Table 5.
Classification report.
| Dataset | Models | Precision | Recall | F1-score |
|---|---|---|---|---|
| TON_IoT (IoT_Fridge) | Random forest | 0.89 | 0.91 | 0.89 |
| XGB | 0.89 | 0.91 | 0.89 | |
| LGBM | 0.89 | 0.91 | 0.89 | |
| CB | 0.90 | 0.91 | 0.89 | |
|
| ||||
| TON_IoT (IoT_Garage_Door) | Random forest | 0.90 | 0.93 | 0.91 |
| XGB | 0.90 | 0.93 | 0.91 | |
| LGBM | 0.90 | 0.93 | 0.91 | |
| CB | 0.90 | 0.93 | 0.91 | |
|
| ||||
| TON_IoT (IoT_GPS_Tracker) | Random forest | 0.92 | 0.93 | 0.92 |
| XGB | 0.97 | 0.97 | 0.97 | |
| LGBM | 0.95 | 0.95 | 0.95 | |
| CB | 0.94 | 0.94 | 0.94 | |
|
| ||||
| TON_IoT (IoT_Motion_Light) | Random forest | 0.89 | 0.92 | 0.90 |
| XGB | 0.89 | 0.92 | 0.90 | |
| LGBM | 0.89 | 0.92 | 0.90 | |
| CB | 0.89 | 0.92 | 0.90 | |
|
| ||||
| TON_IoT (IoT_Thermostat) | Random forest | 0.92 | 0.95 | 0.94 |
| XGB | 0.93 | 0.95 | 0.94 | |
| LGBM | 0.92 | 0.95 | 0.94 | |
| CB | 0.92 | 0.95 | 0.94 | |
|
| ||||
| TON_IoT (IoT_Weather) | Random forest | 0.97 | 0.97 | 0.96 |
| XGB | 0.96 | 0.96 | 0.96 | |
| LGBM | 0.97 | 0.97 | 0.97 | |
| CB | 0.96 | 0.96 | 0.96 | |