Skip to main content
. 2022 May 17;12(5):1249. doi: 10.3390/diagnostics12051249

Table 2.

Generalized studies for prediction of CVD in AI framework using input covariates.

SN Citations IC DS GT FE TOC ML vs. DL ACC AUC
1 Gorek et al. [176] (1997) OBBM, LBBM 30 Diagnose ED NR CNN DL 80.79 0.80
2 Kellner et al. [177] (2000) OBBM, LBBM 100 Diagnose ED NR CNN DL 72.79 NA
3 Glavaš et al. [178] (2015) OBBM, LBBM 185 Diagnose ED NR LR, SVN, ANN ML 74.40 0.812
4 Chen et al. [179] (2019) LBBM 5664 Predict ED NR LR, ANN, SVM, RF HDL 76.65 0.817
5 Lingli et al. [180] (2018) OBBM, LBBM 95 Diagnose ED DT SVM ML 96.7 NR
6 Jang et al. [181] (2019) OBBM, LBBM 187 ED drugs therapy NR ANN DL 100.00 NR

SN: serial number, IC: input covariates, DS: data size, GT: ground truth, OBBM: office-based biomarker, LBBM: laboratory-base biomarker, FE: feature extraction, TOC: type of classifier, ACC (%): percentage accuracy, US: ultrasound, NR: not reported.