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A deep learning‑based radiomics 
approach to predict head and neck 
tumor regression for adaptive 
radiotherapy
Shohei Tanaka1, Noriyuki Kadoya1*, Yuto Sugai1, Mariko Umeda1, Miyu Ishizawa2, 
Yoshiyuki Katsuta1, Kengo Ito1, Ken Takeda2 & Keiichi Jingu1

Early regression—the regression in tumor volume during the initial phase of radiotherapy 
(approximately 2 weeks after treatment initiation)—is a common occurrence during radiotherapy. 
This rapid radiation-induced tumor regression may alter target coordinates, necessitating adaptive 
radiotherapy (ART). We developed a deep learning-based radiomics (DLR) approach to predict early 
head and neck tumor regression and thereby facilitate ART. Primary gross tumor volume (GTVp) 
was monitored in 96 patients and nodal GTV (GTVn) in 79 patients during treatment. All patients 
underwent two computed tomography (CT) scans: one before the start of radiotherapy for initial 
planning and one during radiotherapy for boost planning. Patients were assigned to regression and 
nonregression groups according to their median tumor regression rate (ΔGTV/treatment day from 
initial to boost CT scan). We input a GTV image into the convolutional neural network model, which 
was pretrained using natural image datasets, via transfer learning. The deep features were extracted 
from the last fully connected layer. To clarify the prognostic power of the deep features, machine 
learning models were trained. The models then predicted the regression and nonregression of GTVp 
and GTVn and evaluated the predictive performance by 0.632 + bootstrap area under the curve (AUC). 
Predictive performance for GTVp regression was highest using the InceptionResNetv2 model (mean 
AUC = 0.75) and that for GTVn was highest using NASNetLarge (mean AUC = 0.73). Both models 
outperformed the handcrafted radiomics features (mean AUC = 0.63 for GTVp and 0.61 for GTVn) 
or clinical factors (0.64 and 0.67, respectively). DLR may facilitate ART for improved radiation side-
effects and target coverage.

The clinical success of radiotherapy for cancer depends on precise targeting of radiation to tumor tissue while 
minimizing exposure to healthy noncancerous tissue. However, the anatomic coordinates of the tumor may 
change during treatment due to regression, necessitating re-evaluation of dose distribution, termed adaptive 
radiotherapy (ART). For radiotherapy of head and neck cancers, complex dose distribution regimens such as 
intensity-modulated radiotherapy (IMRT) may still expose peritumoral organs at risk (OARs) due to anatomical 
changes such as reduction in tumor volume1. These changes in head and neck tumor volume may also substan-
tially reduce the minimum dose within the target2. Regression of the clinical target volume (CTV) is particularly 
rapid during the first two weeks of radiotherapy2, so the impact on dose distribution may be particularly great 
during this early treatment stage. To improve tumor targeting and reduce OAR exposure, various ART protocols 
have been developed, in which radiotherapy is re-planned according to anatomical changes and tumor shrinkage, 
with documented efficacy for head and neck cancer1–4. With the recent widespread use of magnetic resonance 
imaging (MRI)-guided linear accelerators, it is conceivable that in the near future, patients with head, and neck 
cancer may be treated using online ART protocols revised regularly based on current tumor anatomy. However, 
online ART (especially adaptation to shape) is both labor intensive and costly as it involves regular rescanning, 
recontouring, replanning, and plan verification. Therefore, we speculated that if we could distinguish patients 
likely or unlikely to demonstrate early radiation-induced tumor regression before starting radiotherapy, it may 
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be possible to schedule frequent online ART only for early “regressors” and use a more fixed protocol with less 
frequent adjustment for early “nonregressors.”

Several previous studies have attempted to predict ART requirement before starting radiotherapy. Surucu 
et al. predicted tumor shrinkage using a decision tree algorithm consisting only of clinical factors5, while several 
other studies used features manually extracted from medical images as predictive biomarkers (referred to as 
handcrafted radiomics features)6–8. Yu et al. and Alves et al. suggested that specific handcrafted radiomics features 
can be predictive of ART eligibility among patients with head and neck cancer based on the notion that some 
of these features reliably predict tumor regression9,10. Although these studies distinguished ART and non-ART 
groups, they did not directly predict tumor regression in head and neck cancer patients. In general, handcrafted 
radiomics features are limited to anatomical (e.g., tumor size, shape, volume, and position), intensity (first-order), 
and texture (second-order) characteristics. Thus, we speculate that reliable prediction of tumor regression will 
require the integration of more higher-order features.

Deep learning using convolutional neural networks (CNNs) offer great potential for improving medical imag-
ing applications, such as object detection11, classification12, segmentation13, regression prediction14, and error 
detection15, as well as dose distribution planning for radiotherapy16,17. Transfer learning in pretrained CNNs is 
widely used for applications where the number of patients is insufficient for conventional deep learning. The core 
feature extraction method in transfer learning is to freeze all CNN layers pretrained on a larger external dataset 
to act as a fixed feature extractor for new inputs like medical images18. Such transfer learning has demonstrated 
potential for the prognosis19, metastasis prediction20, and differentiation of benign from malignant nodules21. 
CNNs trained on large datasets (e.g., natural images) have already learned the regularity of various objects; as 
a result, the deep features extracted can reflect higher-order patterns and capture more image heterogeneity19. 
Transfer learning as a feature extraction method thus has the potential to provide more information than hand-
crafted radiomics features for predicting tumor behavior.

Although deep feature extraction by pretrained CNNs has achieved prediction accuracy exceeding that of 
handcrafted radiomics features and clinical factors22,23, it has not yet been used to predict tumor regression in 
head and neck cancer. In this study, we propose a deep learning-based radiomics (DLR) approach for adaptive 
radiotherapy to predict early radiotherapy-induced primary gross tumor volume (GTVp) regression and nodal 
gross tumor volume (GTVn) regression before treatment onset.

In this study, we first compared the predictive performance of our proposed DLR approach to previously 
reported models incorporating clinical factors and handcrafted radiomics features. We then comprehensively 
evaluated multiple deep learning models for extracting deep features using various feature selection and machine 
learning algorithms to identify those with high predictive performance for tumor regression. Briefly, this study 
used GTVp and GTVn images as inputs to deep learning models pretrained on a larger set of natural images, 
and extracted deep features from the hidden layers to predict GTVp and GTVn regression versus nonregression 
after a median of 15 radiotherapy applications (range, 11–20).

Materials and methods
Patient characteristics.  Patients who received chemoradiotherapy or radiotherapy to the head and neck 
region at Tohoku University Hospital were retrospectively enrolled as study candidates. Participants were then 
selected according to inclusion and exclusion criteria (below) as shown diagrammatically in Supplementary 
Fig. 1. A total of 255 patients were excluded according to the inclusion and exclusion criteria, and finally 96 
patients were enrolled for GTVp monitoring and 79 for GTVn monitoring. Patients were excluded for the fol-
lowing reasons: treatment with three-dimensional (3D) conformal radiotherapy (n = 10), no boost computed 
tomography (CT) or no GTV recontouring on boost CT (n = 47), primary tumor that was not head and neck 
cancer (n = 6), neither GTVp nor GTVn following surgery (n = 23), treatment with intra-arterial injection chem-
otherapy (n = 4), and severe image artifacts (n = 1). Patients with tumors < 5 cm3 were also excluded (GTVp: 
n = 33, GTVn: n = 53) because a previous study reported that small volumetric changes benefit less from ART​
4 and the image characteristics such as texture information extracted from tumors < 5 cm3 are limited24. All 
segmentations were assessed by a medical physicist for initial and boost CT. Patients with large differences in 
contouring between the initial and boost CTs were also excluded (inadequate contouring: n = 2). For these two 
patients, the area contoured as the CTV in the initial CT was broadly contoured as the GTV in the boost CT. 
The characteristics of the selected patients are summarized in Supplementary Tables 1 and 2. Tumor sites were 
nasopharynx, oropharynx, hypopharynx, oral cavity, larynx, and paranasal sinus.

All patients were treated with radiation therapy for purposes of radical or postoperative recurrence. The 
research design, data collection and management protocols, and scientific rationale of this study were approved 
by the Ethics Committee of Tohoku University Hospital. In addition, all experiments were performed in accord-
ance with relevant institutional and national guidelines and regulations. Given the retrospective nature of this 
study and the fact that no samples were obtained from human bodies, the requirement for informed consent 
was waived by the Ethics Committee of Tohoku University Hospital.

CT image acquisition.  Patients were prescribed 44 Gy/22 fraction (fr) (or 40 Gy/20 fr) in the region of 
CTV primary, CTV nodal, and CTV prophylactic with 5 mm added to the planning target volume (PTV) mar-
gin as initial treatment, and 26 Gy/13 fr (or 30 Gy/15 fr) in the region of CTV primary and CTV nodal with 
5 mm added to the PTV margin as boost treatment. In our hospital, a two-step method is adopted in which the 
patient is scanned again during radiotherapy, and a boost plan is created based on the rescanned CT image. In 
other words, the patient receives two CT scans, one before the start of radiotherapy for the initial plan and one 
during radiotherapy for the boost plan. All CT scans were acquired using the SIEMENSE SOMATOM Defini-
tion AS + system with pixel size of 1.17–1.27 mm and a slice thickness of 2–2.5 mm.
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Classification of tumor regression and nonregression groups.  The GTVp and GTVn were manu-
ally contoured by experienced radiologists on both the initial planning and boost CT images. The relative vol-
ume changes (ΔGTVp and ΔGTVn) were calculated by subtracting the boost CT volume from the initial CT 
volume and then dividing it by the initial CT volume. The period between the first CT scan and boost CT scan 
was different for all patients. To eliminate any effect caused by the gap between the first and second CT scans, the 
volume change rates were calculated by dividing ΔGTVp and ΔGTVn by the number of radiotherapy sessions 
received before the boost CT scan as follows (using ΔGTVp/treatment day as an example):

The median ΔGTVp/treatment day and median ΔGTVn/treatment day for all patients were used as thresholds 
to classify patients into tumor regression and nonregression groups. We then predicted these two classifications 
by the DLR approach. Figure 1 presents a schematic diagram of the general study workflow and Fig. 2 illustrates 
the detailed workflow of the DLR approach.

DLR.  Overview.  We extracted one axial slice showing the maximum GTVp or GTVn cross-sectional area 
from the planning CT and used it as input to 16 CNN models pretrained on natural images. One thousand deep 
features were extracted from the hidden layer of each model, which were used to predict tumor regression. Next, 
feature selection was conducted in two steps. In the first (feature selection step 1), robust features were selected, 
and redundant features eliminated. In feature selection step 2, the top 10 features were selected by each of the 
five algorithm-based feature selection methods. Machine learning algorithms were then used to predict GTVp 
and GTVn regression and nonregression. In this study, 25 unique models were built for each CNN by combining 
the five algorithm-based feature selection methods and five machine learning algorithms. Finally, we evaluated 
the predictive performance of each model order using the mean 0.632 + bootstrap area under the curve (AUC) 
method with 1000 iterations.

Deep feature extraction.  GTVp and GTVn were extracted from planning CT images. Feature values extracted 
from images with different voxel sizes show large variation25, so all CT images were first resampled to 1 × 1 × 1 
mm3 using the nearest neighbor algorithm. One axial slice showing the maximum GTVp or GTVn cross-sec-
tional area was identified, and an image of 100 mm × 100 mm was extracted centered on the tumor center of 
gravity. If there were several tumors in this identified maximum axial slice, the center of gravity of the tumor with 
largest area in the 100 mm × 100 mm image was identified, and a new 100 mm × 100 mm image was extracted 
centered on this largest tumor center of gravity. The 100 mm × 100 mm size was sufficient to include most of the 
tumor area in all cases. The non-GTV area was then set to the minimum CT value to extract only biomarkers 
(features) from within the tumor. The intensity of the image was modified using the window level (50 Houns-
field units [HU]) and window width (350 HU) for the abdominal condition to improve contrast within the 
tumor. Images used as inputs to deep learning networks are usually composed of three channels (Red, Green, 
Blue), and a previous report found that prediction accuracy improves when three channels are used as network 
input compared to only one21. Therefore, the single grayscale CT image was copied to produce three images as 
input. Finally, because each of the 16 deep learning models described below has a different input size, we resized 
the input images to fit each model using the bilinear interpolation algorithm. We used three channels of two-
dimensional (2D) images as input for the deep learning networks because most CNN model layers pretrained on 

�GTVp/treatment day =
Initial GTVp volume− Boost GTVp volume

Initial GTVp volume
/treatment day

Figure 1.   Schematic diagram of a deep learning-based radiomics approach for predicting early radiation-
induced tumor regression utilizing only CT images of gross tumor volume (GTV) acquired before radiotherapy.
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natural image datasets were constructed with three channels of 2D inputs. Image preprocessing was performed 
using MATLAB R2020b (MathWorks, Natick, MA, USA).

Due to the small patient sample, we extracted deep features using a method that freezes the weights of all CNN 
model layers already pretrained on many natural image datasets. We used the deep learning toolbox of MAT-
LAB and downloaded 16 CNNs, SqueezeNet, GoogleNet, Inceptionv3, DenseNet201, MobileNetv2, ResNet18, 
ResNet50, ResNet101, Xception, InceptionResNetv2, ShuffleNet, NASNetMobile, NASNetLarge, DarkNet19, 
DarkNet53, and AlexNet, all pretrained on the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)26. 
We then extracted 1000 deep features from the last fully connected layer of each network. For three networks 
(SqueezeNet, DarkNet19, and DarkNet53) that did not have a fully connected layer at the end, 1000 deep features 
were extract from the layer before the last softmax layer. All deep features were normalized by z-score.

Feature selection.  For handcrafted radiomics features, dimension reduction technique such as reproducibility 
analysis, collinearity analysis, and algorithm-based feature selection are used for feature selection27. Therefore, 
we also used these three feature selection methods to select deep features so that results are easily comparable to 
previous models based on handcrafted radiomics features.

Features extracted from medical images are susceptible to various sources of variability, such as respiratory 
motion28, multiple contouring29, and different CT protocols30. Therefore, we first used multiple segmentation to 
select the most robust deep features. First, CT images of 20 patients with lung cancer with nodule segmentation 
and Reference Image Database to Evaluate Therapy Response (RIDER) data were downloaded from The Cancer 
Imaging Archive online Quantitative Imaging Network multisite collection31. Nine segmentations were already 
delineated for one patient in this dataset. Because all 20 patients had nine segmentations, the deep features were 
extracted from a total of 180 segmentations. Robustness was evaluated using the intraclass correlation coeffi-
cient (ICC) for Case 3A29,32. This method evaluates the inter-observer variability of the segmentations. We used 
MATLAB as the analysis software. Features with ICC > 0.7 were selected as robust. In other words, deep features 
that fluctuated greatly in value due to slight differences in segmentation were deemed not sufficiently robust 
and excluded. In the next step, collinearity analysis was used to remove redundant features. If the Spearman’s 
correlation coefficient between any two features was > 0.8, then the mean correlations with all other features were 
calculated and the feature with the higher mean coefficient was eliminated from the pair, based on the method 
of Li et al.33. We applied this method to all feature pairs with Spearman’s correlation coefficient > 0.8.

As the last step, an algorithm-based feature selection was used. Multiple algorithm-based feature selection 
methods are available, and the final prediction accuracy is expected to vary depending on the choice of algorithm. 
Therefore, it is necessary to investigate different feature selection methods to optimized DLR model performance. 
In this study, five filter-type feature selection methods were used to rank the deep features: Chi square score 
(CHSQ), Wilcoxon (WLCX), Neighborhood Component Analysis (NCA), ReliefF, and Infinite Feature Selection 
(infFS)34. Finally, each selection method was used to select the top 10 features according to rank. The CHSQ, 
WLCX, NCA, and ReliefF methods were used, given that they are available in the Statistics and Machine Learning 

Figure 2.   Workflow of the deep learning radiomics approach. Axial CT slices of primary gross tumor volume 
(GTVp) and nodal gross tumor volume (GTVn) were inputted to 16 convolutional neural network (CNN) deep 
learning models pretrained on natural images, and deep features were extracted. Next, the most robust features 
were selected and redundant features eliminated (selection step 1). Then, the top 10 features for each of the 
five feature selection algorithms were identified (selection step 2). Machine learning algorithms were used to 
predict primary GTV (GTVp) and nodal GTV (GTVn) regression versus nonregression. Finally, the predictive 
performance of each model was evaluated using the mean 0.632 + bootstrap area under the curve (AUC) 
method with 1000 iterations.
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Toolbox of MATLAB and applicable to the binary classification problem. We also used infFS considering that it 
achieved the best performance in the PASCAL VOC 2007–2012 classification tasks34.

Machine learning prediction.  Different internal algorithms for machine learning may demonstrate highly varia-
ble classification accuracies when provided with different sets of features. Thus, the results from a single machine 
learning algorithm may not be representative of the general predictive utility of a given deep feature or feature 
set. Therefore, this study used five machine learning algorithms to predict tumor regression and nonregression: 
Random Forest (RF), Support Vector Machine (SVM), K-nearest neighborhood (KNN), Naïve Bayses (NB), 
and Linear Discriminant Analysis (LDA). Detailed hyperparameter settings of the machine learning models are 
shown in Supplementary Table 3. We also used five algorithm-based feature selection methods, so 25 models in 
total were constructed for each CNN. We evaluated the predictive accuracy of each model in order to compre-
hensively evaluate the performance of specific deep features.

Evaluation.  The 0.632 + bootstrap AUC metric with 1000 iterations was used to evaluate each model as this 
method has demonstrated lower variance, bias, and mean squared error for a small number of samples and a 
large number of features35. The 0.632 + bootstrap AUC metric was defined by.

 where AUC′
(

X*b, X*b(0)
)

= max
{

0.5, AUC
(

X*b, X*b(0)
)}

 , a(b) = 0.632
1−0.368·R(b) , and

If the patient sample is represented by X, and X represents the data vector, a sample of size N is represented 
by X = (X1, X2…, XN). The AUC (X, X) represents the AUC of training on patient sample X and testing on patient 
sample X. However, this causes a bias toward better AUC because the training and testing are on the same data 
set. X* = (X1

*, X2
*…, XN

*) represents a boot sample of size N that has been randomly extracted from data X. In 
this boot sample, some data vectors may not appear, while others may appear once, twice, or three times (etc.). 
B represents the number of the boot sample, X*1, X*2,…,X*B, where each boot sample X*b = (X1

*b, X2
*b…, XN

*b) 
(b is one bootstrap [b = 1, 2…, B]) represents a bootstrap sample of size N that has been randomly extracted 
from X, and X*b (0) is the remaining sample of data X that did not appear in X*b. AUC (X*b, X*b (0)) represents 
the AUC of training on patient sample X*b and testing on remaining sample X*b (0). This AUC (X*b, X*b (0)) 
causes a pessimistic bias.

Based on a previous study using 0.632 + bootstrap AUC, we used the top 10 features from the previous selec-
tion step36,37. We then searched for the optimal model according to the maximum 0.632 + bootstrap AUC using 
forward feature selection38,39. Sensitivity and specificity were also calculated under each condition. The predictive 
performance of all deep learning models was compared based on the mean AUCs of the 25 models (combinations 
of five feature selection methods and five machine learning algorithms).

Moreover, a corrected resampled paired t-test40,41 was used to evaluate significant differences in the perfor-
mance of DLR with the highest mean AUC and handcrafted radiomics features and clinical factors. A one-tailed 
test was used given that we wanted to evaluate whether DLR performed significantly better than handcrafted 
radiomics features and clinical factors. The calculation of the statistics for the corrected resampled paired t-test 
requires training and test samples. However, the 0.632 + bootstrap AUC has different training and test sample 
sizes for each bootstrap. Thus, we used the average of 1000 repetitions for training and test samples: 61 (63.5%) 
and 35 (36.5%) for GTVp and 50 (63.3%) and 29 (36.7%) for GTVn, respectively. We used the same resampled 
training and test subset of DLR and handcrafted radiomics features and clinical factors in all 1000 repetitions. 
The significance level was set at 0.05.

The correlation between the selected 10 features and tumor volume in the initial CT was evaluated using 
Spearman’s correlation coefficient because useful image features were previously reported to be correlated with 
tumor volume42. We also employed the Gradient Weighted Class Activation Mapping (Grad-CAM) method avail-
able in MATLAB to clarify interpretation of deep learning. Specifically, this method can visualize the important 
regions of interest for the deep learning model.

Handcrafted radiomics features.  Three types of handcrafted radiomics features, shape, first-order, and texture 
were extracted from planning CT images of GTVp and GTVn acquired prior to radiotherapy. We used PyRa-
diomics software43 Version 4.10.2 with 3D Slicer to extract the handcrafted radiomics features, and a total of 
107 features were extracted from each GTVp and GTVn CT image after resampling to 1 × 1 × 1 mm3 (14 shape 
features, 18 first-order features, and 75 texture features). In turn, texture features were of several types, gray-level 
co-occurrence matrix (GLCM, n = 24), gray-level run length matrix (GLRLM, n = 16), gray-level dependence 
matrix (GLDM, n = 14), gray-level size zone matrix (GLSZM, n = 16), and neighborhood gray tone difference 
matrix (NGTDM, n = 5). The bin width parameter was set to 25 HU. PyRadiomics was chosen for this study 
because most handcrafted radiomics features extracted are based on the imaging biomarker standardization 
initiative (IBSI), which provides a benchmark for easy comparison with other studies44. However, it appeared 
that four of the 107 handcrafted radiomics features were not based on IBSI from previous reports45,46. All hand-

ÂUC0.632+ =
1

B

B
∑

b=1

[

(1− a(b))AUC(X,X)+ a(b)AUC′

(
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)]

,
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






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�
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�

≤ 0.5
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�
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�
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�
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�

> 0.5

0 otherwise
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crafted radiomics features used in this study are shown in Supplementary Table 4. We used the same methods as 
described in the Feature selection, Machine learning prediction, and Evaluation sections to select handcrafted 
radiomics features and predict regression versus nonregression using the 25 models. Model performance was 
then compared using the mean of 0.632 + bootstrap AUC with 1000 iterations.

Clinical factors.  The following clinical factors were retrospectively collected: age, sex, tumor site, TNM 
stage, treatment strategy (radiation therapy for purposes of radical, postoperative recurrence), presence of 
multiple cancers, use of Percutaneous Endoscopic Gastrostomy, implementation of chemotherapy, GTVp vol-
ume, GTVn volume, and human papillomavirus (HPV) status (for patients with oropharyngeal cancer). For all 
patients, the TNM stage was based on the Union for International Cancer Control (UICC) 8th edition. We did 
not select clinical factors using the multiple segmentation and Spearman’s redundant feature methods described 
in previous sections because the number was already small (12 features); thus, there was little risk of “curse of 
dimensionality”47. We used five algorithm-based feature selection methods to rank the top 10 clinical factors, 
and used the same methods as described in the Machine learning prediction and Evaluation sections to predict 
regression versus nonregression using the 25 models. For evaluation, we also used the average of 0.632 + boot-
strap AUC with 1000 iterations.

Classification accuracy of DLR in different threshold.  The median regression rates of GTVp and 
GTVn were used as thresholds for classification into regression and nonregression groups. However, if different 
regression rates were used as thresholds for classification, we would expect different AUC results and prediction 
performance. Therefore, as an additional analysis, we evaluated the predictive performance of the DLR approach 
using multiple thresholds for GTVp (0.46% [median threshold], 0.8%, 1.2%, 2.0%, 2.4%, 2.8%, and 3.2% per 
treatment day) and GTVn (1.4% [median threshold], 1.7%, 2.1%, 2.5%, 2.9%, 3.3%, and 4.1% per treatment day). 
These thresholds were the boundary values that label the two classes of regression and nonregression. However, 
as the threshold for group inclusion is increased, the number of samples classified into that group becomes 
smaller and the machine learning prediction may tend to be biased toward the majority class (e.g., nonregres-
sion). Therefore, to avoid the minority class being ignored by machine learning, we applied a random under-
sampling strategy to balance the classes by down-sampling the majority class to the same size as the minority 
class48. To balance the sample distribution, 100 random under-samplings of the majority class were performed 
and the final AUC was obtained by averaging 0.632 + bootstrap AUC with 1000 iterations.

Results
Total regression and regression rates in GTVp and GTVn cohorts.  The median number of treatment 
days from the initial planning CT to the boost CT scan was 15 (range, 11–20). Mean GTVp was 23.1 cm3 on the 
initial CT images and 20.8 cm3 on the boost CT images, while mean GTVn was 33.3 cm3 on the initial CT images 
and 31.9 cm3 on the boost CT images. The median relative GTVp regression from the initial CT to the boost 
CT was 7.17%, and the median GTVn regression over the same period was 20.05%. The median regression rates 
were 0.46%/treatment day for GTVp and 1.40%/treatment day for GTVn. The median ΔGTVp⁄treatment day in 
the regression group was 2.02% (30.3% at a median of 15 days) and that in the nonregression group was − 0.20% 
(− 3% at a median of 15 days) (P < 0.0001, Wilcoxon rank sum test). The median ΔGTVn⁄treatment day in the 
regression group was 3.62% (54.3% at a median of 15 days) and that in the nonregression group was − 0.15% 
(− 2.25% at a median of 15 days), respectively (P < 0.0001, Wilcoxon rank sum test). Thus, both GTVp and GTVn 
cohorts were stratified into clear regression and nonregression groups during early radiotherapy.

Regression prediction accuracies for deep learning models.  The robust features (ICC > 0.7) selected 
by each of the 16 pretrained deep learning models from CT images with multiple segmentations are shown in 
Supplementary Fig. 2. The ICCs of the selected deep features were distributed over a wide range. The AUCs of 
the 25 models based on each CNN (combinations of five feature selection methods and five machine learning 
algorithms) for predicting regression of GTVp (Fig. 3a) and GTVn (Fig. 3b) also varied markedly. For the GTVp, 
highest mean AUC (a measure of average classification accuracy) was achieved using InceptionResNetv2 (fol-
lowed by DarkNet53 and DenseNet201), while NASNetLarge yielded the highest mean AUC for GTVn regres-
sion prediction (followed by DarkNet53 and Inceptionv3). The mean AUCs of the top five models for GTVp 
classification exceeded 0.7, while two models yielded mean AUCs exceeding 0.7 for GTVn classification. For 
both GTVp and GTVn classification, the difference in AUC between the worst and best performing model was 
0.1. The detailed AUCs for each of the five algorithm-based feature selections and five machine learning algo-
rithms are shown in Supplementary Figs. 3 and 4. The correlation coefficients between the selected 10 features 
in all deep learning models and tumor volume in the initial CT are shown in Supplementary Tables 5 and 6. As 
shown, all selected features had very weak correlations with tumor volume.

Figure 4 presents the individual AUCs for all combinations of the five feature selection algorithms and the 
five deep learning algorithms using the CNNs yielding highest mean AUCs (InceptionResNetv2 for GTVp and 
NASNetLarge for GTVn). Notably, AUC values varied widely among combinations of feature selection algorithms 
and machine learning algorithms, even when using InceptionResNetv2 (Fig. 4a) and NASNetLarge (Fig. 4b) as 
the CNN.

Comparisons of prediction accuracy among DLR, handcrafted radiomics feature, and clinical 
factor models.  Table 1 compares the predictive accuracies of our DLR models with the handcrafted radiom-
ics feature-based and clinical factor-based models according to 0.632 + bootstrap AUC, sensitivity, and specific-
ity. The mean AUC of the 25 models (combinations of five feature selection methods and five machine learning 



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8899  | https://doi.org/10.1038/s41598-022-12170-z

www.nature.com/scientificreports/

algorithms) yielded by InceptionResNetv2 for GTVp regression prediction was larger (mean AUC = 0.75) than 
the mean AUC yielded by the handcrafted radiomics feature-based models (0.63) or clinical feature-based mod-
els (0.64). The predictive accuracy was not substantially improved by the combination of the InceptionResNetv2 
plus handcrafted radiomics features (mean AUC = 0.74), clinical factors (0.75), or both (0.75).

The results of the evaluation of the significant differences in performance between the InceptionResNetv2 for 
GTVp regression prediction and handcrafted radiomics features and clinical factors are shown in Supplementary 
Table 7. In the 25 models (5 machine learning models × 5 algorithm-based feature selection), some Inception-
ResNetv2-based models performed predominantly well, with statistically significant differences. However, no 
significant differences were observed with the other models.

Table 2 provides the same comparisons for prediction of GTVn regression using NASNetLarge. Again, the 
mean AUC of the 25 models yielded by NASNetLarge for GTVn regression prediction (mean AUC = 0.73) was 
larger than that yielded by the mean handcrafted radiomics feature-based model (0.61) or the mean clinical 
factor-based model (0.67). The prediction was not improved by the combination of the NASNetLarge and hand-
crafted radiomics features (0.70), clinical factor model (0.71), or both (0.69).

The results of the evaluation of significant differences in performance between the NASNetLarge for GTVn 
regression prediction and handcrafted radiomics features and clinical factors are shown in Supplementary 
Table 8. Almost similar to the GTVp, some NASNetLarge models performed predominantly well in the 25 models 
(5 machine learning models × 5 algorithm-based feature selection), with some showing statistically significant 
differences. However, no significant differences were observed with the other models.

Classification accuracy of DLR models using different ΔGTV thresholds.  In this study, prediction 
was performed by dividing cases into regression and nonregression groups based on median ΔGTV/treatment 

Figure 3.   Average performance of 16 CNNs for predicting radiation-induced gross tumor volume (GTV) 
regression prior to treatment using all combinations of five deep feature selection algorithms and five machine 
learning algorithms (25 models per CNN). Performance was evaluated by the median area under the receiver 
operating characteristic (ROC) curve. (a) Predictive performance for primary gross tumor volume (GTVp) 
regression. (b) Predictive performance for nodal gross tumor volume (GTVn) regression.
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day as the threshold. However, AUCs (predictive accuracy) may differ if classifications are performed based on 
other thresholds. Supplementary Tables 9 and 10 show the classification performances of InceptionResNetv2 
and NASNetLarge (the CNNs yielding the highest mean AUCs for GTVp and GTVn regression prediction, 
respectively) using a series of thresholds. For both GTVp and GTVn, there were no significant changes in AUC 
even when the threshold was increased, and the AUC was above 0.8 at all thresholds. Further, the highest sensi-
tivity was observed using the highest threshold (Supplementary Tables 9 and 10).

Figure 4.   Optimal predictive performance of InceptionResNetv2- and NASNetLarge-based models 
for predicting GTVp and GTVn regression, respectively. (a) Heatmap of the AUCs yielded by 25 
InceptionResNetv2-based models (all combinations of five machine learning algorithms in rows and five feature 
selection algorithms in columns) predicting GTVp regression. (b) Corresponding heatmap of AUCs for the 25 
NASNetLarge-based models predicting GTVn regression.

Table 1.   Mean 0.632 + bootstrap areas under the curve (AUCs), sensitivity, and specificity of the deep 
learning-based radiomics, handcrafted radiomics features, clinical factors, and combined models for predicting 
primary gross tumor volume (GTVp) regression. AUC​ area under the curve, SD standard deviation.

Mean AUC​ Mean sensitivity Mean specificity

Inceptionresnetv2 0.75 (SD, 0.05) 0.72 (SD, 0.08) 0.66 (SD, 0.08)

Handcrafted radiomics features 0.63 (SD, 0.06) 0.62 (SD, 0.04) 0.60 (SD, 0.05)

Clinical factor 0.64 (SD, 0.04) 0.65 (SD, 0.04) 0.59 (SD, 0.05)

Inceptionresnetv2 + Handcrafted radiomics features 0.74 (SD, 0.06) 0.70 (SD, 0.08) 0.65 (SD, 0.07)

Inceptionresnetv2 + Clinical factor 0.75 (SD, 0.05) 0.72 (SD, 0.07) 0.65 (SD, 0.08)

Inceptionresnetv2 + Handcrafted radiomics features + Clinical factor 0.75 (SD, 0.07) 0.72 (SD, 0.07) 0.65 (SD, 0.08)

Table 2.   Mean 0.632 + bootstrap AUCs, sensitivity, and specificity of the deep learning-based radiomics, 
handcrafted radiomics features, clinical factors, and combined models for predicting nodal gross tumor 
volume (GTVn) regression. AUC​ area under the curve, SD standard deviation.

Mean AUC​ Mean sensitivity Mean specificity

Nasnetlarge 0.73 (SD, 0.05) 0.70 (SD, 0.06) 0.65 (SD, 0.07)

Handcrafted radiomics features 0.61 (SD, 0.06) 0.63 (SD,0.06) 0.60 (SD, 0.05)

Clinical factor 0.67 (SD, 0.04) 0.65 (SD, 0.04) 0.62 (SD, 0.05)

Nasnetlarge + Handcrafted radiomics features 0.70 (SD, 0.07) 0.69 (SD, 0.07) 0.64 (SD, 0.07)

Nasnetlarge + Clinical factor 0.71 (SD, 0.06) 0.69 (SD, 0.06) 0.63 (SD, 0.08)

Nasnetlarge + Handcrafted radiomics features + Clinical factor 0.69 (SD, 0.07) 0.68 (SD, 0.07) 0.62 (SD, 0.07)
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Activation maps of the optimal DLRs.  Finally, we constructed activation maps of initial CT images 
using InceptionResNetv2, the CNN yielding highest predictive accuracy for GTVp regression to reveal the most 
salient image features distinguishing regressing from nonregressing cases (Fig. 5). The activation map of the ini-
tial CT images from a patient with particularly large GTVp regression (Fig. 5a) as visualized by the Grad-CAM 
method revealed that InceptionResNetv2 focuses on the fine characteristics and localized regions of the tumor, 
such as the tumor interior, tumor edges, and low- and high-density regions (Fig. 5b).

Similar analyses were conducted for initial CT images of GTVn using NASNetLarge, the CNN yielding highest 
accuracy for prediction of GTVn regression (Fig. 6). The activation map from a patient with particularly large 
GTVn regression revealed that like InceptionResNetv2, NASNetLarge focuses on the tumor interior (especially 
localized areas) rather than the entire tumor (Fig. 6a). The activation maps of the initial GTVn images from all 
patients revealed that NASNetLarge focuses consistently on the tumor interior (Fig. 6b). In addition, NASNet-
Large was able to focus on each GTVn when there were multiple nodal tumors in the image.

Figure 5.   Activation maps of the initial CT images reveal salient features used by InceptionResNetv2-based 
models for prediction of GTVp regression. (a) Activation map of the initial CT image from patients with large 
GTVp regression using InceptionResNetv2 (the CNN yielding the highest predictive accuracy). The map was 
visualized using the Gradient Weighted Class Activation Mapping method. The boost CT images are shown 
to indicate the degree of regression. (b) Activation map of the initial GTVp images for all patients yielded by 
InceptionResNetv2.

Figure 6.   Activation maps of the initial CT images reveal salient features used by NASNetLarge-based models 
for prediction of GTVn regression. (a) Activation map of the initial CT image from a patient with large GTVn 
regression using NASNetLarge, the CNN yielding the highest prediction accuracy. The boost CT images are 
shown to illustrate the degree of regression. (b) Activation maps for all patients using NASNetLarge.
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Discussion
To facilitate ART specifically for patients with head and neck cancer who demonstrate early and extensive tumor 
shrinkage, we developed a DLR approach based solely on pretreatment CT images and demonstrated good 
potential for predicting early GTVp and GTVn regression.

We compared the predictive efficacies of multiple deep learning models constructed using 16 pretrained 
CNNs, five feature selection algorithms, and five machine learning algorithms (400 distinct DLR models in total) 
as well as models based on clinical factors, handcrafted radiomics metrics, and various combinations. The CNNs 
InceptionResNetv2 and NASNetLarge achieved greater predictive accuracy (reflected by higher mean AUCs in 
receiver operating characteristic analysis) than other deep learning models, clinical factor-based models, and 
handcrafted radiomics feature-based models. Further, combining clinical factor- and handcrafted radiomics 
feature-based models with deep learning models did not substantially improve accuracy (Tables 1 and 2). These 
findings indicate that deep features extracted from pretrained models may be able to characterize various com-
plex patterns within tumors (tumor heterogeneity) predictive of early radiation-induced regression or radiation 
resistance.

Surucu et al. developed a decision tree algorithm to predict GTVp and GTVn shrinkage based on clinical 
factors and demonstrated 88% accuracy5. They concluded that factors such as chemotherapy, age, and tumor site 
are the important predictors of GTVp shrinkage and that factors such as Karnofsky Performance Status, site, and 
age are the important predictors of GTVn shrinkage. In the present study, the clinical factors ranked highest by 
CHSQ and yielding the largest AUC for predicting GTVp regression were age, chemotherapy status, and T-stage, 
and those ranked highest by NCA feature selection and yielding largest AUC for predicting GTVn were tumor 
site, chemotherapy status, and age, generally consistent with the clinical factors proposed by Surucu et al. Yu et al. 
also reported that handcrafted radiomics features could predict ART and non-ART groups among patients with 
nasopharyngeal cancer with high accuracy (AUC = 0.93)9. Alves et al. reported that a model combining hand-
crafted radiomics features and clinical factors predicted ART and non-ART groups with an AUC of 0.84 among 
patients with head and neck cancer10. In both studies, the criteria for ART included factors such as weight loss, 
lymph node regression, neck tissue loss, and discrepancy in neck contour as well as tumor regression, while the 
present study focused only on early tumor regression during radiotherapy for predicting ART eligibility. We sug-
gest that future improvements in these DLR models may also allow for the prediction of neck volume shrinkage, 
shrinkage and positional changes of OARs, and ART eligibility as well as primary and nodal tumor regression.

This DLR strategy also demonstrated higher predictive accuracy than models based on handcrafted radiom-
ics features previously suggested as useful biomarkers for tumor regression (Tables 1 and 2). To the best of our 
knowledge, the present study is the first to adopt DLR to predict early regression of head and neck tumors dur-
ing radiotherapy. Deep learning may detect heterogeneity in medical images reflecting genetic and physiologi-
cal tumor physiological not easily recognized by visual analysis19, resulting in greater predictive performance. 
Another major advantage over handcrafted radiomics features is that deep learning can automatically detect 
localized regions of the tumor. It is common to analyze the entire tumor when extracting handcrafted radiom-
ics features because there may be no a priori markers to focus attention45,46,49, but several studies have reported 
clinically significant sub-volumes with subtle imaging manifestations, such as hypoxic sub-volumes that are 
radioresistant50 even within a single head and neck tumor51. Therefore, visual analyses of total tumor metrics 
(typical handcrafted radiomics features) may miss important local features that reflect genetic or physiological 
heterogeneity relevant to therapeutic response and prognosis. Conversely, deep learning automatically detects 
specific image patterns within the tumor learned from natural images (Figs. 5 and 6). In other words, deep 
learning may automatically detect subregions related to radiation sensitivity or resistance, thus distinguishing 
patients with early regression or nonregression.

The mean AUCs among deep learning models differed by up to 0.1, with InceptionResNetv2 yielding the 
highest mean AUC for prediction of GTVp regression (Fig. 3a). InceptionResNetv2 is a hybrid CNN (164 lay-
ers) that combines the Inception and ResNet modules. The Inception module extracts features from images at 
various resolutions, and the ResNet module (residual connection) extracts complicated features from the deep 
layers of the CNN. Pretrained InceptionResNetv2-based models have demonstrated excellent prediction accuracy 
using x-ray52 and ultrasound images53 as inputs, and this study extends this predictive potential to CT images.

NASNetLarge achieved the highest mean AUC among all models for predicting GTVn regression (Fig. 3b). 
NASNetLarge automatically learns the model architecture and designs the optimal structure for ImageNet 
classification54. It has the deepest layered structure and the largest number of parameters among the models 
used in this study, and because of its deep layers and large number of parameters, we could extract many pheno-
types. Kornblith reported that NASNetLarge achieves top-of-class accuracy for ImageNet image classification55. 
When there were multiple GTVn in the tumor images, NASNetLarge was able to focus on every tumor (Fig. 6b).

With any network, there is a risk that the results using a single algorithm may lack classification accuracy 
on other datasets. Therefore, it is important to provide benchmarks using various networks, feature selection 
algorithms, and machine learning algorithms to identify the best approach for each task or modality. In future 
studies, it will be necessary to standardize DLR approaches. The results obtained from deep learning models 
may also depend on image size, window level settings, and machine learning and feature selection algorithms, so 
further analyses, such as comparisons using larger datasets or benchmark validation with independent external 
datasets, is necessary to determine the optimal model for predicting tumor regression from planning CT images 
in a wide variety of clinical situations. 

In this study, we used thresholds of 0.46%/treatment day and 1.4%/treatment day for distinguishing GTVp 
and GTVn regression from nonregression, respectively. The median GTV regression rate from the initial CT scan 
to the boost CT scan was 7.17% for GTVp and 20.05% for GTVn. Other studies have reported GTV regression 
rates ranging from 3 to 16% for up to 10 treatment days and 7–48% for up to 20 treatment days4, so the regression 
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rates observed in our study cohorts were relatively slow. Schwartz et al. reported that ART reduced mean dose to 
the contralateral parotid gland by 0.6 Gy (2.9%) and mean dose to the ipsilateral parotid gland by 1.3 Gy (3.8%) 
compared to image-guided radiation therapy alone in patients with median CTV volume reduction of only 5%56. 
In addition, Bhide et al. reported a significantly lower mean minimum dose to the PTV and high dose heteroge-
neity among patients with a modest 3.2% reduction in macroscopic CTV over two weeks2. Therefore, prediction 
of regression by our DLR approach may improve the minimum dose and heterogeneity of PTV and parotid dose 
for patients receiving ART, even if regression rate is low. In addition, when the classification threshold was higher 
than the median, precision was maintained and sensitivity was slightly improved (Supplementary Tables 9 and 
10). Therefore, we believe that DLR has great potential for predicting early radiation-induced tumor regression 
prior to radiotherapy. DLR may facilitate truly personalized adaptive radiotherapy for patients showing early 
GTVp and GTVn regression.

This study is subject to several limitations. First, the number of patients (96 for GTVp and 79 for GTVn 
monitoring) was insufficient to train the models and evaluate the accuracy using a subset of cases as an external 
test dataset. To select deep features associated with tumor regression, from a large number of deep features 
in each deep learning model, we used the entire dataset for redundant feature selection and algorithm-based 
feature selection steps. Therefore, it should be noted that the results of this study are an internal validation and 
the performance obtained may have an optimistic bias. It will be necessary to train feature selection and models 
on a larger amount of training data and then validate them using an independent external validation dataset 
to ensure that these results are generalizable. Further, the results were generated from a single institution. To 
broaden the applicability of these results, validation at multiple institutions is required. It is also difficult to 
interpret the pathophysiological and clinical significance of deep features. While we generated activation maps 
to establish the reliability of the CNN models, we have not established associations between specific patterns and 
the underlying processes determining the rate of radiation-induced tumor regression. Understanding the clinical 
implications of these deep features is necessary to incorporate DLR into routine clinical practice. Therefore, as a 
next step, it is important to identify associations between deep features — such as regions of tumor heterogene-
ity appearing on CT images (e.g., intensity patterns) — and regional genetic or physiological variation (i.e., the 
pathogenic processes reflected by these deep features). We were only able to extract deep features from one axial 
slice because most CNN model layers pretrained on natural image datasets were constructed with 2D inputs. 
Therefore, if information about tumor regression was included for other axial slices, important information may 
be missed. In the future, the development of existing models that use 3D images as input will solve this problem.

In conclusion, we developed and evaluated a deep learning radiomics approach to predict early regression of 
GTVp and GTVn during radiotherapy based on planning CT images. Although there are some limitations, our 
results suggest that the proposed method is effective for identifying patients requiring ART.
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