Skip to main content
. 2022 May 17;12(5):1249. doi: 10.3390/diagnostics12051249

Table 3.

Studies for ED prediction using the AI framework.

SN Citations IC DS GT Classifier TOC ML/DL ACC % AUC
1 Biswas et al. [182] (2018) OBBM, LBBM (US) 407 Stroke, Diabetes NR CNN DL 99.61 0.99
2 Jamthikar et al. [158] (2019) OBBM, LBBM (US) 395 CVD PCA RF ML 95.00 0.80
3 Kandha et al. [183] (2020) OBBM, LBBM 346 Death CNN NB, SVM, KNN, DT DL 83.33 0.833
4 Jamthikar et al. [160] (2020) OBBM, LBBM, CUSIP 202 CVD SVM LR, SVN,
ANN
ML 92.53 0.92
5 Saba et al. [184] (2020) OBBM, LBBM, CUSIP 246 Death 6 Models SVM HDL 89.00 0.898

SN: serial number, IC: input covariates, DS: data size, GT: ground truth, OBBM: office-based biomarker, LBBM: laboratory-based biomarker, FE: feature extraction, TOC: type of classifier, ACC: percentage accuracy, US: ultrasound, NR: not reported.