Table 4.
Layer # | Layer Type | Hyperparameters | Output Shape |
---|---|---|---|
0 | inputs | batch size × 400 × 6 | |
1a | conv | no. of filters: 16 | batch size × 400 × 16 |
kernel size: 5 | |||
stride: 1 | |||
padding: same | |||
dilation: 1 | |||
1b | conv | no. of filters: 16 | batch size × 400 × 16 |
kernel size: 1 | |||
stride: 1 | |||
padding: same | |||
dilation: 1 | |||
2 | conv | no. of filters: 16 | batch size × 400 × 16 |
kernel size: 5 | |||
stride: 1 | |||
padding: same | |||
dilation: 1 | |||
3 | conv | no. of filters: 16 | batch size × 400 × 16 |
kernel size: 5 | |||
stride: 1 | |||
padding: same | |||
dilation: 2 | |||
4 | conv | no. of filters: 16 | batch size × 400 × 16 |
kernel size: 5 | |||
stride: 1 | |||
padding: same | |||
dilation: 2 | |||
5 | conv | no. of filters: 16 | batch size × 400 × 16 |
kernel size: 5 | |||
stride: 1 | |||
padding: same | |||
dilation: 4 | |||
6 | conv | no. of filters: 16 | batch size × 400 × 16 |
kernel size: 5 | |||
stride: 1 | |||
padding: same | |||
dilation: 4 | |||
7a | dense | no. of units: 1 | batch size × 400 × 1 |
7b | dense | no. of units: 1 | batch size × 400 × 1 |
conv: convolutional layer.