Skip to main content
. 2022 May 3;24(5):643. doi: 10.3390/e24050643
Algorithm 1 Adversarial Training Procedure

  Input: dataset D and parameter γ

  Output: ϕ,ψ,θt,θa

  • 1:

    for every epoch do

  • 2:

       Sample a minibatch from dataset

  • 3:

       Train ϕ using Lprivatesupcon or Lprivateunicon in Equations (15) and (16)

  • 4:

    end for

  • 5:

    for every epoch do

  • 6:

       Sample a minibatch from dataset

  • 7:

       Train ψ to minimize LCE(yt,y^t)γLCE(yp,y^p)

  • 8:

       Train θa to minimize LCE(yp,y^p)

  • 9:

       Train θt to minimize LCE(yt,y^t)

  • 10:

    end for