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Abstract: In recent years, lung disease has increased manyfold, causing millions of casualties annually.
To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become
indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging
using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes
of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule,
Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective
dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight
augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification
purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2,
VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these,
the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy,
LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study
was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the
proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the
model, several performance matrices, including the ROC curve and the AUC values, were computed
as well.

Keywords: LungNet22; X-ray image; VGG16; optimizer; CNN; lung disease; deep learning

1. Introduction

Lung disease is categorized as the third leading cause of mortality globally [1], with
an estimated total of five million deaths per year [2]. As a vital respiratory organ, the
lung is not only prone to infection from components but externally as well. Lung disease
manifests due to various forms of air pollution, microbiological attack, chemical intake, or
physical sickness. One of the most alarming lung diseases in recent times is COVID-19.
COVID-19 is detected by identifying upper respiratory tract and lung infection accompa-
nied by pneumonia and a cold-like syndrome. The disease was first explored in Wuhan,
China [3]. COVID-19 causes the air sacs in the lungs to fill with fluids leaking from the
blood vessels, resulting in difficulty in breathing. Among some very common lung diseases
are pneumonia and pneumothorax. Pneumothorax occurs when air escapes between the
lung and the chest wall of the patient, causing the lung to completely collapse. On the other
hand, pneumonia is an acute respiratory infection that causes the alveoli in the lung to fill
with pus or fluid [4]. Abnormal growth in the lung indicates a lung tumor. If the growth is
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larger than 3 cm, it is called a mass. However, if the growth is less than 3 cm in diameter,
it is known as a nodule. A benign nodule is not cancerous; however, a malignant nodule
not only spreads to other parts of the body but also causes lung cancer. Effusion refers to
a build-up of fluid. An excess amount of fluid builds up outside the lung and within the
pleural layers [5]. Pulmonary fibrosis occurs due to damage and scars in the lung; thick
and stiff tissues grow, making it laborious to breathe. Tuberculosis damages the lung by
creating a large cavity in the lung and enlarging bronchiectasis. Lung opacity is identified
as an area in the lung damaged by intraparenchymal hemorrhage.

Medical X-ray imaging is a universal diagnosis technology for disease diagnosis.
Using X-ray, the internal physical structure of organs and bones can be detected [6]. X-
rays are valuable diagnosis techniques that have been utilized for years by experts to
diagnose fractures, some cancers, pneumonia, dental issues, and other conditions. In severe
circumstances, Computed Tomography (CT) may provide a succession of body scans that
are then combined to create a three-dimensional X-ray picture analyzed by a computer.
However, a normal X-ray is quicker, simpler, less expensive, and less invasive than a CT
scan [7]. In the majority of instances, X-rays are insufficient to provide a diagnosis; CT
scans are often required to confirm the diagnosis [8]. Multiple CT scans may be required
for diseases that develop rapidly, but this is exceedingly costly, time-demanding, and may
potentially be harmful to the patient as both of them use radiation [9].

As a result, there is a critical demand for an artificial intelligence system capable of
effectively detecting chest-related illnesses [10,11]. The research includes applying deep
learning to create predictions about medical pictures by extracting information such as
spatial rotation and shape from the photos. CNNs have been important in the extraction of
features and in the learning of patterns that allowed prediction [12]. AI has matured to the
point that it can be incorporated with cutting-edge machine learning and deep learning
algorithms in a variety of disciplines, including health [7], biometrics [13], agriculture [14],
cloud computing [15], and renewable energy [16]. Numerous advantages are associated
with AI technology in medicine. For example, rural locations and third-world countries
often lack specialized physicians capable of providing the necessary treatment [17]; artificial
intelligence technologies support them in obtaining the necessary medical treatment.

Additionally, this kind of research will benefit the healthcare industry significantly
as professionals will be able to utilize it to support their diagnoses; additionally, it may
be operated by those with no medical training. Even patients might benefit from this
technology [18,19]. All of this is done to mitigate the specialist’s load, given that there are
only a few of them, by focusing them only on the X-rays marked as problematic by the
prediction tools. Moreover, they significantly greatly reduce a doctor’s subjective decisions,
accelerate diagnosis, and reliably identify details that the human vision may miss [20].

In our study, X-ray images of the chest were collected from multiple sources. The
datasets were collected from databases such as GitHub, Kaggle, and NIH Clinical Cen-
ter [21–36]. The collection is composed of multiple lung-disease X-ray images that include
COVID-19, Effusion, Lung Opacity, Mass, Nodule, Pulmonary Fibrosis, Pneumonia, Pneu-
mothorax, and Tuberculosis, in addition to the Controlled class. The disease’s features may
be easily and quickly detected using deep learning models, allowing for a more rapid and
accurate diagnosis.

The contributions of the paper are as follows:

1. The raw chest X-ray data for the study is collected from multiple data sources, merged
into a collective dataset. To ensure all the data are in the same scale, preprocessing is
performed.

2. Autoencoder is employed to denoise the noisy images. For removing annotation in
the data, the EnsNet method is used.

3. CLAHE enhancement methods are used to increase the quality of the X-ray images,
and the Green Fire Blue filtering technique is applied to improve the image properties
and make them more identical to the model.



J. Pers. Med. 2022, 12, 680 3 of 29

4. Augmentation is performed to balance each class of the dataset by upsampling the
classes with fewer data.

5. Eight pre-trained models, namely AlexNet, GoogLeNet, InceptionV3, MobileNetV2,
VGG16, ResNet 50, DenseNet121, and EfficientNetB7 are evaluated to determine the
highest-performing model.

6. A fine-tuned LungNet22 is proposed based on VGG16 architecture.
7. To justify the model’s accuracy, the precision, recall, specificity, and f1-score are

calculated from the confusion matrix. The loss function is also used to evaluate the
performance of the models.

8. For the visual description of the model’s outcome, Grad-CAM is produced.
9. The proposed model is evaluated by computing the ROC curve and the AUC value.

The operating process of the proposed study is presented in Figure 1.
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Figure 1. Operation of the proposed LungNet22 model for multiclass classification of lung disease.

The rest of the paper is organized in the following manner. Section 2 summarizes the
prior research on lung disease diagnosis in multiple datasets, using deep learning with the
models’ accuracy scores. Section 3 discusses the collection, pre-processing, and preparation
of the datasets prior to feeding the model. Section 4 covers the transfer learning models that
were chosen, and their parameters, and the proposed model (LungNet22) with the ablation
study by applying different parameters. The result is discussed in Section 5. Section 6
summarizes the study’s findings and compares those to other related research. Section 7
highlights the research findings and makes recommendations for further research.
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2. Literature Review

The capacity of machine learning algorithms, particularly that of deep learning, to
identify anomalies in X-ray images has gained popularity in recent years. Artificial intel-
ligence is being used in medical research to facilitate diagnosis, and some of the studies
have shown positive and accurate findings. The strategies employed by past researchers to
handle lung-related disorders by utilizing artificial intelligence and deep neural networks
are explored here.

A multiclass classification of the deep learning model is suggested in [37] for iden-
tifying COVID-19, pneumonia, and lung cancer using chest X-ray and CT images. The
efficiency of four architectures, which are a combination of VGG19, ResNet152V2 with
CNN, GRU, and Bi-GRU, is examined the accuracy of the VGG19 + CNN model was
98.05%. The authors in [38] present a novel, hybrid deep learning framework called VGG
Data STN, with CNN, VDSNet that combines with VGG, data augmentation, and a spatial
transformer network (STN) with CNN. The other models implemented in the study are
Vanilla Gray, Vanilla RGB, Hybrid CNN + VGG, and a modified Capsule Network. The
proposed VDSNet model has a validation accuracy of 73%. This study [39] provided an
accurate technique of classifying COVID-19, pneumonia, and the normal class, utilizing the
CNN classification method with the histogram-oriented gradient (HOG) feature-extraction
methods. A public X-ray dataset has been used to train and test the proposed CNN model.
The model is validated by the use of a 10-fold cross-validation and metric confusion.

To classify and forecast chest X-rays for various lung diseases, the authors in [40]
recommended utilizing the proposed model UCMobN. The model is constructed by modi-
fying MobileNetV2 architecture. Atelectasis, Consolidation, Edema, Effusion, Emphysema,
Fibrosis, Infiltration, and Mass are among the 10 lung disorders included in the dataset.
In the study [41], the authors provide a CNN-based model for automatically detecting
pleural effusion in chest X-rays. The research relies on X-ray scans of patients with pleural
effusion and those in a healthy state. An accuracy of 95% in the classifying of the data
was found using the CNN model in this examination. The authors in [42] verify a deep
CNN technique termed Decompose, Transfer, and Compose (DeTraC), which is capable
of handling any anomalies in the image dataset. The approach employs a variety of CNN
models, including AlexNet, VGG19, ResNet, GoogleNet, and SqueezeNet to classify data
with an accuracy of 97.53%.

Another article [43] proposes a method for augmenting synthetic data in three deep
CNN models in order to diagnose 14 chest-related disorders. DenseNet121, Inception-
ResNetV2, and ResNet152V2 are the models used. To identify abnormalities in X-ray
scans, the suggested models were trained for multiclass classification. The authors in [44]
employed the Mask R-CNN approach on the X-ray dataset in order to categorize patients
with and without the COVID-19 infection. Five-fold cross-validation was used to train
the Mask R-CNN for 100 epochs. The authors suggest an architecture for the COVID-aid
model based on the DarkCovidNet architecture for COVID-19 and pneumonia detection
in [45]. This model has 19 convolutional layers and six max-pooling layers. The authors
present a CNN-based classifier for pneumonia diagnosis and validate the numbers to
choose the optimum model for the job depending on the specific characteristics in [46]. To
X-ray images, the research applies the VGG16, VGG19, NasNetMobile, ResNet152V2, and
InceptionResNetV2 models.

Another paper [47] makes use of many state-of-the-art CNN models, DenseNet201,
ResNet50V2, and InceptionV3 for detecting COVID-19 patients using chest X-ray scans.
Initially, the models are separately taught to produce self-contained forecasts and then
integrated using weighted average ensembling to predict a class value. In [48], using
chest X-ray images as inputs, an automated CNN model is constructed and suggested to
classify COVID-19 into four severity classes: COVID-19 (Mild), COVID-19 (Moderate),
COVID-19 (Severe), and COVID-19 (Critical). The model produced an average accuracy
of 95.52%. Almost all of the hyper-parameters in the CNN are tuned automatically by the
grid search optimizer.
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The authors in [49] proposed two algorithms for COVID-19 detection, including DNN
techniques based on the fractal characteristic of data and CNN methods based on lung
images. The classification results indicate that the provided CNN architecture is more
accurate (93.2%) than the DNN technique (83.4%). Deep learning techniques, the fine-
tuning of pre-trained CNNs, and the end-to-end training of a built CNN model were
utilized in this research [50] to detect COVID-19 and normal chest X-rays. Pre-trained deep
CNN models were employed for deep feature extraction. An SVM classifier was utilized in
conjunction with several kernel functions to classify the deep features. Additionally, the
fine-tuning technique employed the previously pre-trained deep CNN models.

The authors of this article [51] develop a Multi-scale Adaptive Residual Neural Net-
work (MARnet) for the purpose of classifying chest X-ray scans of lung illnesses. To
improve the model, the authors extract image characteristics and cross-transfer the infor-
mation retrieved from the residual block and the information extracted from the adaptive
structure to a separate layer, avoiding the residual structure’s reducing influence on the
adaptive function. The accuracy gained by the literature investigations is summarized
in Table 1.

Table 1. A summary of related studies on lung disease classification.

Reference Year Classes Disease Data
Type Model Performance

Accuracy

[37] 2021 4 Normal, COVID-19, Pneumonia, Lung cancer X-ray, CT

VGG19-CNN 98.05%
ResNet152V2 95.31%

ResNet152V2 + GRU 96.09%
ResNet152V2 +

Bi-GRU 93.36%

[38] 2020 15

No finding, Infiltration, Mass, Effusion, Atelectasis, Nodule, Pneumothorax,
Consolidation,

Plural thickening, Hernia, Cardiomegaly, Emphysema, Edema, Fibrosis,
Pneumonia

X-ray

Vanilla Gray 67.8%
Vanilla RGB 69%

Hybrid CNN VGG 69.5%
VDSNet 73%

Modified CapsNet 63.8%
Basic CapsNet 60.5%

[39] 2021 3 Normal, Pneumonia, COVID-19 X-ray CNN + HOG 92.95%

[40] 2020 10 Infiltration, Mass, Effusion, Atelectasis, Nodule, Pneumothorax,
Consolidation, Emphysema, Edema, Fibrosis X-ray UCMobN 85.62%

[41] 2021 2 Pleural effusion, Normal X-ray CNN 95%

[42] 2021 3 Normal, COVID-19, SARS X-ray

DeTrac + AlexNet 95.66%
DeTrac + VGG19 97.53%
DeTrac + ResNet 95.66%

DeTrac + GoogleNet 94.71%
DeTrac + SqueezNet 94.90%

[43] 2021 14
Atelectasis, Cardiomegaly, Consolidation, Edema, Mass, Effusion,

Emphysema, Nodule,
Pneumothorax, Fibrosis, Infiltration, Plural thickening, Pneumonia, Normal

X-ray
DenseNet121 40.43%

InceptionResNetV2 41.02%
ResNet152V2 37.60%

[44] 2021 2 COVID-19, Not-COVID-19 X-ray Mask R-CNN 96.98%

[45] 2021 3 No finding, COVID-19, Pneumonia X-ray CNN 87%

[46] 2020 2 Normal, Pneumonia X-ray

VGG16 96.81%
VGG19 96.58%

NasNetMobile 83.37%
ResNet152V2 96.35%

InceptionResNetV2 94.87%

[47] 2021 2 Normal, COVID-19 X-ray

INceptionV3 90.43%
ResNet50V2 91.11%
DenseNet201 91.11%

Combined Proposed
Model 91.62%

[48] 2021 4 COVID-19 (Mild), COVID-19 (Moderate), COVID-19 (Severe), COVID-19
(Critical) X-ray Novel CNN 95.52%

[49] 2020 2 Normal, COVID-19 X-ray DNN 83.4%
CNN 93.2%

[50] 2021 2 Normal, COVID-19 X-ray
ResNet50 + SVM 94.7%

Fine-Tune ResNet50 92.6%
End-to-End training of

CNN 91.6%

[51] 2022 4 Nodules, Atelectasis,
Infection, Normal X-ray MARnet 83.3%
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3. Datasets

In the study, X-ray images of chests were collected from multiple sources. The datasets
were collected from databases such as GitHub, Kaggle, and NIH Clinical Center [21–36].
The collective dataset is a combination of 16 datasets and contains 85,105 frontal chest
X-ray images. The collection consists of 10 classes of X-ray images that include COVID-19
(15,660 images), Effusion (13,501 images), Lung Opacity (7179 images), Mass (5603 images),
Nodule (6201 images), Pulmonary Fibrosis (3357 images), Pneumonia (9878 images), Pneu-
mothorax (6870 images), and Tuberculosis (3184 images), in addition to the Controlled
(13,672 images) class. Table 2 contains the information of the sources of data collected for
each class. The age frequency of the dataset is between 1 and 89 years. The data of both
male and female patients are included in the dataset. The study is conducted to identify
lung disease irrespective of age and gender. A sample of the raw dataset is presented in
Figure 2.

Table 2. The raw dataset’s description.

No. Disease Data Reference

1. Control 13,672 [21–23,26–28,31]
2. COVID-19 15,660 [21,22,24,25,28,31]
3. Effusion 13,501 [30,32–34]
4. Lung Opacity 7179 [31,35]
5. Mass 5603 [30,33]
6. Nodule 6201 [30,33]
7. Pulmonary Fibrosis 3357 [28,30,33]
8. Pneumonia 9878 [21–23,28,31]
9. Pneumothorax 6870 [29,30,33]
10. Tuberculosis 3184 [24,26–28,36]

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 7 of 32 
 

 

8. Pneumonia 9878 [22–24,29,32] 
9. Pneumothorax 6870 [30,31,34] 
10. Tuberculosis 3184 [25,27–29,37] 

 
Figure 2. Sample dataset of the ten classes, including Control, COVID-19, Effusion, Lung Opacity, 
Mass, Nodule, Pulmonary Fibrosis, Pneumonia, Pneumothorax, and Tuberculosis. 

3.1. Dataset Preprocessing 
The X-ray data are gathered from a variety of sources, due to the fact that the CNN 

model used for classification needs clean, enhanced, and balanced picture data. To feed 
the model with a high-quality picture, image-preparation and image-balancing tech-
niques are utilized. This section discusses in depth the image-processing methods. 

3.1.1. Image Denoising 
Autoencoder is a reasonable solution because of its implementation in denoising, 

which has a lot of potential for the extraction of features and data-component identifica-
tion, which are the early stages before entering further into imaging analysis and pro-
cessing. The Denoising Autoencoder (DAE) acquires the input parameters during picture 
reconstruction, leading to an overall improvement in latent representational extraction 
[53].  

As part of the training of the model, denoising is a smart option as it preserves input 
info (input encode) and tries to eliminate noise from the auto-encoder input. The DAEs 
have been demonstrated to be edge detectors for natural picture patches and bigger stroke 
detectors for digit images, respectively [54]. Finally, DAEs outperform standard denoising 
filters because they can be adjusted to the input, while traditional filters are not data-spe-
cific. The autoencoder consists of an encoder and a decoder at a high level. “Autoencoder” 
is a term that refers to the automated functions of these two sections. The encoder reduces 
the dimensionality of the input signal to a more compressed latent state, while the decoder 
reverses the encoder’s work on the decoded output to recreate the original picture. The 
latent state of an image cannot be reconstructed by traditional autoencoders. Another var-
iant of this is to delete portions of the input rather than adding noise to the input, in order 
for the model to learn to forecast the original picture.  

The dataset (image size: 224 × 224 pixel) has been used to implement the DAE. The 
CNN is used in this approach. Due to its efficacy in capturing spatial details, the CNN is 

Figure 2. Sample dataset of the ten classes, including Control, COVID-19, Effusion, Lung Opacity,
Mass, Nodule, Pulmonary Fibrosis, Pneumonia, Pneumothorax, and Tuberculosis.

3.1. Dataset Preprocessing

The X-ray data are gathered from a variety of sources, due to the fact that the CNN
model used for classification needs clean, enhanced, and balanced picture data. To feed the
model with a high-quality picture, image-preparation and image-balancing techniques are
utilized. This section discusses in depth the image-processing methods.
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3.1.1. Image Denoising

Autoencoder is a reasonable solution because of its implementation in denoising,
which has a lot of potential for the extraction of features and data-component identification,
which are the early stages before entering further into imaging analysis and processing. The
Denoising Autoencoder (DAE) acquires the input parameters during picture reconstruction,
leading to an overall improvement in latent representational extraction [52].

As part of the training of the model, denoising is a smart option as it preserves input
info (input encode) and tries to eliminate noise from the auto-encoder input. The DAEs
have been demonstrated to be edge detectors for natural picture patches and bigger stroke
detectors for digit images, respectively [53]. Finally, DAEs outperform standard denoising
filters because they can be adjusted to the input, while traditional filters are not data-specific.
The autoencoder consists of an encoder and a decoder at a high level. “Autoencoder” is
a term that refers to the automated functions of these two sections. The encoder reduces
the dimensionality of the input signal to a more compressed latent state, while the decoder
reverses the encoder’s work on the decoded output to recreate the original picture. The
latent state of an image cannot be reconstructed by traditional autoencoders. Another
variant of this is to delete portions of the input rather than adding noise to the input, in
order for the model to learn to forecast the original picture.

The dataset (image size: 224 × 224 pixel) has been used to implement the DAE. The
CNN is used in this approach. Due to its efficacy in capturing spatial details, the CNN is
the chosen neural network for image dataset analysis. The DAEs procedure begins with
the dataset being loaded and the pixel values being normalized. The random noise is then
applied to the train and test sets through the function “np.random.noise”. Thus, the noisy
picture will be utilized as the feed for the encoder and the principal images as the output
for training/testing the model. The formula “F(X) = Y” is essentially used, where X is the
source noise-free picture, and Y is indeed the noisy image.

During training, a loss function similar to the root mean squared error (RMSE) is set,
and the network estimates and tries to decrease the losses among the denoised images
(reconstructed pictures) from the decoder and the raw picture in each iteration. From
Equation (1), the validation loss is measured by considering the network output (yi) to the
actual output (yi), and as the network advances on inputs, this loss may be predicated on a
loss function, where L is the individual loss calculated by taking into account the difference
between the predicted and the actual output.

J = 1/N ∑ Ni = 1L
(

yi, yi

)
(1)

The architecture of a convolutional neural network is characterized as having two key
components: an encoder that performs feature extraction and a decoder. Essentially, the
encoder scans the picture using filters and increases the depth of the image to allow for
greater feature extraction, while the decoder reconstructs the same image. The results after
denoising images are exhibited in Figure 3.

3.1.2. Image Annotation Remove

The objective of image text erasing is to enshrine the text and replace it with a visually
convincing backdrop while leaving the non-text sections untouched. The following are
the difficulties associated with deleting the scene text: (1) image text removing methods
should be capable of anticipating the text’s stroke-level position, which is more complicated
than the bounding-box-level scene text recognition methods that have been extensively
researched [54]; (2) after trying to remove words, the source text region must be loaded
with a fresh visually plausible background; and (3) non-text regions should retain their
original appearance. The EnsNet [55] network is used to remove text from images. It is
made of three seamlessly linked modules: (1) the refine generating core; (2) the finely tuned
module; and (3) the EnsNet discriminator. The network is end-to-end trainable with an
extraordinarily high efficiency.
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EnsNet is made up of two fundamental components: a generator G and a discriminator
D. EnsNet aims to construct a non-text picture y that is as real as appropriate, given a scene
text image x and a ground truth z, by solving the optimization problem [56], which may be
described using Equation (2).

minGmaxDEx∼pdata(x) , z[log(1− D(x, G(x, z)))] + Ex∼pdata(x) , z[log D(x, y)] (2)

Here, G is composed of three modules that are mutually promoted: (1) a lightweight
Fully-Convolutional Networks (FCN) core, (2) lateral connections, and (3) reduced loss.

(1) The FCN is composed of a convolutional and a deconvolutional route. The former
makes use of a low-power Resnet18 network. To forecast the text/non-text score map, the
1 × 1 convolutional layer transformed with the last layer is put on top of the Resnet18’s
final convolutional layer. The deconvolution route is composed of 5 deconvolutional layers,
each having a kernel size of 4, a stride step size of 2, and a padding size of 1.

(2) The lateral connections often are thought to have better semantics, while the
higher-level features have weaker semantics but include more specific information, such
as pixel-level color, texture, and object location information [57]. As a result, they created
lateral links to relate higher-level semantics to lower-level features. A transforming block
and an upsampling block are included in the proposed lateral connection. The transforming
block begins with a shrinking layer that uses a 1 × 1 convolution to minimize the feature
dimensions. Following that, two convolutional layers of the same size (3 × 3) are stacked to
provide a nonlinear transformation that not only replaces the sizable convolution layer [58]
but also improves the processing efficiency. Finally, an expanding layer is utilized to
reverse the shrinking step by enlarging the convolutional feature channels using a 1 × 1
convolution. The transformation block accepts as input the Residual2b to Residual5b of
the Resnet18. In addition, a deconvolutional layer is employed to increase the feature
map in the upsampling block [59]. The upsampled features maps are then added element-
by-element to the converting block’s corresponding ones. Additionally, unlike earlier
CNN-based approaches, all ReLU/LeakyReLU levels, except those in the convolution
route, are replaced with ELU layers after each layer.

(3) Refined loss algorithms take into account both per-pixel reconstruction accuracy
and composition, such as how well text sections blend into their surrounding context.
This generative network is equipped with four functions: (i) loss of multiscale regression,
(ii) loss of content, (iii) loss of texture, and (iv) loss of total variation.
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In the multiscale regression loss, an input picture containing text Iin, an initial binary
mask M, a generator output Iout, a ground truth image Igt, and extracted features from
several deconvolutional layers are provided to generate outputs of varying sizes. This
allows for the gathering of additional contextual information at various sizes, where Iout(i)
denotes the ith deconvolutional output, Mi and Igt(i) denote the segmentation masks and
ground truth with the same scale as Iout(i), and weights are given of the relevance of the
text and non-text areas. The weight of the ith scale is denoted by λi. The loss function for
the multiscale regression is defined in Equation (3).

Lm
(

M, Iout, Igt
)
= ∑n

i=1 λi

(
‖ Mi �

(
Iout(i) − Igt(i)

)
‖ 1 + α ‖ (1−Mi)�

(
Iout(i) − Igt(i)

)
‖ 1

)
(3)

The content loss function has been shown to be effective for recreating high-level
features [60]. To further improve the speed of text erasing, also included are the content
limits on the high-level characteristics, as described in Equation (4); it refers to them as
content loss, where Icomp is the output image Iout, with Iout’s non-text areas set towards the
ground truth. The activation map for the nth chosen layer is denoted by An.

LC = ∑N−1
n=1 ||(An(Iout)− An

(
Igt

)
||1) + ∑N−1

n=1 ||(An
(

Icomp
)
− An

(
Igt

)
||1) (4)

The texture loss should be included in the optimization process as well. As a result,
texture degradation is introduced, ensuring that the recovered text portions match the
non-text sections. The current success of neuronal style transfers [61] has prompted the loss.
Before performing the L1 loss, which may be described by Equations (5) and (6), texture
loss conducts the autocorrelation [62] on every high-level feature map. When (HnWn) × Cn
denotes the form of the high-level activation map (An), the discrepancy between the texture
appearances of the text and non-text areas is penalized so that the network may collect the
global style characteristics for more fairly shifting the textual areas. Again, loss terms are
included for both the unprocessed result Iout and the text-erased areas’ output Icomp.

LTout = ∑N−1
n=1 ||

1
Cn HnWn

((An(Iout))
T(An(Iout))− (

(
An

(
Igt

))T(An
(

Igt
))
||1 (5)

LTcomp = ∑N−1
n=1 ||

1
Cn HnWn

(
(

An
(

Icomp
))T(An

(
Icomp

))
− (

(
An

(
Igt

))T(An
(

Igt
))
||1 (6)

The loss of total variation Ltv is intended to achieve global denoising, as specified
in Equations (7) and (8), where i and j denote the pixel dimensions. In Equation (8), the
hyper-parameters, λe, λi, and λt, determine the balance of the four losses.

Ltv = ∑i,j ||I
i,j
out − Ii+1,j

out ||1+||I
i,j
out − Ii,j+1

out ||1 (7)

Lre f ined = LM + λeLc + λiLT + λtLtv (8)

To distinguish between false and genuine photos, the initial GANs [63] differentiate the
results at the entire image level. However, as the non-text portions comprise a large amount
of the picture and are often genuine, it is difficult for the discriminator to concentrate
on the text sections. As a result, it is natural to build a local-aware discriminator that is
conscientious about the consistency between the text-erased patches and their underlying
texture. The output after applying the image annotation method is (EnsNet) illustrated in
Figure 4. In this figure, the annotations marked in red circles.
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3.1.3. Image Enhancement (CLAHE)

To enhance the contrast of an image, Contrast Limited Adaptive Histogram Equal-
ization (CLAHE) is utilized. CLAHE is a more advanced version of Adaptive Histogram
Equalization (AHE). The research in [64] examined the two approaches and stated why
CLAHE is preferable to AHE. CLAHE was developed to improve the quality of the imaging
of complex structures in medicine [65]. CLAHE improves the local contrast of medical
imaging and its usability [66].

CLAHE has been shown to be effective at enhancing low-contrast pictures [67]. The
CLAHE method divides the pictures into contextual sections known as tiles and generates
a histogram of each one and approximates the result to a given histogram distribution
parameter. The study in [68] provided a concise description of the mathematical formulas
regulating CLAHE. Imagine that a picture is N × N pixels in size and each tile in the image
is n× n pixels in size. The overall quantity of tiles is then calculated using Equation (9),

T =
N × N
n× n

(9)

The necessary histograms of the above tiles are constructed by exploiting the clip limit,
CL as specified in Equation (10).

CL = NCL × NAVG (10)

Here, NCL stands for Normalized Contrast Limit. NAVG is the average count of pixels
in the picture. The ratio of NAVG is determined using Equation (11).

NAVG =
Nx × Ny

Ng
(11)

Here, Ng, Nx, and Ny in the equation represent the number of grayscales, the pixel
size in the x dimension, and the pixel size in the y dimension, respectively, in the tile. The
number of mean values of clip pixels is calculated using Equation (12).

Ncp =
N ∑ CL

Ng
(12)
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Here, CL stands for clipped pixels, while N ∑ CL stands for the overall number of CL.
Some pixels remain after the Ncp is spread across the various gray levels. It is used to
redistribute the leftover pixels, using Equation (13).

R =
Ng

Nr
(13)

where R is calculated by dividing Ng by the image pixels to be reallocated, Nr. To reduce
false borders in the image data, bi-linear interpolation is used to combine neighboring tiles.

In order to overcome the limitations of global approaches, the CLAHE methodology
focuses on increasing local contrast. The size of the tiles and the clip limit are key hyper-
parameters for this approach. An erroneous selection of hyper-parameters may have a
significant impact on the quality of the picture. Numerous values for these parameters are
evaluated, and the ones that provide the best results are picked for tileGridSize (10, 10), the
clip limit (3). An image histogram of the CLEHE and the raw pictures is created to indicate
the intensity levels of the image pixels. A statistical representation of the pictures is used
in the study, with an intensity range of pixel 0–255. As seen in the histogram, the contrast
of a CLAHE picture is significantly superior to that of the original raw image. The output
results after applying CLEHE are shown in Figure 5.
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Effusion, Lung Opacity, Mass, Nodule, Pulmonary Fibrosis, Pneumonia, Pneumothorax, and Tuber-
culosis, applying several tileGridSize (10, 10) and clip limit (3) permutations.

3.1.4. Filter Apply

The last enhancing technique in this research is to apply a filter. The fundamental
concept of filtering is that single pixels in a picture are given a new value based on the
values of the adjacent pixels within a specific zone. Different filters generate their output
by doing various computations on the neighborhood. This filtering technique is used
to enhance the image’s properties and render it more identical to the model for training,
validation and testing. As shown in Figure 6, multiple filters (5 Ramps, 3-3-2 RGB, 6 shades,
16 colors, Blue Orange icb, Spectrum, Fire, Sepia, Cyan Hot, 16 colors, Edges, Phase, Jet,
Green Fire Blue, Thallium, and Viridis) are applied to the X-ray pictures, and the optimum
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filter with the excellent accuracy is chosen. The improved picture is given as output in
Figure 7, following the application of the CLAHE procedures.
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As seen in Figure 6, the lung damage is more easily recognized with Green Fire Blue
(GFB) than with the other filters. However, as indicated in Section (Ablation Study of
the Applied Filters) below, where some other filters have already been evaluated as well.
Furthermore, the GFB filter achieves the desired result on the dataset. To feed the model
with a better image and obtain a satisfactory result, we performed a variety of preprocessing
approaches to the dataset, including image denoising, image annotation removes, image
enhancement using CLAHE, and image filtering. Figure 7 depicts the final result after
using all of the picture preparation techniques described.

Ablation Study of the Applied Filters

A number of preprocessing techniques were applied to the dataset to obtain a satisfying
outcome. The validation accuracy is given as ‘Val Acc’ in Table 3, whereas the test accuracy
is indicated as ‘T_Acc’; validation loss is indicated as ‘Val_Loss’ and test loss is indicated
as ‘T_Loss’. From Table 3, fifteen filters have been evaluated to feed the model and obtain
the highest accuracy. ‘Green Fire Blue’ achieved the highest of all the filters with Val_Acc
98.03%, along with T_Acc 98.89%, Val_loss 0.11%, and T_Loss 0.09%, respectively.

3.2. Image Augmentation

To perform well, a deep learning algorithm requires a large number of inputs. In
this study, many augmentation techniques are used to increase the enhanced data. By
augmenting the training datasets with extra and unique samples, data augmentation may
help to enhance the performance and results of the machine learning algorithms. If the
datasets used to train the algorithm are suitably large and diverse, the method works better
and is highly accurate. Through the utilization of image augmentation techniques, the
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accuracy of the findings is improved. Additionally, data augmentation techniques are an
excellent tool for diversifying the datasets. Generally, data augmentation techniques have
been used to expand the volume of the training sets in order to provide more relevant
training data to large-capacity learners. However, there is a new tendency developing
among the research community on deep learning in which samples are enhanced through
the test data augmentation method [69–72]. Test data augmentation can help increase the
robustness of a trained model [73–75]. Test data augmentation may be utilized to enhance
deep network prediction performance and open up new intriguing possibilities for medical
image interpretation [76–78]. The most often utilized methods for augmenting data include
rotating, mirroring, flipping, zooming, and cropping.
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Table 3. Analyses of performances of various filters.

Filters Val_Acc (%) Val_Loss (%) T_Acc (%) T_Loss (%) Finding

5 Ramps 63.88 0.89 64.32 0.87 Accuracy Dropped
6 Shades 62.71 0.94 63.45 0.90 Accuracy Dropped

3-3-2 RGB 65.33 0.86 66.01 0.83 Accuracy Dropped
Blue Orange icb 72.59 0.72 73.77 0.68 Accuracy Dropped

16 colors 82.63 0.61 83.09 0.59 Accuracy Dropped
Spectrum 81.19 0.65 81.80 0.61 Accuracy Dropped

Sepia 85.40 0.49 86.90 0.39 Accuracy Dropped
Cyan Hot 85.67 0.45 86.11 0.41 Accuracy Dropped

Edges 83.55 0.57 83.99 0.53 Accuracy Dropped
Fire 87.92 0.37 87.47 0.40 Accuracy Dropped

Green Fire Blue 97.03 0.11 98.89 0.09 Identical Accuracy
Phase 88.76 0.25 88.23 0.29 Accuracy Dropped

Jet 83.52 0.58 83.85 0.54 Accuracy Dropped
Thallium 88.19 0.28 88.99 0.22 Accuracy Dropped

Viridis 95.10 0.19 95.50 0.16 Accuracy Dropped

In this study, the dataset is collected and merged from various sources as the amount
of data in each class is not balanced (see Table 2). To balance the dataset, oversampling and
undersampling methods are utilized. Firstly, a random undersampling strategy is applied
to balance the class (control, COVID-19, Effusion, and Pneumonia) with excessive data. This
method randomly deletes data from the majority classes and the number of data is reduced
to 8000 data per class. Then, the oversampling (data augmentation) strategy is used to
balance the class (Lung Opacity, Mass, Nodule, Pulmonary Fibrosis, Pneumothorax, and
Tuberculosis) with insufficient data. Eight augmentation strategies are used in this study:
Rotate 90◦ left, Rotate 90◦ right, Horizontal flip, Rotate 45◦ Horizontal, Rotate 45◦ Vertical,
Rotate 45◦, Translate and Vertical flip on pre-processed data. Table 4 summarizes all of
the augmentation parameters. After augmentation, the dataset was increased to comprise
80,000 images (Control: 8000, COVID-19: 8000, Effusion: 8000, Lung Opacity: 8000, Mass:
8000, Nodule: 8000, Pulmonary Fibrosis: 8000, Pneumonia: 8000, Pneumothorax: 8000,
Tuberculosis: 8000). Figure 8 shows the outcome of the data augmentation.

Table 4. Value of data augmentation variables.

Augmentation Parameters Value

Rotate left 90◦

Rotate right 90◦

Horizontal flip True
Rotate 45◦

Rotate Horizontal 45◦

Rotate Vertical 45◦

Vertical flip True
Translate x, y (29.0, 14.0)

Before training begins, the dataset must be divided. The X-ray images were divided
into three groups according to the 60:20:20 split across the training, validation, and test sets.
After dividing the 80,000 X-ray images of the dataset into three subsets, the training set
comprises 48,000 X-ray images, the validation set includes 16,000 X-ray images, and the
testing set contains 16,000 X-ray images. Table 5 summarizes the final description of the
dataset after all the pre-processing steps.
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left, Rotate 90◦ right, Horizontal flip, Rotate 45◦ Horizontal, Rotate 45◦ Vertical, Rotate 45◦, Translate,
Vertical flip.

Table 5. The final dataset after pre-processing.

Features Properties

Number of Images 80,000
Number of Classes 10

Enhancement and Color Grading CLAHE, Green Fire Blue
Number of Augmentation Techniques 8

Control 8000
COVID-19 8000
Effusion 8000

Lung Opacity 8000
Mass 8000

Nodule 8000
Pulmonary Fibrosis 8000

Pneumonia 8000
Pneumothorax 8000

Tuberculosis 8000

4. Proposed Model

One of the primary objectives of this study is to produce adequate classification results
utilizing the transfer learning models on the merged dataset. Eight pre-trained models,
including AlexNet, GoogLeNet, InceptionV3, ResNet50, MobileNetV2, EfficientNetB7,
DenseNet121, and VGG16, are evaluated to determine the most efficient transfer learning
method for the classification assignment. By adding several layers to the VGG16 model, a
customized fine-tuned transfer learning method was developed and deployed to achieve
the highest accuracy among all the other pre-trained models.

4.1. Transfer Learning Models
4.1.1. AlexNet

AlexNet is a popular convolutional neural network model. Max pooling, convolutions
and dense layers are among the key building components. The model is fitted using
grouping convolutions over two GPUs. Alexnet is made of eight layers within each set of
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learnable parameters. The model consists of five convolutional layers that combine fully
connected and max pooling layers, along with two normalizing layers and one softmax
layer. Each layer is built of a convolutional layer and an ReLU-based nonlinear activation
function. Max pooling is accomplished by the usage of pooling layers. The input size
224 × 224 × 3 pixel is fixed due to the perceived layers. An RGB image is created whenever
a gray picture is utilized as an input, and this is done by multiplying the single channel.
The batch size is 128, and the model includes 60 million parameters.

4.1.2. GoogLeNet

GoogLeNet is a convolutional neural network architecture modeled after the inception
architecture. Googlenet attempts to increase computing efficiency by using an iterative
algorithm as the fundamental layer. Subsequent layers are added on top of each other and
perform parallel filtering on the input from the preceding layer. It makes use of inception
modules, which let the network choose from a range of convolutional filter sizes inside each
block. With a stride of two, these modules may be layered on top of each other to create
an inception network that reduces the grid’s resolution. In comparison to the inception
design, GoogLeNet is a deep neural model with 22 layers and fewer parameters. The
network has been pre-trained to accept pictures with a quality of 224 × 224 pixel. The
design is composed of three layers: Activation, AveragePooling2D, and Dense. Global
average pooling was used in GoogLeNet rather than a fully connected layer.

4.1.3. InceptionV3

InceptionV3 reduces the amount of computer power required by updating prior in-
ception designs. Factorized convolutions, normalization, down sampling, and parallelized
calculations are only a few of the techniques used to minimize the computational cost. The
training time of the InceptionV3 model is decreased by replacing smaller convolutions
with larger convolutions. Numerous optimization techniques for removing restrictions and
increasing the flexibility of an InceptionV3 model have been developed. Data preprocessing
is a vital element as it has a considerable influence on the maximum accuracy of the model
during training. At a minimum, pictures should be classified and scaled to correspond to
the model. Pictures must be 299 × 299 × 3 pixel in size for Inception. Average pooling,
convolutions, max pooling, dropouts, concatenations, and fully-connected layers are used
to create the model. The model makes extensive use of batch normalization on activation
inputs. The loss is calculated using SoftMax.

4.1.4. ResNet50

ResNet50 is a 50-layer neural network (CNN) composed of 48 fully connected layers, a
max pool layer, and an average pool layer. It is capable of doing floating-point calculations
upwards of 3.8 × 109. The ResNet50 architecture makes use of a mixture of convolutional
filters of varying sizes to overcome the decay issue inherent in CNN models and to shorten
the time for training connected with the deep structure. ResNets contain few filters and
so perform more quickly. The performance of the 34-layer ResNet is 3.6 billion FLOPS,
compared with 1.8 billion FLOPS for the shorter 18-layer ResNets. Around 23 million
variables may be used to train this design. The network may accept an input image with
dimensions that are multiples of 32 in width, height, and channel width. Each ResNet
architecture employs a 7 × 7 kernel size for early convolution and a 3 × 3 kernel size for
max pooling, respectively. Each two-layer block in the 34-layer net is substituted with this
three-layer bottleneck block, culminating in a 50-layer ResNet.

4.1.5. MobileNetV2

In MobileNetV2, a unique module which includes an inverting residual structure
is added. MobileNetV2 enables the identification and segmentation of objects at the
cutting-edge of technology. The design of MobileNetV2 starts with a fully connected
convolution layer composed of 32 filters and 19 residual bottlenecks layers. MobileNetV2
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is a convolutional neural network with 53 layers. It is a pre-trained classifier that has
been trained on over a million photos from ImageNet. The network typically needs
3 billion multiply-add processes and makes use of 3.4 million variables. The model was
pre-trained on photos classified into 100 distinct item categories. As a result, the network
has retrieved a large number of characteristics from a diverse group of photos. The topology
of MobileNetV2 starts with such fully convolutional layers comprised of 32 filters and
19 residual bottlenecks. It is divided into two different blocks, each with three layers. Both
blocks start and conclude with a 1 × 1 convolution layer containing 32 filters, whereas
the second level layer is indeed a depth-wise fully connected layer. Throughout various
levels of the architecture, the ReLU is employed. The difference between the two blocks
lies within the stride size, having blocks 1 stride length of 1, while block two has a stride
length of 2.

4.1.6. EfficientNetB7

A new benchmark network was developed utilizing the AutoML MNAS architecture
to boost performance, which increases the overall effectiveness and precision (FLOPS). In
that it uses mobile inversion bottleneck convolution (MBConv), the resulting architecture is
similar to MobileNetV2 and MnasNet; however, it is somewhat larger due to an increased
FLOP limit. FLOPS are used to evaluate how well the algorithm performs in terms of
correctness and efficiency. The MBConv is used in this architecture. The researchers
subsequently increased the size of this first network in order to create the EfficientNets
series of deep learning models. EfficientNets are a series of models derived from the original
EfficientNet. The pre-trained weights are not included in EfficientNetB7. EfficientNet-B7,
the most recent version of EfficientNet, offers the best accuracy of all of the versions and
requires the fewest parameters.

4.1.7. DenseNet121

In a feed-forward CNN, each convolutional layer saves the first, obtains the output
from the preceding convolutional layer and generates outputs from extracted features
which are then carried onto the next convolutional layer. As a result, there seem to be ‘L’
direct connections between ‘L’ layers, one between every layer and the following layer.
Nevertheless, as the number of hidden layers inside the CNN increases, the ‘vanishing
gradient’ issue becomes apparent. This implies that when the route from the feed to the
production layers becomes longer, some information may ‘vanish’ or get lost, impairing the
network’s capacity to train properly. DenseNets address this issue by altering the typical
CNN design and streamlining the layer connection pattern. Each layer in a DenseNet
design is directly linked to every other layer, resulting in the term Densely Linked Convo-
lutional Network. Between ‘L’-levels, there are L(1 + 1)/2 direct links. No average is used;
instead, the extracted features from previous levels are combined and used as inputs in the
subsequent layers. By rejecting duplicate feature maps, DenseNets are able to reuse features
as they need less parameters than a similar traditional CNN. In dense blocks, the quantity
of filters fluctuates; however, the size of the feature maps does not. These intermediate
layers, known as transition layers, are accountable for down-sampling the picture utilizing
batch normalization, 1 × 1 convolution, and 2 × 2 pooling layers.

4.1.8. VGG16

The VGG16 DCNN model was developed by Simonyan and Zisserman [79]. Increas-
ing the depth of the VGG model may help the kernels in learning more complex properties.
A pre-trained VGG16 network beat the fully trained networks by a large margin in experi-
ments on the effectiveness of transfer learning [80]. This network is trained on images from
the ImageNet collection totaling over a million. The network is composed of 16 layers and
is capable of recognizing images belonging to a variety of categories. The conv1 layer is fed
224 × 224 RGB pictures of standard size. The picture is convoluted using a succession of
filters tuned to create the lowest possible receptive field: 3 × 3. Furthermore, one of the
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pairings utilizes a 1 × 1 convolutional filter, which changes the input channels linearly. The
stride of convolution is set to one pixel, and the spatial padding of the convolution layers’
input is adjusted to retain spatial resolution after convolution. Padding, for example, is 1
pixel for 3 × 3 convolutional layers. Following the convolutional layers, five max-pooling
layers are employed to achieve spatial pooling. Stride 2 is being utilized to perform max-
pooling operations across 2 × 2 pixel frames. Three convolutional layers are placed on top
of one another. The first two contain 4096 channels, respectively, whereas the third does
ILSVRC classification on a 1000-way basis. Finally, there is a softmax layer. In all networks,
the structure of the entire linked levels is the same.

4.1.9. LungNet22

In terms of classification performance, the fine-tuned VGG16 architecture named
LungNet22 surpasses the other eight model architectures discussed above. As a conse-
quence, the LungNet22 model is proposed and validated using our merged dataset, which
is constructed on VGG16 architecture. Furthermore, ablation research is being carried
out to improve the architecture’s endurance concerning lung disease classification. The
architecture of the model is illustrated in Figure 9.
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The dataset contains 80,000 images classified into ten categories: Control, COVID-19,
Effusion, Lung Opacity, Mass, Nodule, Pulmonary Fibrosis, Pneumonia, Pneumothorax
and Tuberculosis. The dataset is divided into 60% for training, 20% for validation, and
20% for testing. All tests were conducted on an AMD Ryzen 7 3800X, with base clock
3.90–4.50 GHz CPU with eight (32 MB L3 cache, storage speed = 3200 MHz) cores and
sixteen threads, 64 GB of RAM, and the Anaconda 3 (Jupyter Notebook) platform. It is
integrated with an AMD Radeon RX 580 series GPU. The Python programming language
is used to obtain the findings.



J. Pers. Med. 2022, 12, 680 19 of 29

LungNet22 is formed by connecting two blocks after VGG16’s fifth block. The sixth
block has three convolutional layers and one GlobalAveragePooling2D layer, while the
seventh block contains a flatten layer connected to a dense layer. As the input layer of the
network default required a size of 224 × 224 × 3 pixel for the picture, it is an RGB image.
The first block in this proposed architecture has two convolutional layers with 64 channels
of 3 × 3 kernel size, an ReLU activation function, and the same padding preceded by a
Maxpooling2D layer of 2 × 2 stride and a pool size of 2 × 2. Similar to the first block, the
second block has two convolution layers with 128 channels of kernel size 3 × 3, an ReLU
activation function and the same padding preceded by a Maxpooling2D layer with a stride
of 2× 2 and a pool size of 2× 2. In blocks 3, 4, and 5 are three convolutional layers followed
by one Maxpooling2D layer. These three convolutional layers have channel lengths of 256,
512, and 512, sequentially, with the same kernel size of 3 × 3, the same padding, and an
ReLU activation function. All of these blocks with a Maxpooling2D layer also performed
as a last layer with a stride and a pool size of 2 × 2. Each Maxpooling2D layer compresses
the input image to twice its initial value size.

Block six has three convolutional layers preceded by a GlobalAveragePooling2D layer.
The convolutional layers have the same kernel size of 3 × 3, the same padding, and an
ReLU activation function with 512 channels. A flatten layer has been also added in block 7,
connected to dense a layer which outputs for the 10 classes. The Softmax activation and
Adam optimizer were applied to the final layer. A speed of learning of 0.000001 is used
throughout the method. Finally, we assessed the accuracy, recall, precision, and f1-score.

4.2. Ablation Study of the Proposed Model (LungNet22)

Four experiments were conducted as an ablation study by modifying various aspects
of the proposed LungNet22 architecture depending upon the fine-tuned VGG16 model.
By modifying different components, it is possible to develop a more resilient architecture
with increased classification accuracy. The following aspects were subjected to an ablation
study: Global AveragePooling2D (GAP2D), Flatten layer, Loss function, Optimizer, and
Learning rate.

4.2.1. Ablation Study 1: Changing GlobalAveragePooling2D Layer

In this study, the validation loss is indicated by the abbreviation ‘Val_Loss’; the
validation accuracy is represented by the abbreviation ‘Val_Acc’; the test loss is defined
by the abbreviation ‘T_Loss’; and the test accuracy is stated by the abbreviation ‘T_Acc’.
Table 6 shows that for the GlobalAveragePooling2D layer, the LungNet22 has the greatest
results, with a Val_Acc of 97.03% and a T_Acc of 98.89%. However, the accuracy of the
GlobalMaxPooling2D, AveragePooling2D, and Maxpooling2D layers decreases slightly,
with Val_Acc values of 95.73%, 94.92%, and 95.77%, and T_Acc values of 96.12%, 95.30%,
and 96.19%, consecutively.

Table 6. Changing the GlobalAveragePooling2D (GAP2D) layer to evaluate the ablation study.

Case Study Layer Name Val_Acc
(%)

Val_Loss
(%)

T_Acc
(%)

T_Loss
(%) Finding

1

GlobalAveragePooling2D 97.03 0.11 98.89 0.09 Identical Performance
GlobalMaxPooling2D 95.73 0.27 96.12 0.23 Accuracy Dropped

AveragePooling2D 94.92 0.35 95.30 0.27 Accuracy Dropped
MaxPooling2D 95.77 0.21 96.19 0.25 Accuracy Dropped

4.2.2. Ablation Study 2: Changing the Flatten layer

The validation accuracy is labeled ‘Val_Acc’; the validation loss is labeled ‘Val_Loss’;
the test accuracy is labeled ‘T_Acc’; and the test loss is labeled ‘T_Loss’. GlobalAveragePool-
ing2D, GlobalMaxPooling2D, AveragePooling2D, and Maxpooling2D change the flatten
layer to see how it affects the model effectiveness. As shown in Table 7, GlobalAverage-
Pooling2D’s accuracy drops marginally with the T_Acc of 96.94%. The network achieves
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the lowest results for GlobalMaxPooling2D, AveragePooling2D, and Maxpooling2D, re-
spectively, with T_Acc values of 91.12%, 93.21%, and 95.16%.

Table 7. Changing the Flatten layer to evaluate the ablation study.

Case Study Layer Name Val_Acc
(%)

Val_Loss
(%)

T_Acc
(%)

T_Loss
(%) Finding

2

Flatten 97.03 0.11 98.89 0.09 Identical Performance
GlobalAveragePooling2D 96.12 0.25 96.94 0.22 Accuracy Dropped

GlobalMaxPooling2D 90.73 0.67 91.12 0.58 Accuracy Dropped
AveragePooling2D 92.95 0.53 93.21 0.47 Accuracy Dropped

MaxPooling2D 94.78 0.40 95.16 0.36 Accuracy Dropped

4.2.3. Ablation Study 3: Changing Loss Functions

To identify the ideal loss function for the new proposal, a variety of loss functions
were explored, namely Cosine Similarity, Categorical Crossentropy, and Mean Squared
Error. Table 8 illustrates the model’s performance using the specified loss functions. When
fitted with Categorical Crossentropy, the model achieved the maximum test accuracy of
98.89 percent. The loss functions for Cosine Similarity and Mean Squared Error resulted
in a modest decrease in test accuracy of 96.16% and 94.20%, respectively. To attain the
greatest classification performance, the Categorical Crossentropy loss function was selected
for further exploration.

Table 8. Changing the Loss Function to evaluate the ablation study.

Case Study Loss Function Val_Acc
(%)

Val_Loss
(%)

T_Acc
(%)

T_Loss
(%) Finding

3
Categorical Crossentropy 97.03 0.11 98.89 0.09 Identical Performance

Mean Squared Error 93.77 0.67 94.20 0.58 Accuracy Dropped
Cosine Similarity 95.82 0.41 96.19 0.37 Accuracy Dropped

4.2.4. Ablation Study 4: Changing Optimizer and Learning Rate

The validation loss is labeled ‘Val_Loss’; the validation accuracy is labeled ‘Val_Acc’;
the test loss is labeled ‘T_Loss’; and the test accuracy is labeled ‘T_Acc’. As shown in Table 9,
the optimizer ‘Adam’ with a learning rate of 0.000001 increased the model performance
with the T_Acc of 98.89% and the Val_Acc of 97.03%. The ‘Adam’ optimizer still had
the least T_Loss of 0.09, with a learning rate of 0.000001. Other optimizers, such as SGD,
RMSprop, and Nadam, scored very efficiently in our model, with T Acc values above 90%.

Table 9. Changing Optimizer and Learning rate to evaluate the ablation study.

Case Study Optimizer Learning Rate Val_Acc
(%)

Val_Loss
(%)

T_Acc
(%)

T_Loss
(%) Finding

4 Adam

0.000001 97.03 0.11 98.89 0.09 Identical
Performance

0.0001 94.50 0.64 95.07 0.47 Accuracy
dropped

0.00001 95.61 0.46 96.22 0.36 Accuracy
dropped

0.001 93.35 0.69 93.98 0.65 Accuracy
dropped

0.01 91.96 0.77 92.35 0.71 Accuracy
dropped
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Table 9. Cont.

Case Study Optimizer Learning Rate Val_Acc
(%)

Val_Loss
(%)

T_Acc
(%)

T_Loss
(%) Finding

SGD

0.000001 95.12 0.27 95.88 0.21 Accuracy
dropped

0.0001 94.83 0.65 95.15 0.60 Accuracy
dropped

0.00001 94.97 0.63 95.70 0.58 Accuracy
dropped

0.001 90.65 0.80 92.08 0.75 Accuracy
dropped

0.01 92.57 0.72 93.75 0.64 Accuracy
dropped

RMSprop

0.000001 94.57 0.64 94.90 0.49 Accuracy
dropped

0.0001 92.27 0.69 93.20 0.57 Accuracy
dropped

0.00001 93.06 0.58 94.51 0.68 Accuracy
dropped

0.001 92.13 0.72 93.90 0.51 Accuracy
dropped

0.01 91.74 0.80 92.56 0.62 Accuracy
dropped

Nadam

0.000001 95.06 0.25 95.89 0.23 Accuracy
dropped

0.0001 94.26 0.75 95.11 0.68 Accuracy
dropped

0.00001 94.76 0.70 95.32 0.65 Accuracy
dropped

0.001 93.44 0.72 94.81 0.70 Accuracy
dropped

0.01 92.35 0.65 94.20 0.67 Accuracy
dropped

5. Results

The study used a total of 80,000 frontal chest X-ray image data that were divided into
10 classes, namely Control, COVID-19, Effusion, Lung Opacity, Mass, Nodule, Pulmonary
Fibrosis, Pneumonia, Pneumothorax, and Tuberculosis. Each class contains 8000 image
data. These data are preprocessed before CNN models are applied to them. All the images
in the balanced dataset are resized to 224 × 224 pixel to ensure the same scale. The dataset
is divided into training, validation, and test sets. The training set is comprised of 60% or
48,000 data. The validation and test sets are both made up of 20% data from that dataset, i.e.,
16,000 data in each set. Initially, eight pre-trained CNN models are trained, validated and
tested. From them, the model with most accurate performance is selected for fine-tuning to
create a novel LungNet CNN model to classify lung disease.

To begin with, eight pre-trained CNN models are trained and tested on the dataset.
The models are AlexNet, GoogLeNet, InceptionV3, ResNet50, MobileNetV2, Efficient-
NetB7, DenseNet121, and VGG16. Each model performance has 300 epochs to classify
the 10 classes. As shown in Figure 10a, VGG16 classifies the data with 92.95% accuracy,
followed by MobileNetV2 with 90.90% accuracy. InceptionV3 classifies data with 88.98%
accuracy. Subsequently, EfficientNetB7, GoogLeNet, DenseNet121, AlexNet, and ResNet50
can classify the data with 87.85%, 81.98%, 80.77%, 78.09%, and 75.85% accuracy, respectively.
From Figure 10b, it is observed that the highest loss is shown by GoogLeNet and the lowest
loss by MobileNetV2, with 0.61% and 0.29%, respectively. The model VGG16 has a loss
of 0.36%.

It is observed that the VGG16 has the highest classification accuracy among the
implemented pre-trained models. Fine-tuning the said model, the proposed LungNet22 is
established. The proposed model performs 300 epochs on the dataset. To optimize loss,
optimizer ‘Adam’ is employed. The learning rate of the model is 0.000001. The model is
fed with pre-processed image of 224 × 224 pixels to achieve optimal accuracy.
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Figure 10. The eight pre-trained models: (a) Accuracy and (b) Loss comparative graph to classify
lung disease.

Figure 11a shows the training and test accuracy of the proposed model over the
300 epochs. It can be observed that the accuracy curve overall has increased significantly
and that with the increasing epoch denotation the performance of the model improves
considerably. In the first epoch, the training accuracy of the model is 53.08% and over the
epochs increased to 96.47% in the last epoch. Similarly, the test accuracy of the first epoch
is 44.6%, which increased to 98.89% in the last epoch. On the other hand, in Figure 11b the
loss curve of the model is presented. Unlike the accuracy curve, the loss value of the model
decreased with each epoch, denoting that the performance of the model increased. Initially,
the training loss was 55.56%, and the test loss was 44.6%. However, on the final epoch, the
training and test loss reduced significantly to 0.15% and 0.09%, respectively.
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‘Adam’ optimizer with learning rate 0.000001.

The proposed LungNet22 can successfully classify lung disease with high accuracy.
The test set contains a total of 16,000 image data. Each of the 10 classes contains 1600 data.
In Figure 12, the confusion matrix of the model is illustrated. According to the confusion
matrix, the model can classify a total of 15,823 data correctly. Of these, 1597 belong to the
Control class and 1584 belong to the COVID-19 class. The model can accurately classify 1573,
1594, and 1560 data from the Effusion, Lung Opacity, and Mass classes, respectively. From
the classes of Nodule, Pulmonary Fibrosis, Pneumonia, Pneumothorax, and Tuberculosis,
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the model can correctly identify 1586, 1580, 1561, 1592, and 1596 data, respectively. A total
of 177 data are misclassified by the proposed LungNet22 model.
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From the confusion matrix in Figure 12, the performance of Lungnet22 is calculated.
To determine the performance, measures such as accuracy, precision, recall, specificity, and
f1-score are considered where accuracy refers to the percentage of corrected classified data.
Precision refers to the percentage of positive classified data that was relevant. Recall or
sensitivity indicates the percentage of correctly predicted positive data from all the positive
data. Similarly, Specificity denotes the percentage of correctly predicted negative data from
all the negative data. The F1-score expresses the balance between the precision and the
recall values. The mathematical expression of the measures is shown in Equations (14)–(18).

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Precision =
TP

TP + FP
(15)

Sensitivity/Recall =
TP

TP + FN
(16)

Specificity =
TN

TN + FP
(17)

F1− Score = 2
(

Precision× Recall
Precision + Recall

)
(18)

Here, TP or true positive is the number of correctly identified positive data in a class.
TN or true negative refers to the number of correctly identified negative data. FP, also
known as false positive, is the number of negative data identified as positive. Similarly, FN
or false negative is the number of positive data identified as positive.

The performance of the proposed model is analyzed for each class of the dataset. In
Figure 13, the performance measures are shown. It is observed that the model performance
is high for each class. The accuracy and specificity across all the classes remained consider-
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ably consistent at over 99.60% for both. The lowest precision of the model is observed for
the COVID-19 class at 98.32%, and the highest precision is for the Effusion class at 99.49%.
Similarly, the Mass class shows the lowest recall value at 97.50%, and the Control class has
the highest value at 99.81%. Finally, the highest F1-score is achieved in the Tuberculosis
class, and the lowest is in Mass class at 99.32% and 98.11%, respectively.
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A number of research attempts have been performed to improve the practicability and
explicability of deep learning. Additionally, it is vital to enhance the understandability of
deep neural models in various deep learning applications for medical imaging. Selvaraju
et al. [81] demonstrated the functioning of deep learning using a method entitled Gradient
Weighted Class Activation Mapping (Grad-CAM). Grad-CAM visualizes any densely
linked neural network. This enables the model’s extra information to be determined while
performing classification or prediction operations. The input is a standard X-ray image, and
the proposed framework is employed as a detection approach. Grad-CAM is performed to
the final convolution layer just after the proposed model predicts the label. Figure 14 depicts
the heatmaps on the X-ray pictures that are visualized using the proposed methodology.

For performance evaluation of the proposed LungNet22, an ROC (Receiver Operating
Characteristics) curve is constructed for each class. The “one class versus rest” method is
applied for the construction of the ROC curve for a multiclass classification task. An ROC
curve is essentially a Sensitivity vs. 1-Specificity curve, where the values range between 0
to 1, with 1 indicating the best performance and 0 indicating an unsatisfactory performance.
In Figure 15, the ROC curve of each class is presented. From the ROC curve, the AUC (Area
Under Curve) value is computed. The AUC value of each class is recorded. The AUC value
of the Control class is 0.9861. For the COVID-19, Effusion, Lung Opacity, Mass, Nodule,
Pulmonary Fibrosis, Pneumonia, Pneumothorax, and Tuberculosis classes, the AUC value
is 0.9745, 0.9842, 0.9813, 0.9798, 0.9773, 0.9699, 0.9721, 0.9655, and 0.9895 respectively. The
AUC values overall are close to 1 for the 10 classes in the dataset, indicating that the model
performs very efficiently in the classification of the lung images in each class.
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6. Discussion

The research experiments evaluated the classification and detection of lung diseases,
as well as the diagnosis of various lung diseases (COVID-19, Effusion, Lung Opacity, Mass,
Nodule, Pulmonary Fibrosis, Pneumonia, Pneumothorax, and Tuberculosis) using eight
pre-trained deep CNN models. On the base of a fine-tuned VGG16 model, the LungNet22
model is presented. To determine the best model, several training/validation ratios were
utilized. Aside from accuracy and AUC, the most often utilized performance measures for
lung disease detection are recall, specificity, and the F1 score, which have all been used to
perform an overall study on the predictive accuracy and durability of the models. On our
merged X-ray dataset, the proposed LungNet22 model obtained the highest accuracy of
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98.89%, the highest specificity of 98.893%, the highest F1 score of 0.988, and the highest
recall of 98.893%. Not only do our findings demonstrate a considerable increase in AUC,
but they also give a more comprehensive estimate measure of accuracy, F1 score, specificity,
and recall.

7. Conclusions

Lung illnesses are widespread worldwide. Lung Opacity, COVID-19, Effusion, Mass,
Pulmonary Fibrosis, Nodule, Pneumothorax, Pneumonia, and Tuberculosis are a few
examples of these. It is important to diagnose lung illness quickly. For this objective,
several image processing and artificial intelligence models have been formed. The purpose
of this work is to propose a fine-tuned model called LungNet22 for classifying lung diseases
such as COVID-19, Lung Opacity, Mass, Effusion, Pulmonary Fibrosis, Pneumonia, Nodule,
Pneumothorax, and Tuberculosis along with the Control class. The method of image
annotation removal was utilized to erase the annotations from the images. Additionally,
image enhancement methods were used to increase the quality of the X-ray images. The
pre-processed image dataset was balanced and augmented to 80,000 images using eight
augmentation techniques to increase the volume and balance of each X-ray dataset class.
Eight pretrained classifiers and a fine-tuned model were evaluated to ensure the best level
of accuracy. The structure of LungNet22 is based on the VGG16 model, but with new
layers and hyper-parameters. The hypothesized network was conducted in an ablation
study to determine how well it performed under different hyper-parameter conditions.
LungNet22 scored best while using the Adam optimizer and a learning rate of 0.000001,
with 96.47% training accuracy, 97.03% validation accuracy, and 98.89% testing accuracy.
While performing recognition or prediction operations, the Grad-CAM was used to help
in determining extra information about our proposed model LungNet22. The model with
image processing, fine-tuning, and the ablation experiment has a high rate of accurate
identification. The outcomes of this research demonstrate that image processing and
enhancing and balancing techniques may help improve the model’s performance. As a
future study, our model could be used in the categorization of other diseases using CT-
scan pictures, or a hybrid model could be presented to classify the many types of lung
illnesses. Cross-validation may be used to validate the assessment result and to provide
mean accuracy and standard deviation on the training set as well as accuracy on the test set.

In the supplementary materials there is an instruction video [S1] showing how to run the code
and a bit on the original dataset (the complete runnable code is in the supplementary material file S1,
sample dataset is provided in the supplementary material file S2).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm12050680/s1, Video S1: Instruction file on how to run the code.
File S1: the complete runnable code. File S2: a sample of the dataset.
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