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Summary:

A role for B cells in autoimmune diseases is now clearly established both in mouse models and 

humans by successful treatment of multiple sclerosis and rheumatoid arthritis with anti-CD20 

monoclonal antibodies that eliminate B cells. However, the underlying mechanisms by which B 

cells promote the development of autoimmune diseases remain poorly understood. Here we review 

evidence that patients with autoimmune disease suffer from defects in early B cell tolerance 

checkpoints and therefore fail to counter-select developing autoreactive B cells. These B cell 

tolerance defects are primary to autoimmune diseases and may result from altered B cell receptor 

signaling and dysregulated T cell/regulatory T cell compartment. As a consequence, large numbers 

of autoreactive naïve B cells accumulate in the blood of patients with autoimmune diseases and 

may promote autoimmunity through the presentation of self-antigen to T cells. In addition, new 

evidence suggests that this reservoir of autoreactive naïve B cells contains clones that may develop 

into CD27-CD21-/lo B cells associated with increased disease severity and plasma cells secreting 

potentially pathogenic autoantibodies after the acquisition of somatic hypermutations that improve 

affinity for self-antigens.
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Introduction

Millions of individuals worldwide are affected by autoimmune disorders but their etiologies 

remain poorly understood. Defects in B cell tolerance are associated with most autoimmune 

diseases and are illustrated by the production of autoantibodies that target self-antigens. 

Some of these autoantibodies are pathogenic because they interfere with the function of 

the molecules they recognize, such as the acetylcholine receptor (AChR)/ muscle-specific 

tyrosine kinase (MuSK) in myasthenia gravis (MG) and aquaporin-4 water channel (AQP4) 
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in neuromyelitis optica spectrum disease (NMOSD) 1,2. Others target nucleic acids or 

their associated proteins, allowing the formation of immune complexes that deposit in 

various organs of patients with systemic lupus erythematosus (SLE) and induce organ 

damage 3. These immune complexes also allow the activation of myeloid cells expressing 

both FcRs binding autoantibodies and Toll-like receptors (TLRs), such as TLR7, TLR8, 

and TLR9, that recognize autoantibody-bound nucleic acids and lead to cell activation 

and foster inflammation 4. However, the relevance of the various autoantibodies in the 

pathophysiology of type 1 diabetes (T1D) is unclear and their identification in patients with 

multiple sclerosis (MS) is elusive. While B cells have been shown to be essential for the 

development of diabetes in the NOD mouse model, additional investigations revealed that 

B cells promote diabetes by recognizing self-antigens with their autoreactive antibodies 

and presenting self-antigens via MHC class II molecules to T cells 5–12. Hence, these data 

suggest that self-antigen presentation by autoreactive B cells that escaped tolerance may 

initiate the development of autoimmune diseases. The identification of impaired B cell 

tolerance checkpoints in patients with autoimmune diseases and the recent identification 

of pathogenic anti-AQP4 clones originating from unmutated autoreactive naïve B cells in 

patients with NMOSD agree with this scenario and will be presented and discussed in this 

review.

Central and peripheral B cell tolerance checkpoints shape the human naïve B cell 
repertoire

Self-tolerance is achieved by silencing self-reactive lymphocytes that are generated during 

either B cell development in the bone marrow or B cell activation in the periphery 13. 

Engineered models using transgenic and knock-in mice have revealed that developing B 

cells expressing self-reactive receptors can be silenced by one of three mechanisms: 1. 

clonal deletion; 2. clonal unresponsiveness to antigen or anergy; 3. “receptor editing” 

or antigen receptor gene replacement by continued V(D)J recombination catalyzed by 

the recombinase-activating genes (RAGs) 13–16. However, the frequency of self-reactive 

antibodies that arise during unmanipulated B cell development could neither be assessed 

using these mice, nor could it be determined when such antibodies were actually removed 

from the repertoire under physiologic circumstances.

To determine the proportion of autoreactive B cells that were removed from the nascent 

repertoire and how central B cell tolerance was established in humans, we assessed the 

frequencies of autoreactive clones in sequential subsets of B cells during their early B 

cell development in the bone marrow and the blood of healthy donors 17. This approach 

was dependent on a method that allows Ig gene amplification, cloning, and expression in 
vitro of recombinant antibodies initially produced by single human B cells 17. By testing 

the reactivity of recombinant antibodies against double-stranded DNA, insulin, and LPS 

in ELISAs or immunofluorescence on slide-coated HEP-2 cells, we previously established 

that a first step for immature B cell selection removes the vast majority of developing B 

cells that express polyreactive and anti-nuclear antibodies in bone marrow and is referred 

to as the central B cell tolerance checkpoint 17,18. In addition, using a second ELISA 

test in which plates are coated with HEp-2 cell lysates, we found that a peripheral B cell 

tolerance checkpoint further eliminates autoreactive new emigrant/transitional B cells that 
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escaped central tolerance before they entered the mature naïve B cell compartment 17. 

This bimodal removal of autoreactive clones from the initial B cell repertoire generated 

by random V(D)J recombination may result from B cell exposure to self-antigens first in 

the bone marrow where B cell production takes place in adults and then in the periphery 

when immature B cells migrate out of the bone marrow and encounter a new set of self-

antigens. This model is supported by our recent observations showing that autoimmune 

regulator (AIRE)-deficient patients display specific defects in the peripheral B cell tolerance 

checkpoint caused by a failure of AIRE-mediated T cell/regulatory T cell (Treg) selection 

that normally prevents the expansion of autoreactive naïve B cells recognizing peripheral 

self-antigens 19. The mechanisms by which T cell/Tregs may control the peripheral selection 

of B cells continuously produced by the bone marrow are not well characterized at this 

point, but specific defects in this checkpoint have been observed in FOXP3-deficient, 

immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) patients who 

lack functional Tregs 20. In addition, decreased Treg frequencies and/or impaired Treg 

suppressive function in patients with ADA-, CD40L-, DOCK8-, MHC class II, and WASp-

deficiency as well as the absence of T cells in either CD3D- or CD3E-deficient patients 

also resulted in the specific accumulation of autoreactive clones in the mature naïve B cell 

compartments of these patients, further suggesting the B cell extrinsic regulation of this 

peripheral checkpoint 19,21–24.

In contrast, central B cell tolerance is not affected by decreased Treg frequencies or 

suppressive function and appears instead to be regulated by intrinsic B cell pathways 
21,25–28. Indeed, mutations in genes that encode molecules belonging to the BCR and 

TLR pathways such as Bruton’s tyrosine kinase (BTK), Adenosine deaminase (ADA), 

Wiskott-Aldrich syndrome protein (WASP), MYD88, IRAK-4, Transmembrane Activator 

and CAML Interactor (TACI), and Activation induced cytidine deaminase (AID) affected 

central B cell tolerance, thereby revealing a B cell intrinsic regulation of this checkpoint 
21,24,26–29. These studies suggest that, in addition to BCRs, TLRs, especially those binding 

to nucleic acids and expressed in B cells such as TLR7 and TLR9, contribute to the 

induction of B cell tolerance as also demonstrated in mice 30. This may be especially 

important for membrane-bound self-antigens that may be co-expressed with nucleic acids 

at the surface of apoptotic cells or cellular debris and therefore co-engage BCR and TLRs 

in developing B cells and inducing tolerance mechanisms such as receptor editing and 

eventually lead to the expression of AID, which results in the deletion of autoreactive clones 
30–33. Our data, consistent with this hypothesis, showed that p53 inhibition increased the 

proportion of AID-expressing B cells in the bone marrow of humanized mice and abrogated 

central B cell tolerance, likely by rescuing developing autoreactive B cells from apoptosis 
34. These collective analyses of patients with primary immunodeficiencies revealed that the 

regulation of central B cell tolerance in humans requires proper BCR and TLR signaling 

and function, whereas the peripheral B cell tolerance checkpoint depends on T cells/Tregs to 

prevent the accumulation of autoreactive naïve B cells.

Defective early B cell tolerance checkpoints in patients with autoimmune diseases

Autoantibody production is a characteristic of most autoimmune diseases including SLE, 

T1D, MG, NMOSD, and rheumatoid arthritis (RA) 35,36. Autoantibodies appear in the 

Meffre and O’Connor Page 3

Immunol Rev. Author manuscript; available in PMC 2022 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



serum many years before the onset of the clinical disease, which suggests an early break in 

B cell tolerance 37,38. The underlying mechanisms that account for autoreactive B cell and 

autoantibody production in patients with autoimmune diseases remain elusive. We sought to 

determine the stage of B cell development at which B cell tolerance was broken in patients 

with autoimmune diseases. Two non-exclusive scenarios could be considered: first, B cell 

tolerance may not be established properly during early B cell development, resulting in 

the accumulation of autoreactive naïve B cell clones in the periphery; alternatively, early 

B cell tolerance checkpoints may be functional and B cells present in a normal repertoire 

may receive signals from T cells to develop into clones secreting high affinity self-reactive 

antibodies.

To determine whether early B cell tolerance checkpoints were functional in patients with 

autoimmune diseases, we assessed the frequencies of autoreactive clones in new emigrant 

and mature naïve B cells isolated from the blood of untreated patients with SLE, RA, 

T1D, Sjögren’s syndrome (SjS), MS, MG, and NMOSD. Despite the broad age range and 

duration of disease, we found that three out of three pediatric SLE patients, ten out of 

ten RA patients, six out of six T1D patients, five out of five SjS patients, three out of 

three MG patients, and three out of three NMOSD patients displayed elevated frequencies 

of new emigrant/transitional B cells expressing autoreactive/polyreactive antibodies when 

compared to healthy donors 39–45 (Fig. 1). These collective findings demonstrate that central 

B cell tolerance is not functional in these patients. In addition, these patients also displayed 

elevated frequencies of autoreactive and polyreactive mature naïve B cells that accumulated 

in their blood, suggesting that their peripheral B cell tolerance checkpoint may also not be 

functional 39–45 (Fig. 2). Indeed, we have previously reported that a functional peripheral 

B cell tolerance checkpoint can decrease the frequencies of autoreactive B cells in the 

mature naïve B cell compartment of asymptomatic subjects who display defective central 

B cell tolerance induced by heterozygous TNFRSF13B gene mutation that encodes TACI 
29. A recent study utilizing an alternative method to assess the frequency of autoreactive 

clones confirmed the impairment of early B cell tolerance checkpoints in SLE patients 46. In 

contrast, the establishment of B cell tolerance in MS patients differs from other patients with 

autoimmune diseases in that five out of seven patients with MS displayed normal central B 

cell tolerance 45 (Fig. 1). However, seven out of seven MS patients displayed an impaired 

peripheral B cell tolerance checkpoint, which resulted in the peripheral accumulation of 

autoreactive and polyreactive mature naïve B cells 45 (Fig. 2). Principal component analysis 

of the collective checkpoint assay data demonstrates a conspicuously distinct grouping 

between healthy donors as a first cluster and patients with autoimmune disease and healthy 

donors carrying the 1858T PTPN22 risk allele associated with many autoimmune diseases as 

another big cluster (Fig. 3) 47. Interestingly, MS patients cluster into a third group distinct 

from both healthy donors and other autoimmune patients, demonstrating the unique B cell 

tolerance defect in this disease (Fig. 3).

Some of these autoreactive naïve B cells and mostly polyreactive clones expressed 

unmutated antibodies that could recognize the RA-specific antigens IgG and cyclic 

citrullinated peptides, extracts of human brain white matter affected in MS and SjS-targeted 

Ro52/SS-A self-antigen with low affinity 40,41,45. However, somatic hypermutation during 

autoimmune B cell responses may increase their affinity for self-antigens (see below). We 
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conclude that patients with autoimmune diseases suffer from defective early B cell tolerance 

checkpoints which increases the proportion of autoreactive naïve B cells in their blood 

and which may favor the development of autoimmunity by increasing the incidence of 

autoreactive B cells that can present self-antigens to T cells.

Origins of the impaired early B cell tolerance checkpoints in patients with autoimmune 
diseases

The analysis of patients with primary immunodeficiencies suggests that the impaired 

central B cell tolerance that characterizes most patients with autoimmune diseases—

except MS—may result from defective/hyporesponsive BCR/TLR pathways. Hence, risk 

alleles associated with autoimmune diseases that affect BCR/TLR function may alter the 

establishment of B cell tolerance. Genome wide association studies (GWAS) have identified 

the 1858T polymorphism in the PTPN22 gene (PTPN22 T) to be one of the strongest genetic 

risk factors after the MHC, and is associated with the development of many autoimmune 

diseases including RA, T1D, and SLE, but not MS 47. This polymorphism encodes PTPN22 

phosphatases with a tryptophan at position 620 (620W PTPN22) instead of an arginine in 

the common 620R PTPN22 variant. This missense mutation abrogates PTPN22 interaction 

with CSK tyrosine kinase and results in decreased T cell receptor (TCR) and B cell receptor 

(BCR) signaling 48–51.

In agreement with our observations in primary immunodeficiencies, in which defective 

BCR/TLR function induces a defective central B cell tolerance, we reported that the 

presence of a PTPN22 T allele is sufficient to induce central and peripheral B cell selection 

defects in healthy donors similar to those in patients with autoimmune diseases (Fig. 1, 

2 and 3) 28. Hence, a single PTPN22 T risk allele has a dominant effect on impairing 

autoreactive B cell counterselection before onset of autoimmunity. In agreement with this 

hypothesis, we demonstrated that a lentiviral-driven expression of 620W PTPN22 variant 

in human B cells that developed in humanized mice was sufficient to abrogate central B 

cell tolerance, whereas the expression of the common 620R PTPN22 had no impact on the 

functionality of this tolerance checkpoint 52. In addition, the substitution of the conserved 

arginine by a tryptophan at the equivalent position, 619, in murine Ptpn22 (called PEP) also 

promotes autoimmunity in knock-in mice 53. Furthermore, the same study also showed that 

the restricted expression of 619W PEP to only B cells was sufficient to impair immune 

tolerance and to produce anti-dsDNA autoantibodies 53.

Collectively, these observations demonstrate an essential role for PTPN22 and its 620W 

variant in the development of autoimmunity by regulating autoreactive B cell selection, 

differentiation, and activation, which may explain why the PTPN22 T risk allele confers a 

high risk of developing many autoimmune diseases with the exception of MS 47. GWAS 

studies analyzing polymorphisms associated with MS identified gene variants that may 

affect more specifically APCs, such as monocytes, and T cells—notably Tregs—in addition 

to B cells 54,55. These findings are in agreement with the specific impairment in the 

peripheral B cell tolerance checkpoint in MS that resemble those associated with defective 

Treg function. Indeed, Tregs from MS patients display defective suppressive function and 

abnormally produce IFNγ 56,57. Many other risk alleles identified by GWAS and associated 
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with autoimmune diseases such as BLK and BANK1 also belong to the BCR signaling 

pathway and may also alter the establishment of B cell tolerance 47. However, the analysis 

in our labs of more than 110 subjects who did not carry the PTPN22 T allele failed to 

identify a single individual with impaired central B cell tolerance, which suggests that other 

common variants associated with autoimmune diseases identified by GWAS and with a 

frequency greater than 5% are unlikely to interfere with the establishment of central B cell 

tolerance impaired in most patients with autoimmune diseases. What could then interfere 

with the removal of developing autoreactive B cells? We do not exclude the involvement 

of B cell extrinsic factor that may alter BCR/TLR function in patients with autoimmune 

diseases, but we previously reported that suppressing inflammation with either methotrexate 

or anti-TNFα reagents did not correct early B cell tolerance checkpoints in RA patients 
42. In addition, the engraftment of humanized mice with hematopoietic stem cells (HSCs) 

isolated from an RA patient or a T1D patients led to the production of human B cells 

containing a high frequency of autoreactive clones that were similar to those in the patients 
58. These findings point toward a genetic or epigenetic origin of early B cell tolerance 

checkpoint defects. In line with this hypothesis, B cell depletion therapy mediated by 

rituximab that eliminates B cells also failed to restore the functionality of early B cell 

tolerance checkpoints in early onset T1D patients 59. As a consequence, newly generated 

B cells after rituximab treatment contain many autoreactive clones, which may explain the 

relapse that occurs in many autoimmune patients after B cell depletion therapy.

In addition to altered BCR signaling induced by the PTPN22 T allele, we recently reported 

defects in TLR9 function in B cells from untreated SLE patients that may also account for 

the impaired central B cell tolerance in these patients 60,61. TLR9 exerts tolerogenic function 

as evidenced by lupus-prone Tlr9 KO mice which display exacerbated autoimmune disease 
62. While TLR9 ligands activate B cells, co-crosslinking of BCR and TLR9 that mimics 

autoreactive B cell stimulation by dsDNA-containing self-antigen induces cell death by 

apoptosis after transient B cell expansion and therefore prevents anti-dsDNA autoantibody 

production 63,64. These data demonstrate that TLR9 plays an important role in limiting 

the peripheral activation of autoreactive B cells. Decreased TLR9 function in SLE B 

cells is associated with the downregulation of CD19/CD21 expression on the surface of 

these cells, but the molecular mechanisms associated with altered CD19/CD21 expression 

or TLR9 function remain unknown at this point. Decreased CD19 expression was also 

reported in mice humanized with T1D-derived and RA-derived HSCs and associated with 

the production of autoreactive B cells 58,65. Since CD19 is important for both BCR and 

TLR signaling and function, decreased CD19 expression may therefore affect the removal of 

developing autoreactive B cells 66,67. It also remains to be determined if TLR9 function may 

also be affected in B cells from patients with other autoimmune diseases in which tolerance 

to self-antigens interacts with dsDNA such as topoisomerase I and centromere proteins 

in systemic sclerosis (SSc). Altogether, our data suggest that patients with autoimmune 

diseases may often display altered BCR and TLR9 function in B cells associated with 

an impaired central B cell tolerance that may promote the emergence of autoimmune 

manifestations.
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Tolerance checkpoint defects alter the naïve B cell repertoire

We showed that autoreactive naïve B cells escape counterselection by defective early B 

cell tolerance checkpoints in patients with autoimmune diseases. As a consequence, the 

naïve BCR repertoire includes clones that would otherwise have been eliminated. Thus, 

deviations from the repertoire established in healthy controls may be conspicuous. Earlier 

studies of single B cells isolated from the blood of RA and SLE patients, in which tolerance 

checkpoints are impaired, demonstrated that characteristics of the Ig kappa (Igκ) repertoire 

from new emigrant/transitional B cells that recently emigrated from the bone marrow, and 

to a lesser extent mature naïve B cells, differed from those in healthy control counterparts 
39,40,68.

Light chain Igκ secondary recombination that may mediate receptor editing, which is the 

main mechanism of central B cell tolerance, occurs through secondary recombination in 

which incoming Vκ genes delete pre-existing VκJκ genes by recombining with downstream 

Jκs 16,69. Igκ secondary recombination therefore results in increased utilization of upstream 

Vκs and downstream Jκs. We found that about a third of RA patients (RA Group I) 

displayed new emigrant/transitional B cells that express BCRs with Igκ gene segments 

characterized by decreased secondary recombination events, whereas the rest of RA patients 

(RA Group II) did not show evidence of dysregulated secondary recombination 40,68. 

Indeed, new emigrant/transitional B cells from Group I RA patients expressed an Igκ 
repertoire with a dearth in upstream Vκ and downstream Jκ3–4-5 genes combined to 

increased Jκ1 usage and suggesting a lack of secondary recombination events in these 

immature B cells that exited the bone marrow 40,68. This pattern of Ig light chain 

antibody rearrangements, potentially characteristic of a defective regulation of secondary 

recombination, was also reported in B cells from SLE patients 70–72. In addition, inefficient 

receptor editing in T1D is also evidenced in NOD mice and patients 73–75. However, our 

recent studies revealed that the altered Igκ repertoire in B cells from Group I RA patients 

may originate from decreased or impaired ataxia-telangiectasia mutated (ATM) expression 

and function 68. Indeed, both AT patients and NSG humanized mice injected with an 

ATM inhibitor displayed an Igκ repertoire with a lack of breadth of Vκ-Jκ rearrangements 

similar to that in group I RA patients 68. Since ATM controls the repair of RAG-mediated 

DNA double-strand breaks and regulates cell-cycle checkpoints, novel RAG-mediated DNA 

lesions in immature B cells undergoing Igκ secondary recombination may fail to be properly 

repaired these when the ATM function is defective, leading to genomic instability and cell 

loss 76. The increased frequency of immature B cells undergoing apoptosis in the bone 

marrow of NSG humanized mice injected with ATMi supports this scenario 68. It remains to 

be determined if the altered B cell repertoire induced by decreased ATM function in some 

RA patients may contribute to disease pathogenesis or if it is solely a byproduct of improper 

ATM expression in developing B cells.

The restricted size of Ig gene sequencing of antibodies cloned from single B cells analyzed 

during B cell tolerance checkpoint studies, which can include up to several hundred 

unique BCR sequences, limited the identification of wider repertoire abnormalities between 

individuals with or without functioning B cell tolerance, especially for the heavy chains 

encoded by the recombination of numerous VH, D and JH gene segments. In contrast, 
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adaptive immune receptor repertoire sequencing (AIRR-seq) generates considerably larger 

BCR libraries, often reaching over 1,000,000 unique sequences. Since the circulating 

peripheral repertoire in humans includes up to 1011 B cells 77, AIRR-seq provides the depth 

necessary to adequately depict such large populations and therefore affords a comprehensive 

evaluation of BCR repertoire properties. An increasing compilation of AIRR-seq studies 

including both total and sorted B cell populations from patients with autoimmunity revealed 

altered BCR repertoires in MS 78, SLE 79, and celiac disease 80.

We more specifically applied AIRR-seq to analyze the BCR repertoire of naïve B cells 

from AChR and MuSK MG patients that are enriched in autoreactive clones due to 

impaired central and peripheral B cell tolerance checkpoints in MG and compared them 

to those of healthy donors (HD) to potentially identify naïve BCR repertoire features 

associated with autoimmunity 81. Our initial study focused on determining whether the naïve 

BCR repertoires in MG included skewed immunoglobulin gene usage and physiochemical 

properties 81. In agreement with a previous study, the naïve B cell repertoires obtained 

from multiple healthy control subjects displayed highly consistent IGH variable (IGHV) 

gene usage with limited variability 82. In contrast, naïve BCR repertoires from MG patients 

were highly diverse among individuals and may reflect dysregulation B cell development 

in these patients 81. Biased usage of IGHV gene segments were observed in naïve B cells 

from MG patients as illustrated by decreased usage of IGHV3 family gene segments and 

increased in IGHV1 and IGHV4 family gene usage 81 (Fig. 4). Other studies offer similar 

findings regarding differential variable region gene segment expression. Systemic sclerosis 

(SSc), or scleroderma, is a rare chronic autoimmune disease that leads to tissue fibrosis 

and vasculopathy 83. Antinuclear antibodies (ANA) are detectable in 90–95% of patients, 

indicative of immune, and particularly B cell, abnormalities. An AIRR-seq investigation 

revealed that differential expression of IGHV genes in the repertoires from SSc cohorts 

relative to a healthy cohort are present in the IgD/IgM compartment 84. These collective 

data therefore show that defective early B cell tolerance checkpoints in patients with 

autoimmune diseases alter the generation of the BCR repertoires of naïve B cells associated 

with inadequate counter-selection of developing autoreactive clones.

Impaired early B cell tolerance checkpoints likely favor the production of circulating 
atypical CD19hiCD27-CD21-/l0 B cells in some autoimmune diseases

Several groups have now reported that CD19hiCD27-CD21-/lo B cells that are scarce in 

the blood of healthy donors are enriched in various patients with autoimmune diseases 

including SLE, RA, and SjS 85–88. This circulating atypical CD19hiCD27-CD21-/lo B cell 

subset is also expanded in the blood of patients with chronic viral infection such as 

HIV and HCV and in patients with malaria, suggesting that ongoing immune responses 

driven by some self-antigens or chronic exposure to pathogens may favor the production 

of these B cells 89–91. Indeed, we found that CD19hiCD27-CD21-/lo B cells from RA 

and SjS patients often express autoreactive and polyreactive antibodies, which reveals that 

they are the product of autoimmune responses 85–87. The precursors of these B cells in 

some autoimmune diseases are currently unknown, but experiments in which the somatic 

hypermutations were reverted to germline counterparts in recombinant antibodies expressed 

by expanded CD19hiCD27-CD21-/lo B cells in SjS suggest that their unmutated precursors 
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were already autoreactive 87,92. Hence, the accumulation of CD19hiCD27-CD21-/lo B cells 

in some autoimmune diseases may result from the activation of autoreactive naïve B cells 

that escaped the impaired early B cell tolerance in RA, SjS, and SLE. Of note, we did not 

observe an increase in CD19hiCD27-CD21-/lo B cells in MS or T1D patients, suggesting that 

self-antigens targeted in these autoimmune diseases may not trigger the expansion of these 

B cells or that their expansion is not sufficient to be detected systemically in patient’s blood 
45 (E. Meffre, personal communication). CD19hiCD27-CD21-/lo B cells are characterized by 

the expression of a specific set of molecules compared to other B cell subsets and which 

include CD11c and T-bet induced by IFNγ 85,86,93,94. Hence, the production of these B cells 

may occur in an inflammatory environment.

In agreement with this hypothesis, the mechanisms responsible for the generation of these B 

cells involve dysregulated IL-21/IL-4/ IFNγ production during B cell responses in germinal 

centers 93–96. A recent study from our group shows that CD19hiCD27-CD21-/lo B cells 

are specifically enriched in RA patients with defective ATM activation and correlate with 

a high prevalence of erosive joint disease, likely through their increased expression of 

pro-osteoclastic RANKL and IL-6 cytokines upon activation 68. Thus, elevated frequencies 

of circulating CD19hiCD27-CD21-/lo B cells in newly diagnosed RA patients may represent 

a valuable biomarker to identify patients with a high risk for developing erosive joint 

damage. In line with this observation, increase in circulating CD19hiCD27-CD21-/lo B cells 

in SLE patients is also associated with more severe autoimmune disease 93. We conclude 

that the impaired selection of developing autoreactive B cells in patients with autoimmune 

diseases likely favors the production of circulating CD19hiCD27-CD21-/lo B cells that 

express autoreactive antibodies, produce pro-inflammatory cytokines, and thereby foster 

severe disease manifestation.

B cell tolerance checkpoint defects promote autoantibody production

While early B cell tolerance checkpoint defects in autoimmune diseases result in the 

accumulation of autoreactive naïve B cells with an altered BCR repertoire in patient’s 

blood, it remained to be determined whether these naïve autoreactive clones may favor the 

production of autoantibodies in their sera. A direct method to test this hypothesis consists of 

measuring the affinity of recombinant monoclonal antibodies (mAbs) cloned from naïve 

B cells for self-antigens targeted by autoimmune responses. We recently evaluated by 

Surface Plasmon Resonance the affinity of mAbs expressed by mature naïve B cells from 

AIRE-deficient patients who display autoimmune manifestations including T1D and present 

a whole series of anti-cytokine autoantibodies in their serum, which target various IFNs 

and IL-17 family members 19,97–99. We found that the impaired peripheral B cell tolerance 

checkpoint induced by AIRE deficiency results in the production of autoreactive mature 

naïve B cells that express antibodies devoid of somatic hypermutations that recognized 

IFNs, IL-17A, IL-17F and insulin with micromolar affinity and that were initially identified 

as polyreactive clones using our reference assay 17,19. Thus, anti-cytokine and anti-insulin 

clones are already present in the naïve B cell compartments of AIRE-deficient patients and 

their affinity for self is further increased by somatic hypermutation 100. It remains to be 

determined if patients with classical autoimmune diseases such as AIRE-deficient patients 
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harbor autoreactive clones in their naïve B cell compartments with measurable affinity for 

self-antigens recognized by serum autoantibodies.

A second indirect approach to assess if impaired early B cell tolerance checkpoints 

contribute to autoantibody production consisted of artificially removing somatic 

hypermutation from mutated recombinant autoreactive clones with known self-antigen 

specificity and then testing the specificity of the unmutated revertants that may correspond 

to the naïve germline-encoded precursors activated by the autoimmune response. This 

process involves the replacement of somatically mutated bases that result in an amino 

acid replacement back to the bases present in the corresponding germline sequence of 

Ig gene segment 44,101. Because it is impossible to determine whether somatic mutations 

have been introduced in regions containing non-template N nucleotides that do not match 

germline Ig gene segments at V-D and D-J junctions, reversion accuracy is unclear. For 

instance, unmutated revertants from anti-cytokine autoantibodies in AIRE-deficient patients 

did not bind to their respective self-antigen, suggesting that these specificities emerged 

from unreactive clones through acquisition of somatic hypermutations, whereas we showed 

instead that anti-cytokine reactivity could be easily detected in the unmutated naïve B cell 

compartment of these patients as presented above 19,100. In pemphigus vulgaris, somatically 

hypermutated pathogenic autoantibodies recognize desmoglein-3, whereas the vast majority 

of unmutated revertants did not bind this self-antigen 102. Both of these studies did not 

include reversion of the IgH CDR3 region which can include identifiable mutations in the D 

and JH gene segments. In contrast, the germline-versions of human recombinant mAbs that 

recognize peptidylarginine deiminase (PAD) retained their anti-PAD binding although it was 

decreased compared to the mutated counterparts 103,104. In addition, unmutated revertants 

of mAbs targeting infection-derived influenza antigens were also able to recognize the 

targeted antigen, suggesting that reactive clones from immune responses may emerge from 

the activation of clones with relative initial affinity for the antigen improved by somatic 

hypermutations 105–107.

To establish a potential link between early B cell tolerance checkpoint defects and 

autoantibody production, we examined the reactivity of a set of unmutated revertants 

corresponding to pathogenic anti-AQP4 autoantibodies cloned from NMOSD patient 

cerebrospinal fluid (CSF) plasmablasts and plasma cells 108,109. We increased reversion 

accuracy by only selecting autoantibody sequences that displayed short (less than ten) 

non template N-nucleotide additions in heavy chain CDR3s 44. In addition we reverted 

any mutations that were identified in the D and JH gene segments. The affinity of the 

mature anti-AQP4 mAbs ranged from modest to strong (Kd 15.2–559 nM), but none of the 

germline revertants bound to AQP4, suggesting that somatic hypermutation is required for 

the generation of NMOSD-specific anti-AQP4 autoantibodies 44. However, several germline 

autoantibody revertants were found to be both polyreactive and autoreactive, suggesting 

that mutated anti-AQP4 autoantibodies may originate from the pool of autoreactive mature 

naïve B cells that escape deletion at B cell counterslection steps in these patients. Similarly, 

a fraction of mutated clones expressing autoantibodies directed towards the extractable 

nuclear antigens (ENA) Ro52 and La in SLE patients were found to be polyreactive or self-

reactive when their sequence was reverted to germline 110. Thus, impaired B cell tolerance 

checkpoints in patients with autoimmune diseases result in the production of autoreactive 
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clones that may be activated by T cells and increase their specificity for self-antigens by 

acquiring somatic mutations, which may lead to subsequent disease manifestation when 

pathogenic.

Concluding remarks

We have presented data that support the important role of impaired central and peripheral B 

cell tolerance checkpoints in autoimmune diseases by producing autoreactive naïve B cells 

with altered BCR repertoire that may present self-antigens to T cells, become activated to 

produce autoreactive and potentially pathogenic autoantibodies, as well as pro-inflammatory 

cytokines favoring disease severity. While these autoreactive B cell selection defects pre-

exist the onset of autoimmunity, environmental factors play an important role in triggering 

the events that lead to a break in tolerance and autoimmune diseases. For instance, viral 

infection by EBV has been associated with many autoimmune diseases including SLE, SjS, 

and RA and coxsackievirus B with T1D 111–117. It is unknown if the altered naïve B cell 

repertoire in patients with autoimmune diseases may affect their anti-viral immune response. 

While some studies suggest that SLE patients may be more susceptible to infections, 

their anti-influenza responses appeared as good if not even better than those in healthy 

donors, suggesting that impaired early B cell tolerance checkpoints may actually favor 

anti-viral responses 118. Similarly, anti-HIV responses may benefit from an increase in 

autoreactive naïve B cells since polyreactivity increases the affinity of anti-HIV antibodies 

by heteroligation 119. However, anti-bacterial responses and especially the production of IgA 

targeting commensal bacteria may be altered in some patients with autoimmune diseases, 

resulting in a failure to maintain gut microbiota. For instance, monocytes from SLE patients 

shows a transcriptional signature characteristic of chronic endotoxin exposure that could 

indicate a breach in the gut barrier, allowing the escape of commensal bacteria or antigens 

in periphery 120. In agreement with this hypothesis, SLE patients display autoreactive VH4–

34-expressing IgG+ memory B cells that may be produced by systemic anti-commensal 

bacteria responses and expand during flares 79,121. In addition, Kriegel and colleagues 

recently reported that the translocation of commensal bacteria and especially Enterococcus 
gallinarum from the gut to the liver promotes the development of SLE, further suggesting 

that commensal bacteria fail to be restrained in the gut of these patients 122,123. Finally, 

altered gut microbiota have been associated with the development of autoimmunity 124–127. 

It remains to be determined whether the impaired early B cell tolerance checkpoints and the 

altered naïve B cell repertoire that they induce may favor intestinal dysbiosis in patients with 

autoimmune diseases.

Finally, anti-CTLA-4 and anti-PD-1/anti-PD-L1 “checkpoint inhibitors” (CPIs) that block 

immune inhibitory ligands have revolutionized the treatment of cancers 128–132. However, 

CPI regimens also induce serious immune and autoimmune related adverse events (IrAEs), 

which may be life-threatening. Thyroiditis and hypophysitis with secondary or primary 

adrenal insufficiency, as well as gonadal deficiency, have been reported in 40% and 13% of 

patients treated with anti-CTLA-4 or anti-PD-1 mAbs but can involve nearly half of patients 

treated with the combination 130,132–137. In addition, the development of insulin dependent 

diabetes may also occur in patients who were treated with anti-PD-1 or anti-PD-L1 mAbs 

with or without anti-CTLA-4 138. Since classical, spontanous T1D is characterized by early 
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B cell tolerance checkpoint defects, it is tempting to speculate that CPI may interefere 

with the establishment of B cell tolerance and potentially result in the accumulation of 

large numbers of autoreactive B cells in the blood of CPI-treated cancer patients, thereby 

rendering them susceptible to developing autoimmune manifestation. As a consequence, B 

cell depletion may represent a therapeutic strategy to prevent the development of IrAEs in 

CPI-treated cancer patients without interfering with CPI anti-tumor responses 139.
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Figure 1. Central B cell tolerance is compromised in patients with autoimmune disease and 
healthy donors carrying the 1858T PTPN22 polymorphism.
Frequencies of polyreactive new emigrant/transitional B cells in patients with type 1 

diabetes (T1D), rheumatoid arthritis (RA), pediatric systemic lupus erythematosus (SLE), 

Sjögren’s syndrome (SjS), myasthenia gravis (MG), neuromyelitis optica spectrum disease 

(NMOSD), multiple sclerosis (MS) and healthy donors (HD) with either heterozygous 

(C/T) or homozygous (T/T) PTPN22 polymorphism were compared to the frequencies 

derived from a cohort of healthy donors who did not carry the 1858T PTPN22 risk allele. 

Proportions of polyreactive antibodies expressed by new emigrant/transitional B cells were 

plotted for each subject group along with the mean and standard deviation for each subject 

group. Statistical differences are shown when significant (****, p < 0.0001; ***, p < or = to 

0.001; **, p < or = to 0.01).

Meffre and O’Connor Page 19

Immunol Rev. Author manuscript; available in PMC 2022 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. The peripheral B cell tolerance checkpoint is compromised in patients with 
autoimmune disease and healthy donors carrying the 1858T PTPN22 polymorphism.
Frequencies of (A) polyreactive and (B) autoreactive (HEp-2 reactive) mature naïve B cells 

in seven distinct autoimmune diseases and healthy donors with either heterozygous (C/T) or 

homozygous (T/T) PTPN22 polymorphism were compared to the frequencies derived from 

a cohort of healthy donors who did not carry the 1858T PTPN22 risk allele. Proportions 

of (A) polyreactive antibodies or (B) autoreactive antibodies reactive toward a human 

epithelial type 2 (HEp-2) cell lysate expressed by mature naïve B cells were plotted for 

each subject group along with the mean and standard deviation for each subject group. 
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Statistical differences are shown when significant (****, p < 0.0001; ***, p < or = to 0.001; 

**, p < or = to 0.01).
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Figure 3. Principal component analysis of the frequency of polyreactive and autoreactive B cells 
in seven distinct autoimmune diseases, healthy donors carrying 1858T PTPN22 risk allele(s) and 
non-carrier healthy donors.
Proportions of polyreactive antibodies expressed by new emigrant/transitional B cells 

and proportions of both polyreactive and autoreactive antibodies expressed by mature 

naïve B cells were plotted for each subject group. Healthy donor (HD)-derived B cells 

populations (light blue) cluster together, reflecting the low frequencies of polyreactive and 

autoreactive clones correlating with functional early B cell tolerance checkpoints. Type 1 

diabetes (T1D), rheumatoid arthritis (RA), pediatric systemic lupus erythematosus (SLE), 

Sjögren’s syndrome (SjS), myasthenia gravis (MG), and neuromyelitis optica spectrum 

disease (NMOSD) segregate away from healthy donors, illustrating the accumulation 

of polyreactive and autoreactive B cells due to impaired central and peripheral B cell 

tolerance checkpoints. Healthy donors with either a heterozygous (C/T) or homozygous 

(T/T) PTPN22 polymorphism (dark blue), who also display defective early B cell tolerance 

checkpoints, cluster with the autoimmune disease cohort. B cells from MS patients (green) 

display a heterogeneous pattern. While two patients with MS cluster with the autoimmune 

cohort and displayed impaired central and peripheral B cell tolerance checkpoints, most MS 

patients cluster as an independent group characterized by specific defects of the peripheral B 

cell tolerance checkpoint.
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Figure 4. Variable region family usage is skewed in the naïve BCR repertoire of patients with 
myasthenia gravis who suffer from impaired early B cell tolerance checkpoints.
Antibody heavy chain variable region family usage for the naïve (IgM) B cell compartment. 

The analysis was performed with 114,296 unique sequences collected from four HDs, three 

AChR autoantibody positive MG patients (AChR), and three MuSK autoantibody positive 

MG patients (MuSK). Usage is shown as a frequency of the total unique IGHV sequences 

(y-axis) for each subject (symbols). Horizontal bars indicate the mean abundance over all 

subjects of a given status and vertical shading indicates +/− 1 SD about the mean. Data 

previously reported 81.
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