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Abstract

The major soil-transmitted helminths that infect humans are the roundworms, whipworms and 

hookworms. Soil-transmitted helminth infections rank among the most important neglected 

tropical diseases in terms of morbidity, and almost one billion people are still infected with at least 

one species. While anthelmintic drugs are available, they do not offer long term protection against 

reinfection, precipitating the need for vaccines that provide long-term immunologic defense. 

Vaccine discovery and development is in advanced clinical development for hookworm infection, 

with a bivalent human hookworm vaccine in clinical trials in Brazil and Africa, but is in its 

infancy for both roundworm (ascariasis) and whipworm (trichuriasis) infections. One of the 

greatest hurdles to developing soil-transmitted helminth vaccines is the potent immunoregulatory 

properties of these helminths, creating a barrier to the induction of meaningful long-term 

protective immunity. While challenging for vaccinologists, this phenomenon presents unique 

opportunities to develop an entirely new class of anti-inflammatory drugs that capitalise on these 

immunomodulatory strategies. Epidemiologic studies and clinical trials employing experimental 

soil-transmitted helminth challenge models, when coupled with findings from animal models, 

show that at least some soil-transmitted helminth-derived molecules can protect against the 

onset of autoimmune, allergic and metabolic disorders, and several natural products with the 

desired bioactivity have been isolated and tested in pre-clinical settings. The yin and yang of soil-

transmitted helminth infections reflect both the urgency for effective vaccines and the potential for 

new immunoregulatory molecules from parasite products.
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1. Biology and epidemiology

The soil-transmitted helminths (STHs) is a group of parasitic nematodes of humans that 

are mostly restricted to the world’s tropical and subtropical climates, especially in low- and 

middle-income countries (LMICs), where they cause infection through contact with parasite 

eggs or infective larval stages (Bethony et al., 2006). The adult developmental stages of 

STHs are found in the gastrointestinal (GI) tract where they establish chronic infections 

in which individual worms can live for 1–10 years. The STHs of particular worldwide 

importance that we will address herein are the roundworms, whipworms and hookworms.

Of the roundworms, the major species to infect humans is Ascaris lumbricoides, the largest 

(up to 400 mm in length) and most prevalent of the STHs (Elkins et al., 1986). Humans 

become infected after ingesting embryonated eggs, which hatch to release larvae that 

penetrate the intestinal mucosa to commence an obligatory extra-intestinal migratory phase 

in the liver and lungs, whereupon they migrate up the trachea and are swallowed, thus 

re-entering the GI tract. In the small intestine they develop into dioecious adult worms which 

mate and the female releases hundreds of thousands of eggs per day.

The major whipworm to infect humans is Trichuris trichiura (Else et al., 2020). People 

become infected by ingesting eggs, whereupon first stage larvae (L1) hatch and penetrate 

the epithelial cells at the base of the crypts of the large intestine (colon) where they create 

a multicellular epithelial tunnel. Larvae grow and moult multiple times before becoming 

30–50 mm adult males and females with the characteristic whip like appearance. Zoonotic 

infections with other Trichuris spp. occur, primarily Trichuris suis from pigs and Trichuris 
vulpis from dogs, but neither species completes its development in humans nor are they 

considered to be pathogenic. Indeed, experimental human infection with T. suis has been 

reported in numerous clinical trials due to the immunoregulatory nature of the infection (see 

subsequent sections).

The third major group within the STHs is the human hookworms (Hotez et al., 2005). 

Adult hookworms reside for many years in the small intestine where they feed on blood 

and can cause iron deficiency anaemia (IDA) when present in high numbers, particularly in 

individuals who are malnourished or have compromised iron stores. Children and women 

of reproductive age (especially pregnant women) with low underlying iron stores are 

especially prone to develop hookworm IDA. The three main hookworm species to infect 

humans are Necator americanus, Ancylostoma duodenale and Ancylostoma ceylanicum. 

The most predominant human hookworm is N. americanus, which is particularly common 

in southern China, Southeast Asia, the Americas and most of the African continent. 

Ancylostoma ceylanicum was thought to be primarily a parasite of dogs, but has recently 

been identified as a significant human species throughout the Asia-Pacific region where it is 

sometimes co-endemic with N. americanus (Inpankaew et al., 2014; Bradbury et al., 2017; 
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Colella et al., 2021). Humans become infected with N. americanus through percutaneous 

penetration of infective third-stage larvae (L3) whereas the ancylostomatids can infect 

via both percutaneous and oral (and even trans-colostral) routes. A human experimental 

challenge model has been established for N. americanus (Loukas et al., 2016; Diemert et 

al., 2018a; Hoogerwerf et al., 2021) and it has been shown to be safe and well tolerated in 

doses exceeding 100 topically applied L3 (Hoogerwerf et al., 2021). This has enabled the 

establishment of a platform to test anthelmintic drugs and vaccines as well as assessing the 

therapeutic potential of experimental hookworm infections for treating diseases that result 

from a dysregulated immune system (Ryan et al., 2020).

Human strongyloidiasis is caused primarily by Strongyloides stercoralis, a STH with a 

unique life cycle that entails alternative free-living and parasitic developmental pathways 

in response to environmental stimuli (reviewed in Krolewiecki and Nutman, 2019). Unlike 

the other STHs, eggs shed by the female worm hatch in the small intestine and it is the 

L1 rhabditiform larvae that are passed in the faeces and are the diagnostic stage detected 

by microscopy. Due to the presence of larvae in the duodenum, autoinfection is a risk 

if larvae reach the infective L3 stage before being shed from the host. This can lead 

to hyperinfection syndrome where larvae are mostly restricted to the gut and lungs, or 

disseminated strongyloidiasis where larvae can invade other organs. Both conditions are 

common with subjects receiving high doses of corticosteroids, such as post-organ transplant 

patients, and can be fatal (Cappello and Hotez, 1993). Human to human infection is typically 

via percutaneous penetration by L3s but oral transmission is thought to be possible. Dogs 

can also harbour S. stercoralis infection and are thought to be a source of human infection in 

some areas (Jaleta et al., 2017). Once larvae penetrate the skin they rapidly migrate through 

subcutaneous tissue and sometimes leave pruritic linear streaks along the lower trunk and 

buttocks, often referred to as larva currens.

Increasing attention is also being paid to the zoonotic roundworms, Toxocara canis and 

Toxcara cati, and their importance to public health (Ma et al., 2018). Toxocara spp. are 

primarily parasites of dogs and cats, but are thought to infect tens of millions of people 

based on seropositivity rates. Toxocara does not fully mature in humans but undergoes 

various forms of larva migrans, where larvae migrate through the liver and lungs (visceral 

larva migrans), eyes (ocular larva migrans) or neurological tissues (neurotoxocariasis). The 

term covert toxocariasis has been used to report on the asymptomatic or low-grade Toxocara 
infection, which can result in chronic eosinophilia, asthma, or developmental delays.

2. Disease burden, pathogenesis, and current control efforts

The STH infections rank among the most common neglected tropical diseases. Practically 

all children and many adults (including millions of pregnant women) who live in extreme 

poverty are affected by at least one of these infections. However, while STH infections 

are typically chronic and debilitating conditions, they are not considered major causes of 

global mortality. We therefore assess their public health impact through global and regional 

prevalence estimates or a metric used by the Global Burden of Disease Study (GBD) and 

known as the disability-adjusted life year (DALY).
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The latest iteration for the year 2019 (GBD 2019) has determined that 909 million people 

suffer from these infections (IHME, 2020a). Ascariasis is the most common STH infection 

with 446 million prevalent infections (IHME, 2020b), followed by trichuriasis, currently 

estimated at 360 million prevalent infections (IHME, 2020c), and hookworm infection at 

173 million (IHME, 2020d). Together these STH infections result in approximately 2,000 

deaths annually, and almost 2 million DALYs (IHME, 2020a). However, some investigators 

feel that even these numbers may fail to fully account for all of the chronic morbidities 

(Herricks et al., 2017). Currently, the GBD2019 estimates that hookworm infection accounts 

for almost one-half of the DALYs lost (Fig. 1), mostly due to moderate and severe anaemia 

in children and pregnant women (IHME, 2020d).

Although the GBD2019 does not provide estimates for other STH infections, both 

strongyloidiasis and toxocariasis are highly prevalent diseases. One independent estimate 

reported 386 million people with strongyloidiasis in 2020 (Fleitas et al., 2020), although 

their method relied on hookworm infection prevalence estimates that far exceeded those 

released by the GBD2019. An earlier estimate for strongyloidiasis from 2017 was higher 

still (Buonfrate et al., 2020). In some estimations, human toxocariasis has emerged as one of 

the most prevalent STH infections. However, human toxocariasis is assessed by measuring 

antibodies in patient sera rather than by faecal examination. A 2019 systematic review and 

meta-analysis estimate puts the global seroprevalence of toxocariasis at 19%, but with far 

higher estimates in tropical regions, especially Africa and South-East Asia (Rostami et al., 

2019).

The pathogenesis of disease caused by STH infections is often considered in aggregate, 

although in fact, each type of infection is unique in terms of pathogenesis and clinical 

outcome. However, there are some common features. For ascariasis, trichuriasis, and 

toxocariasis, typically the severest illness occurs in children because they harbour higher 

worm loads than adults (Else et al., 2020). Hookworms are an important exception as high 

hookworm burdens are found in both children and adults, including pregnant women (Ness 

et al., 2020). It has been estimated that approximately 7 million pregnancies are complicated 

by hookworm infection in Sub-Saharan Africa (Brooker et al., 2008). In general, heavier 

worm burdens in children lead to chronic impairments in physical growth and cognitive and 

intellectual development through underlying mechanisms that may be linked to malnutrition 

and/or host inflammatory responses (Else et al., 2020).

Each type of STH also induces unique pathologic effects. For example, large Ascaris 
roundworms cause intestinal obstruction, especially in the ileum of small children (Else 

et al., 2020), and this finding accounts for a high percentage of the 2,000 or more annual 

deaths. In addition, Ascaris roundworms can mechanically obstruct the bile and pancreatic 

ducts, especially in adults. Still another aspect is the finding that in their migration through 

the lungs, Ascaris larvae can induce severe allergic responses that produce a mixed picture 

of eosinophilic asthma and chronic obstructive lung disease (Weatherhead et al., 2018). 

In contrast, Trichuris whipworms inhabit the large intestine where they cause colitis and 

inflammatory bowel disease, and in heavy infections, a Trichuris dysentery syndrome which 

can lead to rectal prolapse (Else et al., 2020). The mechanisms of colitis are due primarily 

to the ability of adult Trichuris whipworms to release chemically-active compounds from 
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their stichosome, a unique parasite organ located in the anterior portion of the worm 

embedded in the host gut mucosa. The release of small and macro-molecules from the 

parasite stichosome causes biochemical changes to host epithelia, allowing the anterior end 

of the parasite to burrow in cellular tunnels to induce inflammation and intestinal blood 

loss (Else et al., 2020). However, hookworms cause far greater blood loss due to the ability 

of the adult stage parasites to ingest a plug of host tissue causing direct mechanical and 

enzymatic damage (Loukas et al., 2016). The red blood cells are ingested and lysed by 

the adult hookworm. The gut of the adult hookworm is lined with proteolytic enzymes, 

many of which are specific for cleaving haemoglobin and operate in a cascade of hydrolytic 

cleavages and protein breakdown (Ranjit et al., 2009). This allows the adult hookworm to 

digest haemoglobin and absorb host peptides and amino acids. For that reason, the major 

consequence of heavy hookworm blood ingestion is moderate and severe anaemia, as well 

as protein malnutrition and hypoalbuminaemia (Loukas et al., 2016). Severe hookworm 

anaemia together with the foetal iron demands in pregnancy can produce serious deleterious 

effects for both mothers and newborns.

Strongyloidiasis produces its most severe form of illness in patients who receive high doses 

of corticosteroids, or in some cases other immunosuppressive therapies or co-infection 

with HTLV-1 (Mejia and Nutman, 2012). This results in a severe hyperinfection syndrome 

associated with gut microperforation, bacteraemia, and even bacterial meningitis (Mejia 

and Nutman, 2012). Human toxocariasis results from larval migration through host tissues, 

eliciting eosinophilia and lung allergic responses similar to those observed for larval Ascaris 
infection in the lungs, or in the liver leading to hepatitis (Ma et al., 2018). In addition, 

Toxocara larval migration through the brain may produce a subclinical cerebritis leading to 

intellectual declines and developmental delays (Hotez, 2014; Ma et al., 2018).

Such widespread pathology caused by STH has demanded much greater efforts to control 

infections. In 2001, the World Health Assembly pledged to deworm up to 100% of 

all school-aged children by the year 2010. The approach relied on studies conducted 

during the 1990s that found a single dose of an anthelminthic drug, typically a single 

dose of albendazole or mebendazole, could reduce the bioburden of STH infections. 

This allowed paediatric catch-up growth and improvements in childhood cognition and 

intellectual capacity (Savioli et al., 1992). Indeed, early on, there was evidence of not 

only improvements in child development, but also in educational attainment and long-term 

economic returns (Migel and Kremer, 2004). Countering this were systematic reviews and 

Cochrane analyses that questioned these benefits (Taylor-Robinson et al., 2009, 2015), 

which led to a vigorous disagreement in the medical parasitology community. One analysis 

suggested that such “worm wars” might be resolved by recognising the differences between 

each of the STH rather than lumping them together as a single STH entity, in which the 

significant effects in one species would be negated by lack of effects in the others. In 

addition, it is important to control for the differential effects of drug treatment on each of the 

major helminth species, and compare light versus moderate or severe helminth infections of 

children, particularly with respect to cognitive improvements (Majid et al., 2019).

Currently, hundreds of millions of both school-aged children and pre-school children receive 

annual deworming in low- and middle-income countries. Less clear is whether this approach 
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actually can lead to the elimination of STH infections, or whether additional selective 

pressure should be applied in the form of simultaneously treating adults on an annual basis 

(Ásbjörnsdóttir et al., 2018). A “deworm3” project is underway to assess whether more 

aggressive deworming approaches could lead to gradual declines in parasite prevalence and 

intensity (Ásbjörnsdóttir et al., 2018) or whether new and improved technologies might 

be required, such as evaluating existing anthelmintic drugs in combination, for example 

albendazole combined with ivermectin (Palmeirim et al., 2018; Moser et al., 2019). In 

addition, efforts are in progress to explore new chemical entities (NCEs) and new classes of 

anthelmintic drugs (Elfawal et al., 2019), as well as anthelmintic vaccines. With regards to 

the former, a novel screening pipeline has been proposed and is starting to yield promising 

NCEs, while anthelmintic vaccines are discussed in more depth below. In parallel, expanded 

studies are in progress to evaluate whether mass drug administration could induce parasite 

drug resistance to albendazole or mebendazole (Vlaminck et al., 2018). This new Starworms 

project examines single nucleotide polymorphisms in the genes encoding β-tubulin, the 

major drug target of albendazole and mebendazole (Vlaminck et al., 2018).

3. Vaccines for STHs – human trials, animal models and challenges to 

development

There is a general absence of reliable protective immunity to STH infections among those 

living in endemic areas of poverty. That said, a status quo is achieved in many infected 

subjects, where worm burdens that contribute to morbidity (particularly in the young and 

malnourished) are frequently encountered, but uncontrolled heavy intensity infections are 

less common. Age- and exposure-acquired immunity to hookworms (reviewed in (Loukas 

et al., 2016a) and whipworms (reviewed in (Else et al., 2020)) is slow to develop, if at all, 

however Ascaris burdens tend to peak in early adolescence and decrease with age along with 

a robust T helper 2 (Th2) immune response (Turner et al., 2003).

Given the absence of naturally acquired sterilizing immunity in STH infections, the goal 

of current vaccination strategies is to attain partial immunity that minimises the impact of 

moderate to heavy intensity infections. To date, the most compelling strategy for developing 

helminth vaccines (not just STH) is the irradiated parasite approach. Many studies have 

shown in animal models of human helminths as well as with helminths of livestock and 

companion animals that vaccination with live radiation-attenuated larvae confers strong 

protection against challenge infection. Indeed, in the 1960s Miller showed that subcutaneous 

vaccination of dogs with infective larvae of the canine hookworm Ancylostoma caninum 
that were attenuated with X-rays resulted in protection of pups against challenge infection 

(Miller, 1964). Protection was attributed to distinct but interrelated factors including 

reduction in larval infectivity, reduced pathogenicity, and the sterilising effect of radiation 

on female worm fecundity (manifesting as reduced egg burdens in vaccinees). Subsequent 

studies showed that gamma radiation was successful, and these criteria guided the 

development, manufacture and licensing of a gamma-irradiated A. caninum L3 vaccine 

in the early 1970s (Miller, 1978). Despite high efficacy, animals showed residual levels of 

infection that dented confidence in its value, and the vaccine was removed from the market. 

Irradiated STH vaccines require a ready supply and industrial scale methods for producing 
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the attenuated immunogen (larvae), and thus pose a number of challenges for regulatory 

approval and wide-scale implementation. As such, there were no efforts to develop and 

clinically test an attenuated larval vaccine for any human STH infection until recently when 

Chapman and colleagues undertook a phase 1 randomised, double-blind, placebo-controlled, 

challenge study to assess the safety and tolerability of ultraviolet light C (UVC)-irradiated 

N. americanus in healthy hookworm-naive adults in Australia (Chapman et al., 2021). The 

vaccine was well tolerated, safe and despite the small cohort sizes, significantly reduced 

larval burdens were recovered from hatched eggs of vaccinated participants compared with 

controls after challenge infection with non-attenuated larvae. While an ultimate hookworm 

vaccine is unlikely to take the form of irradiated larvae due to the logistical challenges 

outlined above, this trial nonetheless set a benchmark against which to compare subunit 

vaccines that are currently in development (see below), and was the first study to prove that 

partially protective immunity could be induced in humans by vaccination. Similar studies 

with attenuated forms of other STHs have yet to be undertaken, but we urge researchers to 

perform these trials as both proof-of-concept studies and to generate valuable reagents (eg. 

sera) that can be utilised in the search for protective antigens.

STHs produce a diverse array of secreted molecules and vesicles that interact with 

surrounding host tissues where they orchestrate various parasitism processes such as tissue 

penetration, somatic migration, feeding and immune modulation. Proteins involved in these 

processes are prime candidate antigens to target with subunit vaccines. Along those lines, 

a Human Hookworm Vaccine Initiative was established in 2000 to reproduce the effects of 

irradiated larvae but using recombinant protein subunit vaccines (Hotez et al., 2003). Based 

on earlier findings of two predominant larval secreted proteins known as Ancylostoma 
secreted protein-1 (ASP-1) (Hawdon et al., 1996) and ASP-2 (Hawdon et al., 1999) released 

upon host stimulation, and which were also found in N. americanus (Na-ASP-2) (Goud et 

al., 2005), the HHVI focused on these two molecules. It was subsequently found that ASP-2 

was an immunodominant macromolecule associated with irradiated vaccines (Bethony et al., 

2005). Although an alum formulation of yeast-expressed recombinant ASP-2 was shown to 

be safe and immunogenic in helminth-naïve human volunteers (Bethony et al., 2008), follow 

up phase 1 studies in an endemic area of Brazil revealed that the vaccine was allergenic due 

to the presence of pre-vaccination host IgE among those chronically exposed to the parasite 

(Diemert et al., 2012). For that reason, larval antigen vaccines were abandoned in favour of 

adult hookworm antigens.

As a second and more successful strategy for human hookworm vaccines (Hotez et al., 

2010), recombinant forms of two parasite-derived enzymes involved in blood-feeding and 

detoxification are in clinical development - the haemoglobin-degrading aspartic protease, 

Na-APR-1 (Pearson et al., 2009), and the haem-detoxifying glutathione-S-transferase, Na-

GST-1 (Asojo et al., 2007; Hotez et al., 2010). Both vaccines have been tested independently 

in phase 1a safety trials (https://clinicaltrials.gov/ct2/show/NCT01717950) (Diemert et al., 

2017), and more recently in a N. americanus endemic region of Gabon as a combination of 

co-administered vaccines adjuvanted with alhydrogel (Adegnika et al., 2021). Both vaccines 

were shown to be immunogenic and safe, and now await efficacy testing using the controlled 

hookworm infection model. Both Na-APR-1 and Na-GST-1 are expressed in the gut of the 

adult stage parasite. Moreover, both of these adult hookworm antigens appear to circumvent 
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past issues with inducing allergic responses. In general, STH and other helminth vaccine 

antigen selection approaches now have rigorous criteria for down-selecting proteins that 

drive IgE responses in infected individuals (Diemert et al., 2018b).

There is an equally real need for a vaccine that reduces infection intensity and transmission 

in trichuriasis. Despite mass anthelmintic drug administration programs to school-age 

children, T. trichiura infection continues to be a burden, notably due to the low efficacy 

of current drugs and high rates of post-treatment re-infection. To our knowledge, there has 

never been a clinical trial with a Trichuris vaccine of any sort. However, a comprehensive 

review on trichuriasis vaccines with a major emphasis on candidate antigens tested in the 

Trichuris muris mouse model was recently published (Hayon et al., 2021). Vaccination 

of susceptible mice with Freund’s adjuvanted T. muris excretory/secretory (ES) products 

conferred complete protection against challenge infection (Dixon et al., 2010). Many of 

these ES antigens originate from the Trichuris stichosome organ which is embedded in the 

host colonic mucosa (Briggs et al., 2018). While this highlights the value of the murine 

model for pre-clinical discovery and development of a subunit vaccine for human whipworm 

infection, it should be noted that susceptibility and immunologic resistance/clearance of the 

infection is mouse strain- (median histocompatibility complex) and sex-dependent, and is 

influenced by the nature of exposure, notably trickle versus bolus infection (Yousefi et al., 

2021). One subunit vaccine that is showing particular promise is the Trichuris stichosome 

secreted antigen known as whey acidic protein (WAP) (Briggs et al., 2018). Still another 

contains a fragment spanning the catalytic domain of serine/threonine phosphatase 2A 

fused to a self-adjuvanting synthetic oleic-vinyl sulfone, which when administered to mice 

intra-nasally provided almost complete protection against T. muris challenge infection. 

Indeed, similar self-adjuvanting mucosally-delivered vaccines based on peptides/subunits of 

protective protein antigens from hookworms also confer high protection in animal models 

(Bartlett et al., 2020). These findings, while preliminary in nature, highlight the potential 

of this vaccine platform and the advantages it confers for distribution of vaccines to remote 

areas.

Vaccines against ascariasis are proposed to reduce the parasite burden and, consequently, 

infection-induced morbidity and transmission (Else et al., 2020). Mouse models, while not 

allowing complete development of these large parasites in a small animal, have proven 

useful in assessing anti-larval responses in the lungs. Multiple exposures of mice to eggs of 

the pig whipworm Ascaris suum conferred high levels of protection against accumulation 

of larvae in the lungs (Nogueira et al., 2016). Moreover, vaccination of mice with different 

A. suum extracts derived from adult and larval parasites provided partial protection against 

larvae reaching the lungs, and passive transfer of IgG from vaccinated mice conferred 

similar levels of protection (Gazzinelli-Guimarães et al., 2018). Infection of pigs with A. 
suum has been used as a permissive model of human ascariasis, and oral vaccination of pigs 

with radiation-attenuated eggs conferred 94% protection against challenge infection (Urban 

and Tromba, 1984). While ascariasis vaccines have not yet entered clinical development or 

testing, a number of subunit vaccines have been assessed in the mouse model, including 

As37 which is conserved amongst STH and represents a potential pan-STH vaccine 

candidate (Versteeg et al., 2020), as well as another antigen known as As16 (Wei et al., 

2017). A chimeric antigen consisting of peptides from multiple antigens was recently shown 
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to confer robust protection against establishment of larvae in the lungs (de Castro et al., 

2021). In parallel with each STH vaccine are efforts to combine these antigens in a universal 

or multivalent pananthelmintic vaccine, in addition to studies to identify common consensus 

antigens against roundworms, whipworms and hookworms (Zhan et al., 2014).

Although very high levels of protection have been observed in rodent models of STH 

infections, a lower bar has been set for efficacy of human vaccines due to the limitations 

of these animal models. Moreover, modelling studies have shown that such high levels 

of protection are not required to substantially reduce morbidity due to the correlation 

between infection intensity and pathogenesis in hookworm infection at least (Bartsch et 

al., 2016). A caveat that must be considered with all helminth vaccine programs is the 

issue of administering vaccines to individuals who are already infected, often chronically 

so, and therefore under the influence of helminthiasis-driven immunoregulation (see next 

section). At the very least, subjects should be dewormed with an anthelmintic drug prior 

to vaccination, but the long-lasting immunomodulatory effects of STH infections are well 

documented (Loukas et al., 2016; Else et al., 2020), and could result in reduced vaccine 

efficacy in affected individuals. Finally, such vaccines are predicted to be highly cost-

effective and cost-saving due to the poverty promoting effects of these parasites (Bartsch et 

al., 2016). For that reason, they are sometimes referred to as ‘antipoverty vaccines’ (Hotez et 

al., 2011).

4. Next generation integrated control and elimination

The current approaches emphasizing mass treatment or deworming have so far not 

succeeded in promoting STH elimination unless there is a commensurate rise in living 

standards and economic development. Efforts to optimize mass treatment by expanding 

access to anthelmintics for the entire community and combining traditional and new 

anthelmintics drugs – including ivermectin or moxidectin (where these drugs are already 

deployed for onchocerciasis and lymphatic filariasis control programs) – to create added 

synergies for trichuriasis and hookworm, will help. But even these measures may be 

insufficient. For instance, anthelmintic drug resistance monitoring needs to be better 

and fully integrated into global deworming programs. We also have an opportunity to 

introduce new anthelmintic vaccines for STH infections and potentially integrate them in 

vaccine-linked chemotherapy approaches (Zawawi and Else, 2020). Adding vaccinations 

to deworming could reduce the amplitude of post-treatment reinfections to a point in 

which STH transmission is no longer sustained, a goal aided by the absence of significant 

animal reservoirs for these infections (except possibly for ascariasis in pigs). A similar 

approach has been proposed for schistosomiasis in Africa and the Americas. Currently, the 

global policymakers have not prioritized vaccine-linked chemotherapy approaches, choosing 

instead to rely exclusively on deworming despite major questions regarding its sustainability 

(Lin and Addiss, 2018).

5. Immunoregulatory strategies of STH

Protective immunity to STH infections takes on different forms depending on the individual 

species and the route of infection. Necator americanus for example first enters the human 
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host via the skin, whereas the whipworms and ascarids are orally infective. While we have 

a general understanding of the protective mechanisms at play from rodent models, such as 

N. brasiliensis and T. muris (Allen and Sutherland, 2014), the protective response in humans 

is less well understood, and indeed for hookworms at least, there is no clear-cut evidence of 

protective immunity (Loukas et al., 2016). Nonetheless, a robust type 2 response is initiated 

early with IgE-armed basophils trapping larvae in the skin, and further clearance of STH 

larvae occurs in the lungs, where M2 macrophages damage and orchestrate the clearance 

of parasites (Loukas et al., 2016; Else et al., 2020). Once adult worms are lodged in the 

gut, secretion of type 2 cytokines and IL-22 in intestinal mucosal tissue of experimentally 

infected subjects has been detected, and induction of goblet cell hyperplasia and mucus 

production (Broadhurst et al., 2010; Gaze et al., 2012), all of which culminate in worm 

expulsion. Moreover, the production of IL-25 by intestinal tuft cells has been shown to be a 

key early event in triggering protective TH2 responses in animal models (Gerbe et al., 2016).

In the face of this robust modified type 2 response, it is remarkable how ineffective our 

natural defenses against STH are, reflecting the ability of these parasites to modulate 

and disable host immune mechanisms (McSorley and Maizels, 2012), and contributing 

to the difficulty in developing highly efficacious subunit vaccines. In particular, acquired 

immunity to repeated STH infections is poorly expressed, with rapid re-infection following 

anthelmintic chemotherapy (Jia et al., 2012), and no obvious decline in worm burdens 

(notably for hookworm infections) observed as populations age (Anderson and May, 1982). 

STHs combine short-term tactics to minimise immune stimulation with a longer-term 

strategy to exploit host immune regulatory networks, in order to mute host reactivity and 

inactivate expulsion mechanisms.

In the first instance, parasites that enter through the skin (eg hookworms, Strongyloides) 

encounter different barriers to those taking the oral route (Ascaris, Trichuris, Toxocara). 

Barrier tissues release alarmins, such as IL-33 and TSLP, to alert the immune system and 

prime antigen-presenting cells (dendritic cells, DCs); in animal models at least, helminths 

release products that block the IL-33 pathway (Osbourn et al., 2017; Vacca et al., 2020), 

thus neutralising the ability of epithelial cells to kick-start the immune response. Similarly, 

secretions of Trichuris suis reduce TSLP release by intestinal epithelial cells (Hiemstra et 

al., 2014), as well as interfere with DC activity as discussed below.

Live larvae are generally sheathed with a redundant cuticle that can be rapidly discarded 

on entry into the host (Kumar and Pritchard, 1992). The sheath is now recognised not 

only as a protective layer, but as a decoy. Thus, skin-penetrating N. americanus larvae 

attract lectin-dependent DC adherence to their sheath, allowing the parasites to migrate 

away from immune cells immobilised on the cast material (Hassan et al., 2018). Similarly, 

Toxocara larvae which can migrate through somatic tissues express a surface coat that 

attracts antibody and granulocyte binding, but is readily shed to facilitate immune evasion 

(Fattah et al., 1986; Page et al., 1992).

While in the first instance, STH evasion mechanisms vary widely according to their route 

of entry and subsequent migratory tropism, all helminth species exert profound effects 

on DCs (White and Artavanis-Tsakonas, 2012). DCs are the pivotal population which 
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presents parasite antigens to T cells, triggers the activation of these cells, and drives 

them toward the Th2 mode that is necessary for parasite destruction. Thus, blocking DC 

function is of critical importance in STH infection. For STHs with limited options for 

in vivo models, investigations have primarily been conducted in vitro, using ES products 

from congeners (eg A. suum and T. suis for their human counterparts). These ES products 

abrogate DC responses to bacterial stimuli (eg lipopolysaccharide), minimise inflammatory 

cytokine production, and reduce their ability to stimulate T cells. In the case of Ascaris, 

an abundant body constituent (pseudocoelomic fluid, PCF) was found to mediate these 

effects (McConchie et al., 2006). More recently, Ascaris PCF has been shown to strongly 

interfere with the central pathway of toll like receptor (TLR) signaling in DCs through 

MyD88 (Arora et al., 2020). A close parallel exists with the ES products of T. suis which not 

only down-modulate human DCs in a similar manner (Klaver et al., 2013), but are able to 

interfere with macrophage TLR signaling (Ottow et al., 2014).

Having negotiated the innate immune system, STHs then need to create a new balance in 

the immune system to minimise local inflammation and permit their continued tenure. If 

this balance is not struck, parasites may be expelled but the host may also suffer collateral 

immunopathology from an over-zealous immune response. To some extent, this new host–

parasite accord resembles a form of immunological tolerance mediated at two levels. First, 

immune cells may be intrinsically hyporesponsive or down-regulated, as occurs in the 

modified type 2 response (Maizels and Yazdanbakhsh, 2003). Secondly, immune reactivity 

to STHs may be actively suppressed by the regulatory T cell (Treg) population that normally 

protects the body from autoimmunity and food allergy through soluble regulatory cytokines 

(IL-10 and TGFβ) and surface inhibitory receptors such as CTLA-4 (White et al., 2020). 

Consistent with this concept, children exposed to high levels of Ascaris and Trichuris 
showed poor immune reactivity (IL-4 and IFNγ production) and high levels of regulatory 

cytokines in in vitro lymphocyte assays (Turner et al., 2008; Figueiredo et al., 2010).

Effector T cell hyporesponsiveness is commonly observed across many human helminth 

infections, including STHs (Figueiredo et al., 2010), and may result from aberrent DC 

signalling, Treg modulation, or both. Paradoxically, hyporesponsive individuals can display 

very high levels of IgG4 isotype antibodies rather than IgE; indeed, in human ascariasis, 

the IgG4:IgE ratio correlated with intensity of infection (Turner et al., 2005). An interesting 

parallel was drawn with the “Modified Type 2” phenotype observed during desensitization 

of allergic individuals, in which the IgE isotype is displaced by a dominant IgG4 antibody 

response (Platts-Mills et al., 2004). Subsequently, IgG4 was found to be promoted by IL-10 

and TGF-β (Satoguina et al., 2008), suggesting that this isotype may be a reflection of 

potent Treg activation during STH infection.

The Treg pathway is emerging as a central feature in human STH infections, and is 

tracked by expression of the canonical transcription factor FOXP3 (Logan et al., 2018; 

de Ruiter et al., 2020). In some animal models of STH, parasites secrete proteins that 

induce Foxp3 expression and functional Tregs (Johnston et al., 2017; White et al., 2021), 

including in human peripheral blood T cells (Cook et al., 2021). Direct evidence for Treg 

expansion, or Treg-driving secreted products, in human STH infections is relatively limited, 

although in natural N. americanus infections there are greater frequencies of FOXP3+ Tregs, 
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associated with elevated CTLA-4 as well as IL-17 (Ricci et al., 2011). A similar rise 

in FOXP3+ Tregs was observed in coeliac disease patients given experimental therapy 

with live hookworms (Croese et al., 2015). In Strongyloides patients, elevated Tregs are 

associated with suppression of the Th2 effector cytokine IL-5 (Montes et al., 2009), while 

in a remarkable study in Argentina, multiple sclerosis patients acquiring intestinal helminth 

infections (not exclusively STHs) showed raised FOXP3+ Treg numbers and were protected 

from disease relapse (Correale and Farez, 2007). As well as Treg frequency, their function 

may also be altered in STH infection, as following albendazole treatment of children in 

Indonesia, Treg numbers did not decline but their CTLA-4 expression was abated (Wammes 

et al., 2016).

6. Use of STH and their molecular derivatives to treat inflammatory 

diseases

The safety and tolerability of experimental human helminth infections have resulted in their 

use as a novel therapeutic modality for the treatment of a range of diseases that result from 

a dysregulated immune response, notably allergic and autoimmune diseases (Garg et al., 

2014; Zuo et al., 2018; Ryan et al., 2020). Two helminths, both STHs, have been used – 

the zoonotic T. suis and the anthropophilic N. americanus. The therapeutic efficacy and 

tolerability of orally administered T. suis ova (TSO) has been assessed in phase 1 trials in 

patients with IBD – Crohn’s disease and ulcerative colitis - and despite promising phase 1 

trials (Summers, 2005), subsequent phase 2 trials failed to reach their clinical endpoints in 

both IBD (Schölmerich et al., 2016) and multiple sclerosis (Voldsgaard et al., 2015; Fleming 

et al., 2019).

Trichuris suis is a parasite of pigs and is expelled from the human body rapidly, thereby 

requiring frequent dosing. Necator. americanus however is primarily anthropophilic and 

survives for many years in infected people (Loukas et al., 2016). Experimental N. 
americanus infection in human volunteers is safe and well-tolerated (Blount et al., 2009; 

Feary et al., 2009; Daveson et al., 2011). Croese et al. assessed the safety of low-dose 

percutaneously administered N. americanus L3 in patients with Crohn’s disease (one of 

the two major forms of IBD), and found the infection to be well tolerated; moreover, 

despite being on open label trial, all patients who remained in the trial for 1 year were in 

disease remission (Croese et al., 2006). A randomised controlled trial (RCT) is underway 

in New Zealand to comprehensively assess the efficacy of N. americanus as a maintenance 

therapy in patients with ulcerative colitis (Australian New Zealand Clinical Trials Registry 

ACTRN12620000956909). Necator americanus has also been assessed for efficacy in a RCT 

in coeliac disease, where subjects on a gluten-free diet received N. americanus L3 or topical 

chilli sauce (placebo) (Croese et al., 2020). Hookworm infection did not restore tolerance 

to sustained moderate consumption of gluten but was associated with improved symptom 

scores after intermittent consumption of lower gluten doses, and infection has been shown to 

promote Treg responses in the gut of human subjects (Croese et al., 2015).

An increasing body of literature supports a role for helminths in combatting inflammation in 

type 2 diabetes (de Ruiter et al., 2017; Gao et al., 2021). Animal studies with model STHs 
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have shown that hookworms can prevent diet-induced obesity and insulin resistance in mice 

(Yang et al., 2013; Khudhair et al., 2021). Epidemiologic studies have revealed a negative 

association between STH infections and metabolic syndrome, particularly for Strongyloides 
infection (Tracey et al., 2016). Following on from this review, the first clinical trial assessing 

experimental helminth infection (N. americanus) in metabolic syndrome is underway in 

Australia (Pierce et al., 2019). Most of these early-phase clinical trials with experimental 

STH infections were impaired by the absence of current good laboratory/manufacturing 

protocols for infective stage parasites. Methods for the production of cGMP hookworms 

were recently reported (Diemert et al., 2018) and are essential if helminth therapy is to be 

widely adopted and commercially developed in the future.

A rapidly growing array of helminth-derived immunomodulatory molecules is being defined 

and evaluated in pre-clinical models of inflammatory diseases (Maizels et al., 2018; Ryan 

et al., 2020). ES products from STHs, as frequently found across the helminth groups, 

can dampen inflammation in mouse models (Ebner et al., 2014). To date, relatively few 

individual mediators have been defined from STHs (Fig. 2), but notable among them are 

members of the TIMP-like hookworm Anti-Inflammatory Protein family, AIP-1 (Buitrago et 

al., 2021) and AIP-2 (Navarro et al., 2016), the latter of which acts through DCs to expand 

Tregs and protect against inducible asthma and colitis. The cystatin family of cysteine 

protease inhibitors are abundantly secreted by parasitic nematodes and have been shown 

to have anti-inflammatory properties (Schierack et al., 2003), including those secreted by 

Ascaris (Coronado et al., 2019) and the rodent hookworm N. brasiliensis (Dainichi et al., 

2001). These proteins suppress antigen-specific responses by inhibiting the catalytic activity 

of proteases involved in antigen processing, and the former has proven efficacious in a 

mouse model of house dust mite airway allergy. STH secrete immunoregulatory molecules 

that act directly on T cells, typified by the hookworm homologues of sea anemone ShK 

toxins that block Kv1.3 voltage-gated potassium channels and are crucial for the activation 

of effector memory T cells (Smallwood et al., 2021). STH also secrete proteins that mimic 

cytokines and cytokine receptors, including the major secreted protein of T. muris, p43, 

which has homology to the IL-13 receptor α2, and binds to IL-13, inhibiting its function in 
vitro and in vivo (Bancroft et al., 2019). Finally, the SCP/TAPS family of cysteine-rich 

proteins is massively expanded in the genomes and secretomes of STHs, particularly 

hookworms (Cantacessi et al., 2009; Tang et al., 2014), and two members of this family 

have been shown to have immunomodulatory properties. Neutrophil Inhibitory Factor (NIF) 

from A. caninum binds to CD11b/CD18 and inhibits neutrophil accumulation at sites of 

tissue injury (Moyle et al., 1994), and progressed to phase 2 clinical trials for treating 

ischemic stroke (Krams et al., 2003). The major larval secreted protein released upon tissue 

invasion by N. americanus, Na-ASP-2, is a SCP/TAPS which binds to CD79A on B cells 

and suppresses expression of genes that regulate B cell signalling (Tribolet et al., 2014).

In addition to proteins, STHs secrete small molecules (Wangchuk et al., 2019a, 2019b; 

Yeshi et al., 2020). Ancylostoma caninum metabolites can ameliorate colitis in mice and 

suppress inflammatory cytokine secretion from human peripheral blood mononuclear cells 

(Wangchuk et al., 2019a, 2019b). There is also an emerging role for microRNAs contained 

within extracellular vesicles of related animal parasites in suppressing inflammation 

(Coakley et al., 2017; White et al., 2020), including prevention of inducible colitis 
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(Eichenberger et al., 2018), and this is an exciting field that is rapidly gaining momentum 

(Drurey and Maizels, 2021). Finally, STHs have been shown to modulate inflammation 

indirectly through manipulation of the host microbiome, a topic that has been extensively 

reviewed elsewhere (Giacomin et al., 2015; Brosschot and Reynolds, 2018).

7. Concluding remarks

The morbidity attributable to STH infections is substantial, and uncontested. Vaccines are 

sorely needed in the absence of major progress towards elimination based on mass drug 

administration alone. The absence of vaccines for any human helminth infection can be 

attributed to a lack of financial investment in this area, but it is not just a money problem. 

Helminths deploy a sophisticated array of strategies to divert and subvert the human host’s 

best attempts to immunologically terminate them. While frustrating to researchers and 

devastating to infected subjects who suffer the pathologic sequelae, the immunomodulatory 

properties of these helminths have revealed hitherto unexplored pathways to suppress 

inflammation and other physiological processes. Coevolution of vertebrates with their 

invertebrate parasites has resulted in an arms race that must hold a treasure trove of untapped 

opportunities for modern medicine. The safety and tolerability profile of relatively high 

numbers of N. americanus in healthy volunteers (Hoogerwerf et al., 2019) and the tantalising 

pre-clinical studies revealing therapeutic moieties in animal models of inflammatory 

disorders set the scene for exciting and fruitful endeavours ahead. We look forward to the 

next major breakthroughs in the field, whether they be aimed at eliminating or promoting 

these infections under the right circumstances. Of course, there remains the question that 

in a worm-free world, will we suffer from an even greater burden of non-communicable 

diseases of modernity? That subject poses moral and ethical dilemmas, and as such warrants 

an entire article unto itself.
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Fig. 1. 
Composition of disability adjusted life years by constituent Level 4 causes for both sexes 

combined, 2019. Adapted from IHME, 2020a.
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Fig. 2. 
Mechanisms by which soil transmitted helminth defined recombinant proteins modulate the 

host immune system.
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