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Background and aims: COVID-19 has been a devastating pandemic.
There are indications that vitamin A is depleted during infections.
Vitamin A is important in development and immune homeostasis.
It has been used successfully in measles, RSV and AIDS infections.
In this study, we aimed to measure the serum retinol levels in
severe COVID-19 patients to assess the importance of vitamin A in
the COVID-19 pathogenesis.
Methods: The serum retinol level was measured in two groups of
patients: the COVID-19 group, which consisted of 27 severe
COVID-19 patients hospitalized in the intensive care unit with
respiratory failure, and the control group, which consisted of 23
patients without COVID-19 symptoms.
Results: The mean serum retinol levels were 0.37 mg/L in the
COVID-19 group and 0.52 mg/L in the control group. The difference
between the serum retinol levels in the two groups was statisti-
cally significant. There was no significant difference in retinol
levels between different ages and genders within the COVID-19
group. Comorbidity did not affect serum retinol levels.
Conclusion: The serum retinol level was significantly lower in
patients with severe COVID-19, and this difference was indepen-
dent of age or underlying comorbidity. Our data show that retinol
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and retinoic acid signaling might be important in immunopatho-
genesis of COVID-19.

© 2022 The Authors. Published by Elsevier Ltd on behalf of
European Society for Clinical Nutrition and Metabolism. This is an

open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Background

COVID-19, which is caused by SARS-CoV-2, emerged in December 2019, and was declared a
pandemic by the World Health Organization (WHO) in March 2020 [1,2]. So far, by the end of fall of
2021, more than 250million people have been infected withmore than 5million deaths worldwide [3].
The COVID-19 pandemic causes serious socioeconomic consequences and continues to be a major
worldwide health problem [1,2]. Vaccines have been developed for prevention of COVID-19 in an
unprecedented speed [4,5]. However, the effectiveness of currently available vaccines varies and im-
munity they induce declines fast [6,7]. In addition, some vaccines may induce side effects in rare cases
[8,9] and some vaccinated people are still getting infected indicating incomplete protection of vaccines
[6,10]. Furthermore, emergence of more contagious mutant variants such as delta and omicron has
further heightened its public health concerns [6,10]. Even though a couple of antiviral drugs against
COVID-19 have recently been developed, their effectiveness needs to be proven [11e13]. Hence, the
search for effective and specific anti-COVID-19 drugs and treatment strategies continue throughout the
world [14]. Repurposing of existing drugs or identifying effective prevention approaches are important
in helping control the spread of COVID-19 and decreasing its devastating impact.

Vitamin A has a seminal role in the development and homeostasis of many organ systems including
nervous and immune systems and development of proper immunity against viral infections [15,16].
The protective effects of vitamin A against infections have been known for a long time. TheWHO added
vitamin A prophylactically to its measles pandemic prevention programs in the 1950s, which achieved
successful results and reduced mortality rates due to pneumonia by 50% [17,18]. Retinol has been
successfully used in AIDS patients and was effective in decreasingmorbidity andmortality due to other
viral infections in AIDS [19].

The multi-organ effect of vitamin A is accomplished through retinoic acid signaling, which also has
a central and indispensable role in the immune defense mechanism [20e22]. One of the most potent
antiviral immune responses is Type-I interferon (IFNa and IFNb), whose synthesis is regulated through
retinoic acid signaling pathway via retinoic acid receptors (RXR and RAR) and transcription factors in
Retinoic acid-Inducible Gene-I (RIG-I) pathway [23e26]. Type-I IFN prevents viral replication through
recognition of viral RNA and regulation of the host immune system [25]. It activates cytotoxic T cells
and induces antibody synthesis by activating B lymphocytes through T helper cells [27,28].

Vitamin A deficiency is associated with deregulated immune response. Vitamin A deficiency causes
disruption of mucosal barriers in the gastrointestinal and respiratory systems and a decrease in the
number and function of monocytes, macrophages, natural killer cells, and T and B lymphocytes, plasma
cells, and antibody response [15,29e31]. Vitamin A deficiency leads to an increased predisposition to
infections as well as increased clinical severity of diseases [30,32]. Vitamin A deficiency reduces host
resistance to viral infections through impaired interferon production [33e35]. For example, vitamin A
deficiency is associated with increased frequency and mortality rates of Measles, Varicella, RSV, AIDS,
and viral pneumonia [16,18,31,34].

Infectious diseases can contribute to vitamin A deficiency by suppressing circulatory retinol [36]. In
addition, vitamin A stores may become depleted during infections such as measles, RSV, HIV, and viral
pneumonia including COVID-19 [34,37e39], leading to an impaired interferon response and causing a
vicious infectious cycle [36,40]. As the serum retinol is consumed, it is being supplemented from the
large retinol stores in the liver and other body stores [34,39,40]. Therefore, the serum retinol level is
reduced only after vitamin A deficiency progresses following depletion of body's large vitamin A stores
and detection of low serum retinol level means that retinol stores in the liver have already been
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significantly depleted [40]. During systemic infections, high fever also increases metabolic use and
urinary excretion and reduces apparent retinol stores [39]. Measles especially disrupts vitamin A
metabolism, negatively affecting the use as well as the storage of vitamin A [18,41].

Most immunopathological changes observed in severe COVID-19 patients mimic those of vitamin A
deficiency [1,42]. In severe COVID-19 cases, neutrophil and white blood cells are elevated, while total
lymphocyte count, CD4 and CD8 positive T cells, regulatory T cells, memory T cells, natural killer and B
cells are decreased, as well as antibody synthesis, and thus humoral immunity is also impaired
[43e45]. Therefore, retinol depletion and retinoid signaling disorder in COVID-19 may also be
responsible for the development of reinfection due to a defect in interferon production, persistence of
infection, and insufficient antibody responses after primary infection [34,46,47]. In this study, we
aimed to measure retinol level in the serum of COVID-19 and control patients to evaluate the role of
retinol and retinoid signaling in the pathogenesis of COVID-19.

2. Material and method

2.1. Patients groups

Fifty patients were stratified into two groups as following: COVID-19 (Group 1, n:27) and Control
(Group 2, n:23). COVID-19 group included 27 intensive care unit patients with severe COVID-19
infection with respiratory failure and poor general conditions. The Control group included 23 in-
dividuals who were admitted to polyclinics without any COVID-19-related clinical symptoms. The
exclusion criteria for both groups were pregnancy, younger than 16 years of age, liver diseases, and
taking supplemental vitamin A or retinoic acid three months before admission. Patient characteristics
are given in Table 1. COVID-19 RT-PCR test was performed on all patients in the COVID-19 group but not
on patients in the Control group. The study was conducted in Gazi Yaşargil Training and Research
Hospital, Diyarbakir, Turkey between July and August of 2020. The study protocol was approved by the
Ethics Committee of the University of Health Sciences, Diyarbakir Gazi Yaşargil Training and Research
Hospital, and theMinistry of Health of Turkey (dated June 3, 2020, and numbered T22_10_40. xml). The
study was conducted according to the approved protocols following all recommendations and regu-
lations of the local ethics committee and in accordance with The Code of Ethics of the World Medical
Association (Declaration of Helsinki).

2.2. Diet and treatment

Nutrition solutions administered to the patients were determined retrospectively. No diet restric-
tion was applied to conscious patients who could be fed orally. These patients continued to eat regular
hospital meals. However, twelve patients in the COVID-19 group, who could not be fed orally, were fed
Table 1
General characteristics of patients in COVID-19 and control groups

n Sex (FþM) Notes Comorbidities

COVID-19 27 14þ13 � All severe COVID-19 ICU patients
� COVID-19 positivity confirmed

with RT-PCR
� 25 received Favipiravir
� 2 received Hydroxychloroquine
� 10 received supplemental nutrition

including multivitamin
� 8 had various comorbidity
� 12 deceased during study

� High blood pressure [6]
� Type II diabetes [3]
� Chronic kidney disease [2]
� Asthma [1]
� Heart disease [1]
� Hypothyroidism [1]
� Peripheral vascular disease [1]
� Surrenal fibrosis [1]

(3 patients had 3 or more comorbid diseases
each, 3 patients had 2 comorbid diseases each,
and 2 patients had 1 comorbid disease each)

Control 23 15þ8 � Polyclinic patients but without any
COVID-19 symptoms
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through a nasogastric tube or parenteral route using various nutritional formulas containing poly-
unsaturated fatty acid (omega 3) and multivitamins including vitamin A and vitamin D (supplemental
material).

The COVID-19 group continued receiving (due to ethical concerns) the drugs containing the active
ingredient of Favipiravir and hydroxychloroquine that were used for the treatment of COVID-19.
Favipiravir is inhibitor of RNA dependent RNA polymerase of various RNA viruses [44]. Hydroxy-
chloroquine is an inhibitor of lysosomal pathway and autophagy and is traditionally used for treatment
of malaria [45, 46]. It also inhibits cytochrome oxidase P450 enzymes in the liver and therefore pre-
vents hepatic retinol excretion [47].

2.3. Measurement of serum retinol level

The venous blood samples taken from the patients were transferred to light-proof tubes. The tubes
were covered with aluminum foil to protect vitamin A from light. The blood samples were kept un-
disturbed at room temperature for 30 minutes and then centrifuged at 1000g. The collected serum
samples were kept at -80⁰C until the levels of retinol were measured. Retinol in serum samples was
analyzed using High-Performance Liquid Chromatography method (Agilent 1200 Series HPLC System,
USCN Life Science, Wuhan, China). The level of serum retinol was calculated in mg/L and the level
below 0.2 mg/L was considered low per WHO recommendation [48,43].

2.4. Measurement of serum ferritin level

The serum ferritin level was determined with immunoassay using Cobas e601 (Roche diagnostics,
Germany).

2.5. Blood lymphocyte counts

Blood lymphocyte count was performed using Mindray BC 6800 (Mindray Building, High-Tech
Industrial Park, Nanshan, Shenzhen China).

2.6. Statistical analysis

The statistical analysis of data was performed using IBM SPSS 22.00 for Windows program (Sta-
tistical Package for Social Sciences, Chicago, IL, USA). The Shapiro-Wilk Test was used to test for the
normal distribution of the data. All data in all groups, except for ferritin level in the control group, were
compliant with the normality assumption. The Mann-Whitney U Test was used to assess the signifi-
cance of differences between the groups and between subgroups within COVID-19 group. In all sta-
tistical analysis, the P<0.05 was considered statistically significant.

3. Results

3.1. Serum retinol level was significantly lower in the COVID-19 group

The mean serum retinol level was 0.37 mg/L in the COVID-19 patient group (SD¼þ/-0.15) and 0.52
mg/L in the control group (SD¼þ/-0.09). The difference in the retinol levels between the two groups
was statistically significant (P<0.001) (Table 2). However, no significant difference was found in retinol
levels between the female and male subgroups within COVID-19 group (P>0.05) (Table 2).

3.2. Patients in the COVID-19 group were significantly older

The average age of the patient in the COVID-19 groupwas 63.2 years, while that of the control group
was 44.8 years. The age difference between the two groupswas statistically significant (P<0.001) (Table
2). To correct for the age-related variability of retinol levels, the patient group was stratified into two
age subgroups with cut-off of 60 years of age: 60 years of age and under (N¼10) and over 60 years of
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Table 2
The retinol levels and age in the COVID-19 and Control groups

Group Group n Mean Median SD Min Max P* P**

Retinol (mg/L) COVID-19 MþF 27 0.37 0.38 0.15 0.14 0.76 - <0.001
F [14] 0.34 0.35 0.10 0.15 0.46 >0.05
M [13] 0.41 0.39 0.19 0.14 0.76

Control MþF 23 0.52 0.53 0.09 0.29 0.67 -
F [15] 0.53 0.53 0.06 0.46 0.62 >0.05
M [8] 0.50 0.51 0.14 0.29 0.67

Age (year) COVID-19 MþF 27 63.26 63 15.93 32.00 91.00 - <0.001
F [14] 66.71 69 16.99 32 91 >0.05
M [13] 59.54 60 14.44 32 91

Control MþF 23 44.83 43 14.87 35 81 -
F [15] 42.27 37 14.84 22 75 >0.05
M [8] 49.63 51 14.66 22 72

P* denotes P values for the female and male subgroups within each group. P** denotes P values for main COVID-19 and control
groups.
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age (N¼17). The difference in the serum retinol levels between these two age subgroups within the
COVID-19 patient group was not statistically significant (P> 0.05) (Table 3). The mean serum retinol
level was 0.38 mg/L in the group with 60 years of age and below (SD¼þ/-0.21) and 0.36 mg/L in the
group of above 60 years of age (SD¼þ/-0.12).

3.3. Drug use and nutritional supplementation

In the COVID-19 group, 25 patients received Favipiravir and 2 received hydroxychloroquine. Despite
the use of these drugs, their retinol levels were still significantly lower compared to those of the control
group (P< 0.001). Ten patients in the COVID-19 group were given various nutritional supplements,
some of which also contained vitamin A (supplemental material). Even though the average retinol level
in the group that received nutritional supplement was higher, this difference was not statistically
significant (P>0.05).

3.4. Comorbidity and exitus

Ten of 27 patients in COVID-19 group received nutritional supplement. Nine of these 10 patients
(90%) died, and 8 of these 9 patients also had another comorbid disease that posed a high risk for
morbidity and mortality (Table 1). Three of the 17 patients who did not receive nutritional supplement
died. There was a statistically significant correlation between nutritional supplement and death rate
(P<0.001). However, this correlation seems to be due to comorbidities and not due to the nutritional
supplementation as 8 out of 9 patients had comorbidities. No significant difference was found in serum
retinol levels between these two groups. Twelve of 27 patients in the COVID-19 group died. There was
no significant difference in retinol levels between those who died and those who were discharged
(P>0.05).

3.5. Ferritin levels and lymphocyte counts

The serum ferritin level and lymphocyte counts were also evaluated. Ferritin levels were found
high and lymphocyte counts were found low in the COVID-19 group compared to the control group
Table 3
Retinol levels in the sub-age groups in the COVID-19 group

Group Age (year) n Serum retinol (mg/L) (mean/median) (þ/-SD) (min-max) Deceased P-value

COVID-19 �60 10 0.38/0.40 (þ/-0.21) (0.14e0.76) 3 >0.05
>60 17 0.36/0.37 (þ/-0.12) (0.15e0.67) 9

P* denotes P values for above and below 60 years of age subgroups within COVID-19 group.
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Table 4
Serum Ferritin level and lymphocyte counts

Group n (Mean/median) (þ/-SD) (min-max) P-value

Ferritin (mg/L) COVID-19 27 (1086.26/965) (þ/-651.03) (186e2100) <0.001
Control 20 (98.75/62.50) (þ/-109.25) (4e406)

Lymphocyte count (103/mL) COVID-19 27 (1.15/0.98) (þ/-0.64) (0.30e3.27) <0.001
Control 21 (2.89/2.87) (þ/-0.95) (1.18e4.71)
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(Table 4). These findings were compliant with the findings of clinical studies in the literature and were
associated with poor prognosis in COVID-19 [50,51].

4. Discussion

Even though the size of our study is small, our results show a correlation between serum retinol
level and severe COVID-19 infection, which supports the retinol depletion and retinoid signaling defect
theory that we previously postulated for the pathogenesis of COVID-19 [49,50]. Despite the continuous
use of Favipiravir and hydroxychloroquine, both of which inhibit retinol metabolism through inhibiting
CYP450 enzymes, and the presence of vitamins including vitamin A in the administered nutritional
formulations, the serum retinol level was significantly lower in severe COVID-19 cases. Even though
this observation shows association of low serum retinol level with the severity of COVID-19, it maywell
have some causative effect in which low level of serum retinol may lead the way to a more inflam-
matory immune response that may in turn cause development of a severe immunopathophysiology
seen in the severe COVID-19 cases [49e51]. However, this interesting observation needs further
investigation.

Our results support the previous studies that COVID-19 is more severe in elderly patients [2,52].
Since the average age of severe COVID-19 patients in our study was higher, we tested whether the age
might affect the serum retinol level by stratifying the COVID-19 patients according to the age. We did
not find a significant difference in retinol levels between the age subgroups, younger versus older than
60 years of age. It seems that the difference in retinol levels between the COVID-19 group and the
control group is not directly related to age, but could be caused by the COVID-19 infection itself.

Twelve patients in the COVID-19 group died. It is likely that the death of these patients was
contributed to by their comorbid diseases and that the low level of vitamin A, despite supplementation,
did not provide any protective help. It is tempting to argue that a possible very low level of vitamin A
and retinoic acid at the beginning of the infection might have allowed an increased inflammation and
the severe disease pathogenesis.

Our data show no significant differences in the serum retinol levels between the patients with and
without comorbidity within the COVID-19 group. We expected low vitamin A levels in the comorbid
group due to the inflammatory processes of chronic diseases. Some comorbid patients taking nutri-
tional supplement that also contained vitamin A might have affected this result.

It is important to note that due to the limited resources and urgency of some clinical data early
during COVID-19 pandemic, our study size was kept very small. A limitation of our study might be that
it is possible, even though less likely that any asymptomatic COVID-19 patients that might have been in
the control groupwould have skewed our results since we did not perform RT-PCR test due to resource
limitations.

Supplementation of vitamin A in the administered fortified nutrition mix did not seem to influence
the serum retinol level despite slightly increasing it. This may be due to the low doses of vitamin A in
the nutritional supplement and high rate of consumption due to severe disease pathology. Studies
show that the effect of vitamin A use is dose-dependent and high doses should be used before or at the
beginning of the infection before the severe inflammatory process involve multi-organ damage as it is
also the case for vitamin D [53e56]. Likewise, vitamin A may suppress excessive inflammatory pro-
cesses only at normal serum levels and at the therapeutic doses [34,49,57].

Vitamin A has a similar effect as vitamin D in the COVID-19 pathology as both vitamins involve
retinoid signaling in regulating proper immune response. The role of vitamin D has been recognized in
the treatment of COVID-19 at high enough doses [58e60]. Vitamin D is effective in mild to moderate
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COVID-19, whereas failure to respond to vitamin D supplementation in severe COVID-19 may be due to
vitamin A depletion. Because nuclear steroid hormone receptors, including the vitamin D receptor, act
as heterodimeric receptors in complex with the retinoid X receptor (RXR). Therefore, deficiency in
vitamin A and Dmay perturb retinoid signaling which thenmay lead to skewed immune response. The
RXR receptor is needed not only for vitamins A and D, but also for other steroid compounds to have an
effect. [61,62].

The reason why the regulation mechanism of endogenous retinoic acids has not been noticed until
now in COVID-19 may be the assumption that retinoic acid, an endogenous retinoid signaling ligand,
can always be present in the body. However, the amount of retinoic acid in the human body is limited
and is sufficient for approximately three months for a person [63,64]. Serum retinol levels drop only
after the deficiency has progressed to severe levels and the large-scale stores of vitamin A in the liver
are depleted, and by the time the serum retinol levels are found to be low, the liver retinol stores will
already be largely depleted [65]. Retinol and retinoic acids can be rapidly depleted due to reasons such
as excessive viral load, high fever, and catabolic destruction, especially with continuous and long-term
RIG-I stimulation [64,66].

STRA6, the receptor that take vitamin A into the cells, has recently been reported to be a receptor, in
addition to ACE, for the spike protein of SARS-CoV2 to infect cells [67]. It will be interesting to know
how the use of retinol receptor by the virus might affect vitamin A internalization and metabolism as
well as its immunoregulatory function.

We anticipated that retinoic acid excretionmight have been lower inwomen than inmen due to the
estradiol effect. Estradiol inhibits many more enzymes within the CYP450 system than testosterone,
which inhibits only CYP2D6 [66,68,69]. The CYP450 system is less suppressed in men than in women
[70,71]. Based on this role of estradiol on CYP450 enzymes, we expected higher retinol levels inwomen
than in men. However, our results show no significant difference in retinol levels between male and
female subgroups. We believe this may have been affected by the low number of cases, the non-
homogeneity of the patient group, the use of CYP450 inhibitory drugs, and the administration of di-
etary supplements containing vitamin A to the patients. Awell-controlled larger study shall yield more
reliable results about the difference in retinol metabolism between men and women in COVID-19.

If some specific enzymes of the CYP450 system are inhibited, the metabolism of retinoic acids will
also be inhibited, raising intracellular RA levels reaching to the therapeutic levels. For this purpose,
agents that block the metabolism of retinoic acids, called RAMBAs (retinioic acid metabolism blocking
agents) have been developed [72e75]. Early treatment with such inhibitors in COVID-19 may increase
endogenous retinoic acid levels by preventing retinoic acidmetabolism in liver [72]. Thus, in COVID-19,
Type-I interferon can be synthesized early during infection, and the virus can be cleared from the body
without worsening the disease pathogenesis [27,76]. Recent molecules docking and genome wide
association studies on the pathogenesis of COVID-19 points to the importance of retinol and retinoic
acid signaling [67,77e79]. Detailed understanding of the pathogenesis of COVID-19 will increase our
ability to develop prophylactic and treatment options for COVID-19.

5. Conclusion

While COVID-19maybemild or asymptomatic in somepeople, itmaybe very serious in someothers.
We think that this clinical difference is highly correlated with the state of retinol stores in the body.
Malnutrition, comorbid diseases, chronic lung and liver diseases, obesity, hepatosteatosis, chronic
inflammation, febrile diseases, and excessive antigenic stimulation all may cause depletion of retinol
stores andweaken immune defense against pathogens including SARS-CoV-2 (49, 65). A sufficient level
of retinol and retinoic acid may help generate type-I interferon response to SARS-CoV-2 infection [80].
Even though small, our study found that serum retinol levels were significantly low in patients with
severe COVID-19. Given the potential for many overlooked factors to affect retinol levels, prospective
clinical studieswith larger,more carefully selected case groups are needed to identify the role of vitamin
A or retinoids in COVID-19 treatment. Such studies will also shed light on the detailed pathogenesis of
COVID-19 and provide guidelines for COVID-19 treatment and prophylaxis.

However, even though the lack of vitamin A has serious health consequences, overdose of retinol
and retinoids will cause serious consequences [81e83]. Therefore, retinol and carotenoids may be
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supplemented to the vitamin A deficient individuals. However, the use of retinoids and ATRA for
treatment or prophylaxis must be under the supervision of medical professionals to evade the toxic
effect of overdosing of vitamin A.
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