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Abstract: Obesity already causes non-communicable diseases during childhood, but the mechanisms
of disease development are insufficiently understood. Myokines such as myostatin and irisin are
muscle-derived factors possibly involved in obesity-associated diseases. This explorative study aims
to investigate whether myostatin and irisin are associated with metabolic parameters, including the
vitamin D status in pediatric patients with severe obesity. Clinical, anthropometric and laboratory
data from 108 patients with severe obesity (>97th percentile) aged between 9 and 19 years were
assessed. Myostatin, its antagonist follistatin, and irisin, were measured from plasma by ELISA.
Myostatin concentrations, particularly in males, positively correlated with age and pubertal stage, as
well as metabolic parameters such as insulin resistance. Irisin concentrations correlated positively
with HDL and negatively with LDL cholesterol values. For follistatin, the associations with age and
pubertal stage were inverse. Strikingly, a negative correlation of myostatin with serum vitamin D
levels was observed that remained significant after adjusting for age and pubertal stage. In conclusion,
there is an independent association of low vitamin D and elevated myostatin levels. Further research
may focus on investigating means to prevent increased myostatin levels in interventional studies,
which might open several venues to putative options to treat and prevent obesity-associated diseases.
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1. Introduction

Obesity is a global health problem that has been rapidly increasing over the past few
decades, not only in adults but also in children [1,2]. Early onset of obesity often persists
until adulthood [3] and causes several associated chronic diseases such as insulin resistance,
type 2 diabetes mellitus, dyslipidemia, hypertension, cardiovascular diseases, and non-
alcoholic fatty liver disease (NAFLD) [1,3–5]. As the prevalence of childhood obesity
continues to rise and prevention/treatment strategies are unsuccessful to a large extent,
it is necessary to understand obesity-related mechanisms to find options to counteract
obesity-associated diseases.

Myokines have emerged as an interesting group of molecules possibly involved in
obesity-related metabolic disorders [6] and, therefore, considered as potential treatment
targets [7,8]. Myostatin is also described as growth differentiation factor 8 (GDF-8) and
was identified as a member of the TGF-ß superfamily [9]. It is produced and secreted by
myoblasts, not only in skeletal muscle cells but also to a small extent in cardiac muscle
cells and, interestingly, in adipose tissue [6,10]. In the skeletal muscle, myostatin nega-
tively regulates muscle growth, leading to increased muscle growth in case of myostatin
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deficiency [9–11]. Inversely, high levels of myostatin are linked to cachectic-like muscle
wasting, e.g., in cancer [12], liver disease [13] and aging [14]. Loss of muscle mass in older
people is also related to low serum levels of vitamin D [15,16]. Notably, in obesity, low
vitamin D is consistently found across age, ethnicity, and geography [17], and vitamin D
has been thoroughly investigated in relation to insulin resistance [18].

Studies have shown that myostatin is elevated in humans with obesity due to an
overproduction of myostatin in skeletal muscle cells [6,19]. Evidence of a positive relation-
ship between myostatin and obesity-associated insulin resistance was provided in murine
models [20–23]. In line with this, studies exploring myostatin in humans state a positive
correlation between myostatin and insulin resistance. A natural regulator of myostatin
is the hepatokine follistatin, which is released after acute exercise and is a potent direct
inhibitor of myostatin [24].

Irisin is a myokine proposed to mediate beneficial effects of exercise on metabolism,
inducing browning of adipocytes and thus, thermogenesis, by increasing uncoupling
protein 1 expression [25]. Decreased circulating irisin concentrations have been shown to
be associated with reduced adipose tissue browning or beiging, and thus may be critically
involved in obesity-associated metabolic disorders [26]. However, the functions and the
role of irisin in humans are still controversial [27].

The aim of this study was to investigate if a relationship exists between myostatin,
its antagonist follistatin, as well as irisin, with BMI, body-fat mass and various metabolic
markers already in children and adolescents, particularly in a high-risk group suffering
from severe obesity.

2. Materials and Methods
2.1. Patients

In this prospective study, all patients were enrolled in the Outpatient Clinic for Obesity,
Lipid Metabolism Disorders and Nutritional Medicine at the Department of Pediatrics and
Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology
at the Medical University of Vienna from December 2017 to September 2020. All patients
aged between 9 and 19 years with a BMI above the 97th percentile (referred to as “severe
obesity” [28–30] throughout this manuscript) were eligible for this study. Exclusion criteria
were genetic aberrations and syndromes associated with obesity, drug-induced obesity,
secondary causes for obesity such as endocrine disorders, and treatment with drugs causing
elevated liver enzymes. In total, 135 patients were eligible for this study; 27 patients were
excluded due to incompliance with study protocol resulting in 108 (68% male, mean age
13.6 ± 2.7 years, 13.2 ± 2.6 years in males, 14.4 ± 2.7 years in females) included patients.

Medical history, clinical data and laboratory data were collected for all study partici-
pants. All patients underwent physical examination, including Tanner stage [31]. Anthro-
pometric measures were taken by standardized methods with the same stadiometer by the
same two nurses throughout the study. Body mass index (BMI, kg/m2) and the respective
percentiles were calculated according to Kromeyer-Hauschild et al. [32].

2.2. Laboratory Analyses and Further Calculations

Venous blood sampling was performed in an overnight fasting state. Routine blood
parameters such as glucose, insulin, lipid status including total cholesterol, HDL cholesterol
(HDL-C), LDL cholesterol (LDL-C) and triglycerides, and vitamin D (total 25-hydroxy
vitamin D using automated LIAISON® 25 OH Vitamin D TOTAL Assay, DiaSorin, Saluggia,
Italy) were measured with the certified routine procedures at the Department of Medical
and Chemical Laboratory Diagnostics at the Medical University of Vienna. A homeostasis
model of insulin resistance (HOMA-IR) was calculated according to Matthews et al.: fasting
glucose (mmol/L) × fasting insulin (mU/L)/22.5 [33].

For non-routine parameters, serum and plasma samples were frozen at −80 ◦C until
analysis. Myostatin, follistatin, and irisin as well as TNFα were all measured from plasma
by using quantitative ELISA following the manufacturer’s instructions. For myostatin, we
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used follistatin and TNFα, Quantikine ELISAs from R&D Systems, Minneapolis, MN, USA
and for irisin, a competitive ELISA with immobilized antigen from BioVendor—Laboratori
medicina a.s., Karasek, Brno, Czech Republic.

2.3. Statistics

All data are displayed as means ± standard deviations (SD) unless otherwise indicated.
Continuous variables were assessed by Pearson correlation if normally distributed or by
Spearman correlation if there was a skewed distribution. A two-sided p-value under 0.05
was considered statistically significant. The confidence interval was set at 95%. Due to the
explorative character of the study, correction for multiple testing was omitted. All statistical
analyses were performed using IBM SPSS Statistics for Windows, version 26 (IBM Corp.,
Armonk, NY, USA). Graphical visualizations were performed using GraphPad PRISM,
version 9 (GraphPad Software, San Diego, CA, USA).

2.4. Ethics

The study protocol was approved by the ethics committee of the Medical University
of Vienna (No. 1355/2017) and conducted according to the Helsinki declaration guidelines.
Written informed consent was obtained from all participants as well as their legal guardians
prior to all study procedures.

3. Results

The anthropometric and laboratory parameters of the study population are shown
in Table 1.

Table 1. Characteristics of the study population.

Mean (SD) or Percentages (%)

Sex (m, %) 68 (63%)

Age (years) 13.8 ± 2.7

BMI z-score 2.8 ± 0.5

Body fat mass (%) 41.6 ± 7.1

Tanner stage (male/female):

1 4 (13%)/27 (87%)

2 7 (37%)/12 (63%)

3 6 (40%)/9 (60%)

4 9 (37%)/15 (63%)

5 11 (73%)/4 (27%)

Fasting glucose (mmol/L) 4.70 ± 0.53

Insulin (pmol/L) 194.4 ± 134

C-Peptide (nmol/L) 1.2 ±0.6

HOMA-IR 6.1 ± 5

Total cholesterol (mmol/L) 4.37 ± 0.80

HDL-C (mmol/L) 1.14 ± 0.32

LDL-C (mmol/L) 2.60 ± 0.68

Triglycerides (mmol/L) 1.45 ± 0.90

Vitamin D (nmol/L) 45.9 ± 21.3

Parathyroid hormone (ng/L) 37.6 ± 17
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Table 1. Cont.

Mean (SD) or Percentages (%)

CRP (nmol/L) 6.7 ± 5.6

IL-6 (ng/L) 4 ± 3.6

Procalcitonin (ng/L) 200 ± 1000

TNFα (g/L) 1.1 ± 0.4

ALT (U/L) 44.9 ± 45.8

Table 2 gives the correlation coefficients of myostatin, follistatin and irisin with var-
ious parameters. As expected, myostatin concentrations negatively correlated with fol-
listatin, while there was no association with irisin. Myostatin positively and follistatin
negatively correlated with age and pubertal (Tanner) stage, but none of the investigated
myokines/hepatokines correlated with the BMI within this group with severe obesity.

Table 2. Correlation of myostatin, follistatin and irisin.

Myostatin
(ng/L)

Follistatin
(ng/L)

Irisin
(mg/L)

Myostatin (ng/L) A - −0.28 ** 0.02

Follistatin (ng/L) A −0.28 ** - −0.05

Irisin (mg/L) A 0.02 −0.05 -

Age (years) A 0.24 * −0.28 ** 0.03

Tanner stage A 0.28 ** −0.33 ** 0.06

BMI z-score A 0.11 0.23 −0.8

Fasting glucose (mmol/L) A −0.06 −0.15 0.08

Insulin (pmol/L) A 0.26 * −0.07 −0.03

C-Peptide (nmol/L) A 0.17 −0.15 −0.01

HOMA-IR A 0.24 * −0.11 −0.01

Cholesterol (mmol/L) A 0.03 0.18 −0.1

HDL-C (mmol/L) A −0.13 0.15 0.27 **

LDL-C. (mmol/L) A 0.11 0.13 −0.26 **

Triglycerides (mmol/L) A 0.06 0.06 −0.15

Vitamin D (nmol/L) A −0.31 ** 0.11 0.15

Parathyroid hormone (ng/L)A 0.23 * −0.17 −0.20

CRP (nmol/L) A −0.24 * 0.28 ** −0.13

IL-6 (ng/L) A −0.34 ** 0.29 ** −0.21 *

Procalcitonin (ng/L) A 0.04 0.26 ** 0.05

TNFα (ng/L) A −0.16 0.17 −0.13

ALT (U/L) A 0.27 ** 0.07 −0.02
A Skewed distribution; thus, Spearman’s correlation was calculated. For normally distributed variables; Pearson’s
correlation was calculated; * p-value < 0.05; ** p-value < 0.01.

Myostatin positively correlated with insulin resistance (fasting insulin levels and
HOMA-IR). In addition, a correlation between myostatin and ALT was observed. Myostatin
also negatively correlated with inflammatory markers CRP and IL-6, whereas follistatin
positively correlated with CRP, IL-6, and procalcitonin. Moreover, we found a negative
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correlation between myostatin and vitamin D, as well as a positive correlation of myostatin
with parathyroid hormone levels.

Investigating the associations of myostatin and follistatin with age and pubertal stage
(Figure 1) in more detail, we found that the correlations occurred only in males.

Figure 1. Correlations of myostatin with age (A) and Tanner stage (B) as well as follistatin with age
(C) and Tanner stage (D).

Since sex was a critical factor, we further analyzed the data by correcting for age and
Tanner stage separately for both sexes. As shown in Table 3, the correlations of myostatin
with insulin (positive), HOMA-IR (positive), and IL-6 (negative) did not remain significant
after adjusting for age and Tanner stage. The positive correlation of myostatin with ALT
only persisted in female subjects, which was also observed for LDL-C. Interestingly, fol-
listatin correlated positively with CRP after adjustment for age and Tanner stage and the
negative association of myostatin with CRP remained significant.

Notably, the negative correlation of myostatin with vitamin D remained significant
in the whole cohort after adjustment for age and Tanner stage, though if the sexes were
separated, this correlation was only significant in the female group. In Figure 2, this
correlation is depicted in detail.
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Table 3. Correlation coefficients of myostatin, follistatin, and irisin with various parameters adjusted
for age and Tanner stage.

Myostatin
(ng/L)

Follistatin
(ng/L)

Irisin
(mg/L)

All Female Male All Female Male All Female Male

Myostatin (ng/L) A - - - −0.23 * −0.41 * −0.01 0.02 0.04 0.14

Follistatin (ng/L) A −0.22 * −0.41 * −0.01 - - - 0.05 0.13 −0.05

Irisin (mg/L) A 0.02 0.04 0.14 0.05 0.13 −0.05 - - -

BMI z-score A −0.01 −0.06 0.04 0.09 0.04 0.09 −0.08 −0.09 −0.02

Body Fat (%) A −0.24 * 0.04 −0.16 0.14 −0.01 0.08 0.02 −0.05 −0.04

Fasting glucose (mmol/L) A −0.1 −0.07 −0.11 −0.15 −0.12 −0.19 0.15 0.37 * −0.04

Insulin (pmol/L) A 0.01 0.02 −0.09 −0.01 0.12 −0.03 0.01 0.21 −0.11

C-Peptide (nmol/L) A −0.05 0.0 −0.21 −0.05 −0.01 −0.01 0.05 0.27 −0.07

HOMA-IR A −0.04 −0.03 −0.11 −0.0 0.15 −0.06 0.05 0.25 −0.13

Cholesterol (mmol/L) A 0.12 0.27 0.08 0.05 0.22 −0.06 −0.11 0.06 −0.22

HDL-C (mmol/L) A −0.1 −0.11 0.11 0.39 0.17 0.46 ** 0.24 * 0.25 0.22

LDL-C (mmol/L) A 0.19 0.37 * 0.1 −0.07 0.03 −0.09 −0.22 * −0.17 −0.25

Triglycerides (mmol/L) A −0.03 0.03 −0.14 0.02 0.2 −0.03 −0.14 −0.11 −0.13

Vitamin D (nmol/L) A −0.30 ** −0.34 * −0.18 0.09 0.1 −0.02 0.09 0.14 0.03

Parathyroid hormone (ng/L) A 0.26 * 0.22 0.26 −0.13 −0.2 −0.09 −0.07 −0.31 0.01

CRP (nmol/L) A −0.22 * −0.35 * −0.16 0.41 ** 0.44 * 0.38 ** −0.05 −0.21 −0.01

IL-6 (ng/L) A −0.12 0.0 −0.22 0.01 −0.07 0.1 −0.12 −0.23 −0.1

Procalcitonin (ng/L) A 0.01 0.04 0 −0.03 −0.11 0.01 −0.05 −0.1 −0.03

TNFα (ng/L) A −0.05 −0.31 −0.14 0.11 0.25 0.17 0.0 0.1 0.04

ALT (U/L) A 0.13 0.38* −0.03 −0.05 −0.09 0.01 −0.02 0.32 −0.08

A Skewed distribution; thus, Spearman’s correlation was calculated; for normally distributed variables, Pearson
correlation was calculated; * p-value < 0.05; ** p-value < 0.01. BMI = Body Mass Index; HOMA-IR = Homeostatic
Model Assessment for Insulin Resistance; HDL-C = High Density Lipoprotein Cholesterol; LDL-C = Low Density
Lipoprotein Cholesterol; CRP = C-Reactive Protein; IL-6 = Interleukin-6; TNFα = Tumour Necrosis Factor-Alpha;
ALT = Alanine-Aminotransferase.

Figure 2. Correlation of myostatin with vitamin D.
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4. Discussion

In this prospective study, we show that myostatin levels start to rise during adolescence
in males with severe obesity, which could potentially have negative health consequences,
as previously reported for elevated myostatin levels [6,12–14]. Notably, no correlation of
myostatin with BMI z-score was found, although this might have been expected due to
studies that described an elevation in obesity [6,19] and correlation with BMI [34]. This
finding is explained by the fact that only children with severe obesity were included in this
study, which is designed to investigate associations within severe obesity, not differences to
the lean state.

Myostatin has been recognized as a target of inhibitors and neutralizing antibodies
and also physical exercise to improve muscle mass and strength, body composition, as
well as bone quality and metabolic dysfunctions, including type 2 diabetes [35,36]. The
correlation of myostatin with HOMA-IR, ALT, and LDL-C in females of our cohort supports
the relationship of high myostatin levels with an unhealthy phenotype. In line with our
findings, amelioration of cardiometabolic health after bariatric surgery in adolescents was
associated with changes in myokine profile. Notably, lower postsurgical myostatin levels
were also shown to be independent of changes in BMI and may reflect an adjustment for
muscle mass preservation after bariatric surgery, although the exact mechanisms remain un-
clear [37]. In contrast with this view, we observed a negative correlation of myostatin with
CRP and IL-6. This adverse relation has been reported before and might reflect a response to
preserve muscle mass and strength in the state of obesity-associated inflammation [38–40]
but remains enigmatic and demands further investigation.

A key finding of this study is the negative correlation of myostatin plasma levels with
vitamin D in this cohort. Several studies have shown that loss of muscle mass and muscle-
strength decline in older people are related to low serum levels of vitamin D [15,16]. This
correlation may be due to direct inhibition of myostatin expression by vitamin D [41]. On
the other hand, myostatin possibly affects vitamin D metabolism via regulation of fibroblast
growth factor 23 [42,43]. Future research is needed to elucidate the causal relationship of
these associations. This notion could be particularly important considering that myostatin
may be a key factor driving sarcopenic obesity [44]. Therefore, research including clinical
studies is needed to investigate whether vitamin D supplementation can affect myostatin
levels leading to increased muscle mass, finally improving the metabolic state, particularly
in pediatric patients and in sarcopenic obesity. Another, possibly more potent option that
warrants further investigation could be the use of the natural antagonist of myostatin,
i.e., follistatin. Experimental approaches are on their way [45]. For instance, it has been
shown in animals that follistatin induced by gene therapy mitigates systemic metabolic
inflammation and post-traumatic arthritis in high-fat-diet-induced obesity [46].

Although our study did not reveal an association of irisin levels with glucose metabolism,
inflammation, and liver factors, there was a significant relation with HDL-C and LDL-C.
This is particularly noteworthy, because low irisin levels are known to be related to heart
failure in myocardial infarction patients [47]. A positive correlation with HDL-C in diabetic
pediatric patients has been described before [48], but in that study, LDL-C also positively
correlated with irisin. In irisin knockout mice, however, decreased LDL-C levels were
shown [49]. Altogether, the causal relationships of irisin with lipid metabolism and clinical
implications await further investigation.

In addition, it must be mentioned that this study also has limitations. There was no
control group, but only adolescents with severe obesity were included, so our results cannot
be generalized to healthy individuals or children with mild obesity. Another limitation
is the relatively small sample size due to a pediatric cohort. Therefore, further studies in
larger cohorts with a control group are needed to validate our findings. Strengths of this
study include its prospective character, which allows a close correlation between various
exploratory parameters, all conducted within a short period of time. Furthermore, strict
inclusion criteria were followed, resulting in a well-characterized, homogeneous cohort.
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5. Conclusions

In conclusion, myostatin concentrations rise with age and pubertal development
in young male patients with severe obesity. Irisin levels appear to be linked to lipid
metabolism. There is an independent association of low vitamin D levels and elevated myo-
statin. Further research may focus on investigating means to prevent increased myostatin
levels in interventional studies, which might open several venues to putative options to
treat and prevent obesity-associated diseases in pediatric patients with severe obesity.
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