intervals in scenarios where bootstrap estimation techniques are used in 

conjunction with multiple imputation, providing recommendations for calculating valid 

confidence intervals consistent with randomization.[84] Van Walraven compared the 

plausible estimate ranges produced by bootstrap imputation to those produced by 

quantitative bias analyses. They found that while more computationally demanding, 

bootstrap imputation more effectively decreased misclassification bias compared to 
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quantitative bias analysis, the latter of which is highly dependent on accurate parameters 

of bias estimates.[85]

Doubly-Robust Estimation Methods

Conceptually, conventional multiple imputation is chiefly concerned with modeling the 

values of missing data, while IPW methods are concerned with modeling the probability 

of missing data. Doubly-robust methods for analyzing data with missing or misclassified 

values fit both models, implementing imputation and weighting approaches in parallel. 

These methods are described as doubly-robust since they are more robust to misspecification 

of the models and their link functions, requiring that only one of the two be appropriately 

specified. In health services research, investigators tend to be more confident in their ability 

to correctly specify models predicting missing data than models predicting the values of 

missing data, particularly in high-dimensional analyses with many interrelated variables.[55]

One such doubly-robust method, augmented inverse probability of treatment weighting 

(AIPW), requires that the analyst separately fits two parametric working models.[58, 86] 

The model for the probability of having missing data is used to create inverse probability 

weights while the model for the values of missing data is incorporated into effect estimation 

models as an augmentation term. Zhou et al. and Hsu & Yu both proposed doubly-robust 

extensions of the PMM method, with the first model predicting the missing variable of 

interest and the second model predicting the probability of missingness.[87, 88] As stated 

earlier, incorporating PMM has the advantage of relaxing parametric assumptions in the 

imputation phase. Hsu & Yu show through simulation that this approach is more robust 

to misspecification of either model compared to other common models.[87] Zhou et al. 

discuss these methods specifically in the context of missing data in categorical variables 

with more than two categories, using a combination of multinomial logistic regression and 

binary logistic regression.[88] Addressing the setting of propensity score analyses, Shu et al. 

proposed a doubly-robust estimator (allows for misspecification in either the treatment or the 

outcome model) to address the bias due to measurement error in a binary outcome when a 

gold standard validation subset is available.

Inferring treatment duration using the reverse waiting time distribution

Defining prescription duration in pharmacoepidemiologic studies can be difficult, and 

researchers typically make simplifying assumptions or pre-specified decisions based on 

prescription and patient characteristics.[11, 12, 89] In 2013, Pottegard adapted the waiting 

time distribution (WTD) method, used to estimate prevalence of drug exposures in databases 

lacking data on prescription days supply, dosage, and refills, to also infer duration of 

drug exposures.[90, 91] In companion papers published in 2017, Støvring et al propose 

an adapted method, the reverse WTD, which models the distribution of time from last 

prescription to the end of a pre-specified time window, as a function of patient and 

prescription characteristics.[92, 93] Regardless of whether detailed prescription data is 

available, the method outputs plausible estimates of prescription duration, customized to the 

patient and their prescription, providing a scalable, data-driven alternative to pre-specifying 

decision rules.[92] Hallas illustrates the use of this method, and found that use of the reverse 
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WTD may reduce misclassification of exposure, while being more statistically efficient than 

alternative methods.[94]

Misclassification in instrumental variable (IV) analyses

Another recently developed method, published in 2017 by Ertefaie, adjusts IV analyses for 

confounders of the treatment effect that are associated with the IV (termed IV-confounders), 

which have non-independent or non-ignorable missing data.[95] The procedure has two 

critical steps: 1) the instrumental variable value (e.g. provider preference) is estimated using 

a model including all IV-confounders, among subjects with complete data; and 2) among 

all subjects, estimate treatment effect using model fit with only IV-confounders that have 

no missing values. The authors assert that the method is only valid when three assumptions 

are met for each unmeasured confounder: 1) provider-level missingness cannot be related 

to unmeasured confounders (although person-level missingness can); 2) the effects of any 

unmeasured confounders on treatment allocation must be the same for all physicians; and 3) 

positivity (i.e. each physician sees patients with different values of that variable).

Conclusions

In this paper, we provide an overview of recent advancements in the published literature 

describing and addressing measurement error in EMR studies. Presently, sources of 

measurement error impacting EMR studies are still being elucidated, as are the methods 

to address them. Here, we emphasized methods which seek to repair or reduce the impact of 

measurement error in the analysis phase. However, investigators may find that repairing the 

data is more complex than drawing on alternative data sources in which the critical events 

are more accurately assessed or an alternative study design that eliminates the need for the 

imperfect data elements (e.g instrumental variable analyses or self-controlled observational 

study designs). [96, 97] Regardless of the approach, investigators conducting studies that 

primarily rely on EMR would be well advised to thoroughly consider how measurement 

error might affect their data as well as their study findings.
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.
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m
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 d
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 c
au

sa
l f

ac
to

r 
or

 
ou

tc
om

e)
 s

ho
ul

d 
us

e 
a 

tim
e-

va
ry

in
g 

de
fi

ni
tio

n 
of

 P
D

C

[1
0]

•
Se

tti
ng

: C
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 p
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 p
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 d
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at
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 s
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.
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 d
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–
H
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s 

ra
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7 
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.0
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 2

.8
3 

(1
.5
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.0
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 m
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at
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 r
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t.

•
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tti
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5 
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 f
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am
pl

ed
 in
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 m
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t C
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d 
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 d
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a 
w
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nt
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≥ 

cl
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ic
al
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.

•
A

pp
ro

ac
h:
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d 
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e 
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e 
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m

m
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ro
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 d
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in
g 
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e 
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ne
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l 
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in

ic
al

 s
ta

tu
s 

of
 1

5 
pa

tie
nt

s:
 1

) 
ex

is
tin

g 
E

M
R
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st

, 2
) 

W
at

so
n-

sy
st

em
 n

at
ur

al
 la

ng
ua

ge
 

pr
oc

es
si

ng
, 3

) 
m

an
ua

l p
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ed
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. 
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ss
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se
d 

an
d 
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ed
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e 
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e 
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pr
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es
.

•
M

an
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l p
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ur
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 li

st
s 

re
ce

iv
ed

 th
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 b
y 
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 th
e 
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g 
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E
M

R
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 p
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 b
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 d
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 f
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at
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 c
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 c
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l c
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m

s 
to

 a
ss

es
s 

cl
in

ic
al

 in
fo

rm
at

io
n 

in
 

pa
tie

nt
 c

ha
rt

s 
an

d 
as

se
ss

ed
 w

he
th

er
 s

em
an

tic
 

si
m

ila
ri

ty
 m

ea
su

re
s 

re
du

ce
d 

th
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 m
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 p
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l m
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, r
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 c
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 d
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 c
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ro
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 b
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. m
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re
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at
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 p
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