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Abstract

PURPOSE OF REVIEW: We sought to: 1) examine common sources of measurement error

in research using data from electronic medical records (EMR), 2) discuss methods to assess the
extent and type of measurement error, and 3) describe recent developments in methods to address
this source of bias.

RECENT FINDINGS: We identified eight sources of measurement error frequently encountered
in EMR studies, the most prominent being that EMR data usually reflect only the health services
and medications delivered within the specific health facility/system contributing to the EMR

data. Methods for assessing measurement error in EMR data usually require gold standard or
validation data, which may be possible using data linkage. Recent methodological developments to
address the impact of measurement error in EMR analyses were particularly rich in the multiple
imputation literature.

SUMMARY: Presently, sources of measurement error impacting EMR studies are still being
elucidated, as are methods for assessing and addressing them. Given the magnitude of
measurement error that has been reported, investigators are urged to carefully evaluate and
rigorously address this potential source of bias in studies based in EMR data.
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Introduction

Medical record data offer key clinical details and include information on some aspects
of health services that are not well-captured by other secondary data sources. Increasing
adoption of electronic medical record (EMR) systems in both ambulatory and inpatient
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clinical care settings has provided health researchers greater access to these data. EMR
data often cover large and diverse patient populations, allowing for healthcare research to
be conducted in a timely manner. However, their primary function is to facilitate clinical
care, and thus their secondary use for pharmacoepidemiology research requires careful
consideration. Medical coding and documentation in EMR databases is often driven by
factors outside of clinical care, such as required fields in the EMR system, insurance
reimbursement policies, and automated importation of historical information. These factors
can drive systematic bias in these data, adding complexity to their use for healthcare
research. Given their increasing use in pharmacoepidemiology research, we sought to
examine common sources of measurement error in EMR data, discuss methods to assess
the extent and type of error, and describe recently published methodological developments
intended to address resulting biases. Throughout this paper, we define misclassification and
missing data as special cases of measurement error.

Sources of Measurement Error

We identified eight domains of commonly encountered sources of measurement error and/or
missing data that may affect research using EMR data:

1. EMR data reflect only the health services and medications delivered within the
specific health care setting that contributes to the EMR system.[1-6] This leads
to both left and right censoring, and uncertainty regarding the person-time at risk.
This is particularly problematic in inpatient EMRSs.

2. Prescription records in an ambulatory EMR reflect clinician orders for
medications, which may not be filled or consumed by the patient.[7-9]

3. In EMR studies, defining treatment episodes / treatment duration / cumulative
exposure is complex and requires many decisions which have unpredictable
influence on exposure misclassification.[10-12]

4, Automated data entry in EMR systems may forward-propagate erroneous data
and/or carry forward information that is no longer clinically relevant.[13-15]

5. Recent advances in natural language processing (NLP), which automate
extraction of information from unstructured data, may introduce systematic
errors.[16-19]

6. Performance of EMR-based clinical prediction algorithms may vary widely
between different health systems.[20]

7. Temporal changes in the recording of EMR data elements may produce
systematic differences in classification and/or missingness over time.[21]

8. Horizontal linkage of populations captured by different EMR systems produce
systematic differences in classification and/or missingness between the linked
populations.[22]

In Table 1, we summarize studies that characterized various sources of measurement error
that are commonly encountered in studies conducted using EMR data. For each source of
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measurement error, we identify the source of measurement error being described, how they
assessed the problem, and summarize the key findings and/or proposed solutions.

Since the data reflected in EMR are a complex function of factors such as clinical context,
organization structure, health business relationships, and patient privacy relations, EMR
data across health providers have systematic differences in implementation and structure.
Additionally, ambulatory and inpatient EMR systems tend to vary on another level in
complexity and types of data recorded. While the majority of this paper pertains generally to
commonly observed aspects of EMR data, we highlight specific areas which may be more
relevant in ambulatory or inpatient settings.

Assessing Measurement Error

Identifying Erroneous Values using Validation Studies

When key variables may have been measured with error in the full study population,
investigators frequently acquire additional data in a subset of individuals that can serve as
an alloyed gold standard: an imperfect but still useful/superior indicator of the true value.
To date, the most common alloyed gold standard used to assess the validity of EMR data

is manual abstraction of paper (or electronic) charts by a clinician. However, this method

is expensive and sometimes subject to the same forms of measurement error affecting EMR.
[23] Another common approach is to validate EMR data against self-report data (e.g. survey
or interview data), though such data is rarely available for large patient populations.[24-27]

Common statistics used to quantify misclassification for dichotomous variables include
sensitivity, specificity, positive predictive value, and negative predictive value.[28] Wang

et al. used simulations to illustrate that under the assumption of no false positives, if
misclassification of a variable is independent of its true value, measures of sensitivity

are unbiased, however specificity will be underestimated.[1] If misclassification of an
exposure or confounder is not independent of the outcome, then the bias in sensitivity

and specificity are related to the association between misclassification and the outcome. The
authors derive bias-corrected estimators of sensitivity and specificity under the condition
that misclassification is independent of outcome status. However, these formulas require
outcome prevalence and misclassification rate, statistics which may not be easily assessed if
data is misclassified. Thus a priori knowledge is frequently used to guide sensitivity analyses
and generate plausible ranges of values.

In practice, validation studies most frequently report the positive predictive value or the c-
statistic (i.e. the area under the ROC curve) after sampling all potential cases.[29] However,
unless accompanied by additional statistics and measurements (e.g. prevalence), both the c-
statistic and the positive predictive value cannot be easily used to employ methods meant to
repair or assess the impact that measurement error has on estimates (e.g. bias analysis).[30]
Furthermore, estimates of positive and negative predictive value tend to be less transportable
than estimates of sensitivity and specificity, since the former are functions of prevalence.
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Identifying Erroneous Values using Vertical Linkage

Linked administrative billing claims are an alternative, complimentary source of information
to the data available in EMR systems. While claims are frequently available for large
patient populations, linkage can be logistically challenging. However claims have a number
of complimentary advantages: 1) claims identify care that occurs outside of the health
system that the EMR data was drawn from, 2) claims indicate whether the patient had
insurance coverage that determines eligibility for certain medical services, and 3) claims
are more likely to be standardized across facilities than EMR, which are primarily intended
to facilitate care within a given facility or health system. Since 2010, multiple studies

have explored linkage of various EMR sources (single-center EMR systems, OptumLabs
Data Warehouse[31], Sentinel[32]) to large population-based claims sources, including
commercial insurance providers [33], Medicare[3], PC-Rx [31], Medicaid [34, 35], and
Sentinel [32]).

Identifying Erroneous Values using Repeated Measures

There are some special settings under which measurement error may be evaluated without

a gold standard for comparison. Recently developed methods provide some useful, albeit
limited, tools to investigators seeking to identify erroneous or outlying values in longitudinal
data (i.e. settings where a continuous variable is repeatedly measured). In 2016, Yang et

al. described the conditional growth percentile method, which flags outlier observations by
comparing the actual value of a continuous variable (e.g. body mass) to an expected value
estimated using time-dependent hierarchical models.[36] In 2018, Shi et al. developed a
related method for identifying errors in longitudinal data which seeks to determine which

of two measurements is erroneous when a clinically implausible change occurs between
two consecutive measurements.[37] Though Shi’s method out-performed Yang’s in terms of
both sensitivity and specificity, it requires investigators be able to define clear rules for what
constitutes a clinically implausible change.

Addressing Measurement Error

Bias analysis

Historically, methods for addressing measurement error in epidemiologic studies have relied
heavily on bias analysis, most notably quantitative bias analysis. A more thorough review
of the diverse methods that make up the bias analysis literature is available elsewhere.[30]
However, compared to other methods used to address measurement error, bias analysis

has seen relatively little recent development. This may be a result of the aforementioned
difficulty of obtaining measures of sensitivity and specificity to inform bias analyses.
Further research developing and applying bias analysis methods within EMR studies is
needed.

However, two recent bias analysis studies merit brief mention. First, 2017 Corbin et

al. compared the application of various approaches to account for measurement error
including: bias analysis (fixed parameter and probabilistic), direct imputation (a mixed
method which incorporated priors on the sensitivity and specificity of measurement into
imputation models), and Markov-Chain (Monte-Carlo) Bayesian analysis.[38] They advise
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investigators to use quantitative bias analyses and Bayesian analyses in any settings where
informative priors can be specified and where accounting for all sources of uncertainty

is critical. Second, Rudolph & Stuart have adapted two existing methods, propensity

score calibration [30, 39, 40] and VanderWeele & Arah’s bias formulas [41, 42], which
were originally developed to address unmeasured confounding, to now address imperfectly
measured covariates.[43]

Extended Look-back Windows to Assess Medical History

Currently, it is common practice in database studies to assess medical histories within
uniform or fixed look-back windows (e.g. 1-year). However, fixed look-backs require
cohorts to be restricted to those meeting some definition of data continuity (e.g. continuous
enrollment in claims studies) for the entire window, and potentially informative data
occurring before the window are discarded.[44, 45] Observing all historical (pre-exposure)
information available in a database while requiring only minimal baseline continuity has
been proposed as an alternate approach which might improve capture of relevant medical
history and selection of more inclusive, representative cohorts.[46, 47] Simulation studies
indicated all-available look-backs may be superior to fixed look-backs in some settings.[47,
48] However, concerns remain that the method may be prone to bias if the completeness and
longitudinal breadth of available data might vary informatively between exposure (e.g. when
comparing users to non-users) or outcome groups.

Only two papers have been published exploring use of all-available look-backs in actual

data with multiple interrelated covariates; however, both studies focused on claims, not EMR
data.[49, 50] In both studies, control for confounding was not substantially affected by the
look-back used to assess confounders. However, the second study indicates that eligibility
criteria (e.g. history of exposures, outcomes) may be better assessed using all-available

data or a long (3-year) fixed look-back, as opposed to a short (1-year) fixed look-back.

[50] Further research is needed which explores the application of all-available look-back
approaches in alternate data sources (e.g. EMR).

Follow-Up Contingent on Encounters

Loss to follow-up (or right censoring) is arguably one of the most common forms of missing
data among studies using longitudinal data sources, especially when subjects are only
observed periodically as they are in EMR. As mentioned above, censoring is particularly
problematic in inpatient EMR settings. In 2018, Lewin et al. demonstrated that multiple
imputation methods did no better than a complete-case analysis in a setting where the only
missing data was non-ignorable right-censoring of time-to-event outcomes.[51] However,
Lesko et al. provide new guidance to reduce bias affecting studies where events that occur
after the last time a person was observed result in right-censoring and go unrecognized.[52]
Based on both simulation and an applied example, they conclude that: 1) studies where
events can only be recognized in an observed encounter should censor patients lost to
follow-up at the time of their last encounter; 2) studies where events can be observed
outside encounters (e.g. all-cause mortality obtained from a national death index) should
censor when the patient meets the definition of loss to follow-up. They conclude that studies
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conducted using EMR will be strongly affected by choice of censoring method, positing that
bias is greatest when rates of the outcome and loss to follow-up are high.

Restricting to Patients with High Data Continuity

In response to the frequently encountered challenge in EMR research where some people
have a high degree of data missingness for care delivered by health systems/providers not
captured in the EMR, researchers have proposed methods of identifying cohorts with high
data-completeness and medical record continuity.[2-4] These methods apply primarily to
research using ambulatory EMRs, where continuity of coverage may be observed in patients
returning for regular medical interactions. These methods require administrative claims data
linked at the patient-level, allowing investigators to directly assess whether events observed
in the linked claims are also observed in the medical record. For example, Lin et al. propose
the statistic mean proportion of encounters captured (MPEC) which is equal to the average
of two proportions: 1) proportion of outpatient visits recorded in claims that are also noted
in EMR and 2) the proportion of inpatient admissions in claims that are also noted in
EMR.[2] After restricting to patients in the top MPEC quintile, Lin et al. reported that
misclassification for 40 different commonly used covariates was reduced by a factor of 3.5
to0 5.8.[3]

However, restricting to patients with complete data is potentially problematic, since doing so
conditions effect estimates on those variables, potentially impacting 1) the internal validity
of effect estimates (by conditioning analyses on observed data), and 2) the external validity
(by altering the composition of the study population). Weber et al. demonstrated that such
restrictions selected cohorts that were older, sicker, and more likely to be female.[4] As an
alternative, they proposed a more flexible approach which only seeks to eliminate people
whose data is incomplete for the type of variables needed in a specific study. They propose
various heuristic filters (e.g. demographics, data fact types [e.g. diagnoses, vital signs, lab
tests, medications, or outpatient visits), and time spans (e.g. data in first and last study
month) which may be necessary for some study designs but can be relaxed for others.

Maximum Likelihood Approaches and Inverse Probability Weighting

Inverse probability weighting (IPW) for complete case analyses, which is often classified

as a maximum-likelihood approach, is a common alternative to imputing missing data or
restricting to those without missing values.[53-56] The simple complete-case analysis (i.e.
assessing only subjects with complete data) can be conceptualized as the extreme case of
weighting where subjects with any missing data receive a weight of zero. More sophisticated
IPW applications, such as the aforementioned approach by Weber et al, weight subjects
according to their probability of missing data relevant to the analysis, as indicated by models
fit within the observed data. Recent research indicates performance of maximum-likelihood
approaches may be superior to multiple imputation when missing data is infrequent and
when multiple variables are non-normal. [56]

Sun et al. recently proposed an extension to the inverse probability weighting approach,
which is capable of yielding valid inferences in analyses with non-monotone missing data.
[57] Their method requires that investigators specify the mechanisms of non-monotone
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missingness. They outline procedures for discerning these mechanisms from the data itself,
using either maximum likelihood estimation or constrained Bayesian estimation.[57] In
settings with longitudinal missing data, Doidge et al. propose incorporating an indicator of
previously observed responsiveness (i.e. likelihood of having missing data in prior study
encounters) into IPW models predicting data missingness.[55] They assert that the method
is likely to reduce bias when data is missing partially at random but caution that it may
increase bias when data is missing completely at random.

Imputing Missing Data

In analyses where values can be explicitly identified as missing or misclassified,
imputation can be used to assign corrected values based on conditional distributions
assessed in the observed data. Multiple imputation, one of the most widely used

methods to address missing data, refers to the practice of generating multiple hypothetical
data sets containing various imputed values and then analyzing pooled results across
them in order to appropriately incorporate the increase in variance due to imputing
values.[58] Comprehensive reviews of the wide range of multiple imputation methods
and their applications in pharmacoepidemiology are available.[59] Here, we summarize
selected recent advancement in multiple imputation methods which are applicable to
pharmacoepidemiologic studies. Given that imputation methods are often agnostic to
temporal and analytical relationships between variables, most of these methods can be
applied to impute variables of many different types (e.g. exposures, covariates, outcomes)
and scales (e.g. categorical, continuous). When necessary, we will highlight when a method
was intended to be applied in narrower setting.

General Multiple Imputation Developments—Currently, no clear guidance is
available for investigators seeking to determine how much missing data is too much for
imputations to be reliable. Such determinations are a complex function of the proportion
of observations with missing data, the number of observations with non-missing data, the
number of variables with missing data, and the covariance between the missing and observed
values.[58, 60-63] For example, 95% missingness might not be problematic if imputation
assumptions are satisfied and the 5% with complete data is comprised of a sufficient number
of observations to inform the imputation.

In highly dimensional data, modeling the full joint distribution of a large covariate set may
be infeasible. Multiple imputation by chained equations (MICE) can efficiently address
this problem by imputing values for missing variables sequentially in different orders in
each of the imputed data sets.[64, 65] Kunkel and Kaizar recently compared imputation
approaches with full joint models against MICE and conclude that in scenarios with
multivariate normal missing data, MICE models are easier to implement and often produce
results similar to the fully specified joint model. However, the authors caution that the
choice of prior distributions strongly affect results and advise testing them in sensitivity
analyses.[66] Kline et al. also compared the two approaches for imputing longitudinal data
at the person-level and found that MICE was only comparable to full joint models when
the covariance structure of the missing variable was homogenous and correlations were
exchangeable.[67] In high-dimensional data settings, covariates may be balanced using a
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summary score (e.g. propensity score, disease risk score). However, methodologists have
debated whether investigators imputing propensity scores should 1) average the propensity
scores themselves across the multiple imputed datasets then estimate a single effect, or

2) estimate effects in each of the multiple imputed datasets then average across them

to produce a single effect.[68-70] In a recent paper, Leyrat et al. provide new guidance,
recommending that investigators pool effect estimates, not propensity scores produced
within the various imputed datasets, so long as imputation models include the outcome.[70]

Zahid et al. propose another approach to enable imputation in settings with a large
number of missing covariates: multiple imputation with sequential penalized regression.
The method is an extension of MICE which allows each imputed variable to take on a
different distributional form using models specified using various ridge penalties.[71] The
authors demonstrate via simulation that this method can be applied to both normal and
non-normal response models, and performs well even in scenarios with large number of
missing covariates and few observations. An R package (mispr) is also provided.

Another method that relaxes parametric assumptions is predictive mean matching (PMM).
[72] Under PMM, imputed values are drawn at random from a matched set of people

with complete data and similar expected values generated by the model. Many assert that
PMM leads to more realistic distributions than standard imputation approaches. Recent
research indicates that predictive mean matching is particularly useful when imputing values
for continuous variables with non-normal distributions and when plausible bounds can be
placed on missing variables.[73, 74] However, further research comparing PMM to alternate
approaches is needed.

Other miscellaneous developments in the imputation literature merit brief mention. In 2017,
Sullivan et al. demonstrated that using standard imputation approaches based on logistic
regression may produce biased / attenuated estimates in studies with missing data on binary
outcomes.[75] It is plausible to expect that in some datasets, performance of imputation
may depend on the value of the variable being imputed. For example, imputation may

be relatively accurate when imputing patient incomes in the low to medium range but
inaccurate when imputing extremely high incomes. Bak et al. introduce a machine-learning
approach to multiple imputation which estimates an expected error for each imputed value.
[76] This method allows investigators to selectively impute values that fall below some
minimum threshold for error.

Imputing Longitudinal or Time-Varying Data—In settings with high-dimensional
longitudinal data, imputation models can quickly become complex, difficult to accurately
specify, and frequently fail to converge. There are methods available which adapt the
MICE procedure to impute data in time-to-event studies using Cox proportional hazards
model, for example multiple imputation for joint modeling (MIJM). Moreno-Betancur et
al. recently described the method in detail and distributed statistical programming tools
for implementation in R.[77] In some instances, methods and programming tools have
been specifically tailored for the imputation of specific clinical constructs, for instance
longitudinal measures of body-mass-index).[78]
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An important consideration when imputing longitudinal data is leveraging information from
between-person variation vs. within-person or longitudinal variation. Gottfredson et al. used
multilevel multiple imputation (MMI), to impute values of missing data as a function

of models fit between people and longitudinal models fit within-person.[79] Similar to

their IPW method incorporating predictors of non-responsiveness in models of missing
data, Doidge et al. also propose a corresponding imputation method which incorporates
non-responsiveness observed in earlier data as a predictor.[55] This approach can be
conceptualized as a simplified MMI model.

Forward Bridging—As the medical system continues to advance over time, data
generation system and electronic health records dynamically evolve to meet the needs of
healthcare providers and patients. Migrating data from older systems to newer systems is
necessary to enable longitudinal analyses of healthcare data and poses a common challenge
to investigators working with EMR. Thompson et al. introduce a forward bridging method
using multiple imputation with multinomial logistic regression.[80]

Latent Variables and External Calibration Data—While missing data is often
discussed in the context of vertical linkage, it is becoming increasingly common for
researchers to use horizontal linkage, harmonizing data across different study populations to
enable larger scale studies with improved generalizability and greater potential for detailed
subgroup analyses (see Table 1). When two populations have a variable (e.g. functional
status) measured in a similar but not directly comparable way, the combined data are subject
to measurement error. As a solution Gu and Gutman propose latent variable matching,

a novel method which draws upon both multiple imputation and item response theory.
Latent variable matching imputes values for a third, hypothetically unmeasured variable
representing the underlying truth that each of the differently measured variables indicate.
Their method is an adaptation of predictive mean matching imputation and is appropriate
for non-longitudinal data that is missing partially at random. [81] Using simulation, they
demonstrate the method’s ability to provide valid inference with smaller bias than other
methods.[82] An alternate solution has been proposed by Siddique et al., using as an
example a meta-analysis of two studies with different outcome definitions.[83] Their
method uses external calibration data, or a population where both outcome definitions were
measured, to provide information on the relationship between the two measures. The authors
propose a multivariate random-effect model that leverages the external calibration data, and
jointly models the missing outcome measures, allowing estimation of the effect of time and
treatment on the outcome.[83]

Confidence Intervals—Bootstrap estimation and multiple imputation are increasingly
common in causal inference research. Shomaker et al. introduce methods to construct
confidence intervals in scenarios where bootstrap estimation techniques are used in
conjunction with multiple imputation, providing recommendations for calculating valid
confidence intervals consistent with randomization.[84] Van Walraven compared the
plausible estimate ranges produced by bootstrap imputation to those produced by
quantitative bias analyses. They found that while more computationally demanding,
bootstrap imputation more effectively decreased misclassification bias compared to
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quantitative bias analysis, the latter of which is highly dependent on accurate parameters
of bias estimates.[85]

Doubly-Robust Estimation Methods

Conceptually, conventional multiple imputation is chiefly concerned with modeling the
values of missing data, while IPW methods are concerned with modeling the probability

of missing data. Doubly-robust methods for analyzing data with missing or misclassified
values fit both models, implementing imputation and weighting approaches in parallel.
These methods are described as doubly-robust since they are more robust to misspecification
of the models and their link functions, requiring that only one of the two be appropriately
specified. In health services research, investigators tend to be more confident in their ability
to correctly specify models predicting missing data than models predicting the values of
missing data, particularly in high-dimensional analyses with many interrelated variables.[55]

One such doubly-robust method, augmented inverse probability of treatment weighting
(AIPW), requires that the analyst separately fits two parametric working models.[58, 86]
The model for the probability of having missing data is used to create inverse probability
weights while the model for the values of missing data is incorporated into effect estimation
models as an augmentation term. Zhou et al. and Hsu & Yu both proposed doubly-robust
extensions of the PMM method, with the first model predicting the missing variable of
interest and the second model predicting the probability of missingness.[87, 88] As stated
earlier, incorporating PMM has the advantage of relaxing parametric assumptions in the
imputation phase. Hsu & Yu show through simulation that this approach is more robust

to misspecification of either model compared to other common models.[87] Zhou et al.
discuss these methods specifically in the context of missing data in categorical variables
with more than two categories, using a combination of multinomial logistic regression and
binary logistic regression.[88] Addressing the setting of propensity score analyses, Shu et al.
proposed a doubly-robust estimator (allows for misspecification in either the treatment or the
outcome model) to address the bias due to measurement error in a binary outcome when a
gold standard validation subset is available.

Inferring treatment duration using the reverse waiting time distribution

Defining prescription duration in pharmacoepidemiologic studies can be difficult, and
researchers typically make simplifying assumptions or pre-specified decisions based on
prescription and patient characteristics.[11, 12, 89] In 2013, Pottegard adapted the waiting
time distribution (WTD) method, used to estimate prevalence of drug exposures in databases
lacking data on prescription days supply, dosage, and refills, to also infer duration of

drug exposures.[90, 91] In companion papers published in 2017, Stgvring et al propose

an adapted method, the reverse WTD, which models the distribution of time from last
prescription to the end of a pre-specified time window, as a function of patient and
prescription characteristics.[92, 93] Regardless of whether detailed prescription data is
available, the method outputs plausible estimates of prescription duration, customized to the
patient and their prescription, providing a scalable, data-driven alternative to pre-specifying
decision rules.[92] Hallas illustrates the use of this method, and found that use of the reverse
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WTD may reduce misclassification of exposure, while being more statistically efficient than
alternative methods.[94]

Misclassification in instrumental variable (IV) analyses

Another recently developed method, published in 2017 by Ertefaie, adjusts IV analyses for
confounders of the treatment effect that are associated with the 1V (termed IV-confounders),
which have non-independent or non-ignorable missing data.[95] The procedure has two
critical steps: 1) the instrumental variable value (e.g. provider preference) is estimated using
a model including all IV-confounders, among subjects with complete data; and 2) among

all subjects, estimate treatment effect using model fit with only 1\-confounders that have

no missing values. The authors assert that the method is only valid when three assumptions
are met for each unmeasured confounder: 1) provider-level missingness cannot be related

to unmeasured confounders (although person-level missingness can); 2) the effects of any
unmeasured confounders on treatment allocation must be the same for all physicians; and 3)
positivity (i.e. each physician sees patients with different values of that variable).

Conclusions

In this paper, we provide an overview of recent advancements in the published literature
describing and addressing measurement error in EMR studies. Presently, sources of
measurement error impacting EMR studies are still being elucidated, as are the methods

to address them. Here, we emphasized methods which seek to repair or reduce the impact of
measurement error in the analysis phase. However, investigators may find that repairing the
data is more complex than drawing on alternative data sources in which the critical events
are more accurately assessed or an alternative study design that eliminates the need for the
imperfect data elements (e.g instrumental variable analyses or self-controlled observational
study designs). [96, 97] Regardless of the approach, investigators conducting studies that
primarily rely on EMR would be well advised to thoroughly consider how measurement
error might affect their data as well as their study findings.
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