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Abstract 

Objective:  Most of the previous risk prediction models for lung cancer were developed from smokers, with discrimi‑
natory power ranging from 0.57 to 0.72. We constructed an individual risk prediction model for lung cancer among 
the male general population of Hong Kong.

Methods:  Epidemiological data of 1,069 histology confirmed male lung cancer cases and 1,208 community controls 
were included in this analysis. Residential radon exposure was retrospectively reconstructed based on individual 
lifetime residential information. Multivariable logistic regression with repeated cross-validation method was used to 
select optimal risk predictors for each prediction model for different smoking strata. Individual absolute risk for lung 
cancer was estimated by Gail model. Receiver-operator characteristic curves, area under the curve (AUC) and confu‑
sion matrix were evaluated to demonstrate the model performance and ability to differentiate cases from non-cases.

Results:  Smoking and smoking cessation, education, lung disease history, family history of cancer, residential radon 
exposure, dietary habits, carcinogens exposure, mask use and dust control in workplace were selected as the risk pre‑
dictors for lung cancer. The AUC of estimated absolute risk for all lung cancers was 0.735 (95% CI: 0.714–0.756). Using 
2.83% as the cutoff point of absolute risk, the predictive accuracy, positive predictive value and negative predictive 
value were 0.715, 0.818 and 0.674, respectively.

Conclusion:  We developed a risk prediction model with moderate discrimination for lung cancer among Hong Kong 
males. External validation in other populations is warranted for this model in future studies.
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Introduction
Lung cancer is the top leading cause of cancer death 
worldwide. Over the past decade, lung cancer has con-
sistently accounted for approximate one third of all 
cancer deaths among Hong Kong males [1]. Advanced 
technology in detection and treatment of lung cancer 
have not remarkably improved the 5-year survival rate, 
as more than 50% of lung cancers were diagnosed at an 
advanced stage and hence the optimal timing for surgical 

removal was missed [1]. A substantially higher survival 
rate was demonstrated in patients with an early stage of 
lung cancer than those with an advanced stage [2]. Low-
dose computed tomography (LDCT) has been proven as 
an effective screening or surveillance strategy for high-
risk individuals to reduce their mortalities via detection 
and early treatment of lung cancer at early stage [3, 4]; 
however, its cost–benefit and applicability to the general 
population remains uncertain. Most of the international 
lung cancer screening guidelines recommend using an 
ethnicity-specific risk prediction model to cost-effec-
tively identify high-risk population for receiving further 
medical screening and undergoing timely treatment [5].

Many lung cancer risk prediction models were devel-
oped according to Gail model’s concept for different 
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ethnicities and populations, such as the Bach model, 
the Spitz model and the Liverpool Lung Project (LLP) 
model [6], and smoking is the most important risk fac-
tor that has been involved in all risk prediction models 
[6]. Family history of lung cancer and history of lung dis-
eases were selected in most of the risk prediction models 
[6]. However, with the fall of smoking prevalence in the 
general population, as is the case in Hong Kong, the risk 
factors with low to moderate carcinogenic potency (such 
as residential radon exposure and outdoor air pollution) 
that were previously masked by the dominating effect 
of smoking might become apparent [7–9]. However, 
they were not considered in the well-known risk models 
developed decades ago. In this study, we examined the 
various risk factors of lung cancer and quantified their 
contributions to the overall risk of male lung cancer. We 
then constructed specific risk prediction models based 
on the various risk factors and finally estimated individu-
alized cancer risk.

Methods
Study population and epidemiologic data
The data was derived from an established case–control 
study for male lung cancer in Hong Kong. Details of the 
study design was described previously [7]. Briefly, cases 
were newly diagnosed lung cancer within 3 months and 
recruited from the largest oncology center of Hong Kong 
from 2004 to 2006. All cases were histologically con-
firmed primary carcinoma of the lung (ICD-9-CM code 
162). They were aged 35–79 years-old and each case was 
frequency matched in 5-year age groups by a community 
control. Any cases or controls with a history of physician-
diagnosed cancer in any other sites were excluded. A 
total of 1208 lung cancer cases and 1069 community con-
trols were included in the final data analysis. This study 
was approved by the ethics committees of both the Chi-
nese University of Hong Kong and the Queen Elizabeth 
Hospital of the Hong Kong Hospital Authority (KC/KE 
04–0014/ER-1).

Information on socio-demographics, previous his-
tory of lung diseases, family history of cancer, lifetime 
habits of tobacco smoking, indoor air pollution [i.e., 
environmental tobacco smoke (ETS), incense burning, 
mosquito coil burning, and cooking fumes] [9], lifetime 
occupational exposures to known or suspected lung car-
cinogens [8], lifetime residential history [9], and dietary 
habits were obtained from face-to-face interview (for 
lung cancer cases) or telephone interview (for commu-
nity controls).

Assessment of residential radon exposure
Cumulative residential radon exposure was assessed 
using a semi-quantitative score which was calculated 

according to each participant’s lifetime residential his-
tories (e.g., building materials and wall surface covering 
materials,, building age, window opening practices, floor 
level) using information available from a territory-wide 
indoor radon survey in Hong Kong [9]. A higher score 
indicated a higher level of exposure to residential radon. 
Information on the daily frequency, years of burning 
incense, and mosquito coil at home were also collected.

Statistical analysis
Before building risk prediction model, we categorized 
continuous variables as the following: age on interview 
(< 50  years, 50–59  years, 60–69  years and ≥ 70  years), 
pack-years of smoking (< 20, 20–39 and ≥ 40 pack-
years), years of smoking cessation (2–5 years, 5–10 years, 
10–20  years and ≥ 20  years), score of residential radon 
exposure (< 8.11, 8.11 to < 8.64, 8.64 to < 9.77, and ≥ 9.77, 
based on the quartile distribution of scores among con-
trol) and alcohol drinking (non-drinkers, < 4 times/week 
and ≥ 4 times/week). All analyses were performed by 
using R software Version 4.0.2 (The R Foundation).

Risk prediction model building
We adopted Sptiz’s method to build risk prediction 
model [10] and estimate absolute risk of lung cancer 
based on the method of Gail et al. [11]. Detailed method 
was described in Fig.  1 and supplementary materials 
S1. Two steps were used to refine the risk predictors by 
smoking status. Firstly, potential risk predictors were 
selected by using univariate logistic regression model. 
Then a tenfold, 10 times repeated cross-validation 
method of multivariable logistic regression with stepwise 
selection procedure was used to build three risk models 
for the three smoking strata.

Absolute risk calculation and performance evaluation
The third step was to estimate the absolute risk of lung 
cancer by using the odds ratios derived from risk models, 
age-specific incidence rate of male lung cancer, and mor-
tality rate from causes other than lung cancer (Appendix 
Table  1). Absolute risk unified the estimated risks from 
three risk models for different smoking status and made 
them comparable by using the formula vi = ci*I, where 
ci was an adjustment constant for each smoking status 
group (Appendix Table 2), and I was the age-specific inci-
dence. R package “iCARE” (version 1.16.0) was used to 
calculate absolute risk [12].

CART analysis (“rpart” method) was used to identify 
the cut-off points on absolute risk to group the partici-
pants into low, medium and high risk or low/high risk 
groups. Then confusion matrix analysis from “Caret” 
package was used to evaluate the discriminative power of 
estimated absolute risk.
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Comparison with Spitz’s model
We re-calibrated Spitz model using the current data 
and variables included in the Spitz model to compare 
the discriminative power between our Hong Kong male 
lung cancer (HKMLC) model and the Spitz model. The 
risk predictors retained in the Spitz model were ETS 
and family history for never smokers; Emphysema, dust 
exposure, family history, age stopped smoking, and hay 
fever for former smokers; Emphysema, dust exposure, 
asbestos exposure, family history, pack-years, and hay 
fever for current smokers. Hay fever was excluded from 
the recalibration because it was not available from cur-
rent data. The dust and asbestos exposure were involved 
in one risk predictor—carcinogen exposure. Therefore, 
we used carcinogen exposure instead of these two factors 
in the model.

All risk factors listed above were forced into a logistic 
regression model with 10 times repeated tenfold cross-
validation, and calculated their odd ratios. Absolute 
risk derived from re-calibrated Spitz model was cal-
culated using the same R package “iCARE”. Discrimi-
nation ability between the HKMLC model and Spitz 
model was compared by calculating the area under the 
curve (AUC) based on the receiver operating charac-
teristic analysis.

Sensitivity analysis by histological subtypes and radon
To explore the potential difference in the risk predictors 
among histological subtypes of lung cancer, odds ratios 
of candidate risk predictors were calculated by using uni-
variate logistic regression. Residential radon exposure 
was forced adding/removing to each final model strati-
fied by smoking status to investigate its contribution to 
model performance.

Results
A total of 1208 male patients with lung cancer and 1069 
control subjects were included for this analysis. As shown 
in Table 1, the mean age of cases and controls was com-
parable. Lung cancer cases had significantly higher prev-
alence of current smoking (60.9% vs. 16.5%) but lower 
prevalence of smoking cessation (28.1% vs. 33.4%) than 
that of the controls. The distribution of education levels, 
monthly income, history of lung diseases, cancer history 
in first-degree relatives, ETS exposure, residential radon 
exposure, incense burning at home, PM10 exposure, car-
cinogen exposure in workplace, meat intake, preserved 
food intake, and alcohol drinking are significantly differ-
ent between lung cancer cases and controls. All variables 
listed in Table 1 were included in the selection of predic-
tors for risk models.

Fig. 1  Flow chart for building risk prediction model
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Table 1  Distribution of study population by age and smoking status

Control (N = 1069) Cases (N = 1208) p value*

Age (year-old) Mean ± SD# 66.2 ± 0.3 65.8 ± 0.3 0.326

 < 50 92 ( 8.6) 98 ( 8.1) 0.060

50–60 167 (15.6) 206 (17.1)

60–70 326 (30.5) 419 (34.7)

 ≥ 70 484 (45.3) 485 (40.1)

Education Primary school or below 142 (13.5) 298 (25.1)  < 0.001

Middle school 383 (36.4) 525 (44.2)

College or above 528 (50.1) 366 (30.8)

Marital status Married 183 (17.3) 198 (16.6) 0.646

Others 876 (82.7) 998 (83.4)

Monthly income (HKD)  < 4000 456 (42.7) 735 (60.8)  < 0.001

 > 4000 285 (26.7) 306 (25.3)

No answer 328 (30.7) 167 (13.8)

History of lung diseases Yes 112 (10.5) 286 (23.7)  < 0.001

Cancer history in first-degree relatives Yes 134 (12.5) 239 (19.8)  < 0.001

Smoking

Smoking status
n (%)

Never 536 (50.1) 132 (10.9)  < 0.001

Former 357 (33.4) 340 (28.1)

Current 176 (16.5) 736 (60.9)

Pack-years Non-smokers 547 (51.2) 140 (11.6)  < 0.001

 < 20 172 (16.1) 122 (10.1)

20–40 171 (16.0) 317 (26.2)

 ≥ 40 179 (16.7) 629 (52.1)

Smoking cessation Smoker 176 (16.7) 736 (61.4)  < 0.001

2–5 years 45 ( 4.3) 81 ( 6.8)

5–10 years 55 ( 5.2) 65 ( 5.4)

10–20 years 100 ( 9.5) 98 ( 8.2)

 ≥ 20 years 145 (13.7) 87 ( 7.3)

non-smokers 536 (50.7) 132 (11.0)

ETS exposure No 281 (26.3) 230 (19.1)  < 0.001

Yes 788 (73.7) 977 (80.9)

Exposure of indoor air pollutants

Radon Mean ± SD 8.79 ± 1.30 8.93 ± 1.22 0.008

Median (range) 8.86 (5.46–13.00) 8.86 (5.17–14.00)

 < 25 (5.17–8.11) 263 (24.6) 230 (19.0) 0.005

25–50 (8.11–8.64) 261 (24.4) 301 (24.9)

50–75 (8.64–9.77) 277 (25.9) 318 (26.3)

 > 75 (9.77–13.00) 268 (25.1) 359 (29.7)

Incense burning at home Yes 590 (55.2) 776 (64.2)  < 0.001

Mosquito coil burning Yes 160 (15.1) 220 (18.3) 0.036

PM10 exposure

Annual average exposure Mean ± SD 73.1 ± 0.4 75.7 ± 0.3  < 0.001

Median (range) 73.22
(35.89–117.27)

75.45
(44.43–110.30)

Occupational exposure

Carcinogen exposure Yes 453 (42.4) 624 (51.7)  < 0.001

Mask used in workplace Yes 112 (10.5) 116 ( 9.6) 0.488

Ventilation in workplace Yes 976 (91.3) 1065 (88.2) 0.014

Dust control in workplace Yes 1022 (95.6) 1009 (83.5)  < 0.001
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*  p value from the two-sided chi-square test for categorical variables and Student’s t test for continuous variables
#  SD, Standard deviation

Table 1  (continued)

Control (N = 1069) Cases (N = 1208) p value*

Dietary habits and drinking habits

Fruit/green tea  ≥ 1 time /day 422 (39.5) 442 (36.6) 0.157

Meat  ≥ 1 time /day 253 (23.7) 128 (10.6)  < 0.001

Preserved food  ≥ 1 time /day 198 (18.5) 325 (26.9)  < 0.001

Alcohol drinking Non-drinkers 551 (51.5) 451 (37.4)  < 0.001

 < 4 times /week 314 (29.4) 331 (27.4)

 ≥ 4 times /week 204 (19.1) 425 (35.2)

Table 2  Multivariable logistic regression analysis for lung cancer by smoking statusa

a  Variables was selected by stepwise selection procedure by minimal AIC; CI, Confidence interval
b  no. of cases / no. of controls
c  Using the quartile score of community referents as the cut point (first, second, third, and fourth quartile: (< 8.11, 8.11 to < 8.64, 8.64 to < 9.77, and ≥ 9.77, respectively) 
to classify different levels of radon exposure

Odds ratio (95% CI)

Never smokers (132/536) b Former smokers 
(340/357) b

Current 
smokers 
(736/176) b

Education Primary school or below

Middle school 0.50 (0.33–0.76)

College or above 0.37 (0.23–0.59) 0.49 (0.35–0.70)

Marital status Married

Others 0.57 (0.36–0.90)

History of lung diseases 2.82 (1.53–5.12) 2.28 (1.53–3.45)

Cancer history in first-degree relatives 2.44 (1.50–3.94) 1.56 (0.99–2.48) 2.25 (1.32–4.09)

Smoking status

Pack-years  < 20 N.A

20–40 1.90 (1.24–2.91) 2.40 (1.36–4.22)

 ≥ 40 2.41 (1.55–3.74) 3.09 (1.80–5.26)

Years of smoking cessation 2–5 years N.A N.A

5–10 years 0.60 (0.35–1.02)

10–20 years 0.65 (0.40–1.03)

 ≥ 20 years 0.51 (0.31–0.83)

Exposure of indoor air pollutants

Residential radon exposure (in quartiles)c First

Second 2.42 (1.25–4.85)

Third 2.31 (1.21–4.57)

Fourth 2.91 (1.55–5.68)

Occupational exposure

Carcinogen exposure 1.84 (1.22–2.77) 1.33 (0.93–1.89)

Mask used in workplace 0.50 (0.28–0.88)

Dust control in workplace 0.31 (0.16–0.67) 0.22 (0.12–0.40) 0.20 (0.08–0.41)

Dietary habits and drinking habits

Fruit/green vegetable (≥ 1 time /day) 1.44 (0.95–2.19)

Meat (≥ 1 time /day) 0.47 (0.26–0.80) 0.61 (0.40–0.91) 0.46 (0.26–0.83)
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Selection of predictors for risk models
We performed univariate analyses for each subgroup 
stratified by smoking status and included the potential 
risk predictors with p < 0.10 in the multivariable model 
(Appendix Table  3). Table  2 summarises the predictors 
retained in the multivariable logistic regression model, 
which included history of lung disease, cancer history in 
first-degree relatives, residential radon exposure, carcin-
ogen exposure in workplace, dust control in workplace, 
having fruit/green vegetable ≥ 1 time /day, and having 
meat ≥ 1 time /day for never smokers. Among former 
smokers, educational level, marital status, history of lung 
disease, cancer history in first-degree relatives, smoking 
pack-years, years of smoking cessation, mask use and 
dust control in workplace, and having meat ≥ 1 time /
day were kept in the final model. Among current smok-
ers, education, cancer history in first-degree relatives, 
pack-years of tobacco smoking, carcinogen exposure and 
dust control in workplace, and having meat ≥ 1 time /day 
were kept in the final model. The same predictors kept in 
each final model were also identified in the decision trees 
of the CART models. No higher order interactions were 
evident from these models (data not shown).

Model performance
As illustrated in Table 3, the risk models were well cali-
brated throughout the entire range of probabilities, as 
indicated by the non-statistically significant Hosmer–
Lemeshow goodness-of-fit test statistics (0.493 for never 
smokers, 0.260 for former smokers, and 0.502 for cur-
rent smokers). The AUC statistic obtained from the com-
bined set was low for never smokers (AUC 0.583, 95% CI 
0.550–0.617) and current smokers (AUC 0.532, 95% CI 
0.512–0.553) but it was higher for former smokers (AUC 
0.681, 95% CI 0.646–0.715). The C statistics calculated 
by 999-fold cross-validation of the combined dataset for 
never, former and current smokers were 0.71 (95% CI 
0.67–0.77), 0.74 (95% CI 0.72–0.79) and 0.71 (95% CI 
0.67–0.76), indicating that the risk models performed 

reasonably well in discriminating between case patients 
and control subjects.

Risk models with/without residential radon exposure
We tested the contribution of residential radon exposure 
in all three risk models as it was included in the model of 
never smokers. After adding/removing residential radon 
exposure to each final model stratified by smoking sta-
tus, the AUC was increased in never smokers, decreased 
in former smokers and no change in current smokers 
(Appendix Table 4).

Estimation of absolute risk for male lung cancer
Absolute risk of lung cancer was estimated by Spitz’s 
method, which allowed us to combine results from three 
risk prediction models together. The model of absolute 
risk showed a moderate discriminative power with AUC 
of 0.735 (95% CI, 0.714–0.756) (Fig. 2). Comparing with 
the re-calibrated Spitz model, the discrimination ability 
of HKMLC model was improved significantly, which was 
applicable to each smoking stratum and overall subjects 
(p < 0.01) (Fig. 2).

The distribution of estimated absolute risk was shown 
in Fig. 3. By CART analysis (“rpart” method), all subjects 
were grouped to the low, medium and high risk of lung 
cancer according to the cut-off points of 1.6% and 47.6%. 
When compared with the low risk group, the model 
showed a good discriminative power to identify males 
with high risk of lung cancer with the accuracy, sensitiv-
ity and specificity of 0.850, 0.643 and 0.944, respectively.

The median value of estimated absolute risk among 
controls of this study was 2.83%. Based on the cut-off 
point 2.83%, the accuracy, positive predictive value and 
negative predictive value were 0.715 (95% CI, 0.696–
0.734), 0.818 and 0.674, respectively (Table 4). The accu-
racy was more than 0.80 for never smokers and current 
smokers. The predictive accuracy of former smokers was 
lower than 0.500, because the estimated absolute risk was 
higher than 2.83% for most of the former smokers (696 
out of 697 subjects).

Table 3  Model performance by all data

†  AUC​, Area under curve by the receiver operating characteristic curve
‡  Derived from 999-fold cross-validation of combined dataset

Smoking 
category

p from Hosmer- 
Lemeshow  
goodness of fit

AUC​† (95% CI) Concordance 
statistic (95% 
CI)‡

Never smokers 0.493 0.583 (0.550–
0.617)

0.71 (0.67–0.77)

Former smokers 0.260 0.681 (0.646–
0.715)

0.74 (0.72–0.79)

Current smokers 0.502 0.532 (0.512–
0.553)

0.71 (0.67–0.76)

Table 4  Model performance of estimated absolute risk of lung 
cancer (by 2.83%)a

a  Results from confusion matrix

Smoking category Accuracy Positive 
predictive 
value

Negative 
predictive 
value

Never smokers 0.826 (0.795–0.854) 0.674 0.838

Former smokers 0.489 (0.452–0.527) 0.489 1.000

Current smokers 0.807 (0.780–0.832) 0.821 0.500

Overall 0.715 (0.696–0.734) 0.818 0.674
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Fig. 2  AUC comparison of estimated absolute risk between HKMLC model and Spitz model

Fig. 3  Distribution of estimated absolute risk of lung cancer among cases and controls



Page 8 of 9Tse et al. BMC Cancer          (2022) 22:585 

Risk predictors for histological sub‑types of lung cancer
Appendix Table  5-7 showed the risk predictors for dif-
ferent histological subtypes of lung cancer. Almost all 
cases of squamous cell carcinoma or small cell lung can-
cer were current or former smokers. As cigarette smok-
ing showed a dominant contribution to the risk of these 
subtypes, relatively fewer other risk predictors were 
retained in the final model including education, history 
of lung disease, cancer history, mask use and dust control 
in workplace. The pattern of risk predictors for adenocar-
cinoma was similar to that for all lung cancer cases in dif-
ferent smoking subgroups.

Discussion
We developed a risk prediction model of lung cancer for 
Hong Kong males with moderate discrimination ability. 
The model has the potential to identify individuals with 
high risk by epidemiological and clinical information. 
This risk model appears to discriminate between high 
and low risk satisfactorily, although it needs an external 
validation.

Nine epidemiological models for risk prediction of 
lung cancer were published since 2003. Their discrimina-
tive powers (AUC) were from 0.530 to 0.859. Liverpool 
Lung Project (LLP) model and Spitz model are the only 
two models that could be applied to the never smokers 
[6]. Only Spitz model solo showed the discrimination 
power of absolute risk for never smokers with AUCs of 
0.57 (95%CI 0.47–0.66) [10] which was much lower than 
the AUCs of 0.710 (95%CI 0.657–0.762) from HKMLC 
model. Whilst other models with higher discriminative 
power were developed among ever smokers. Smoking 
intensity, family history of cancer, non-malignant lung 
disease history, and occupational exposure to carcino-
gens especially asbestos are the common risk predic-
tors for HKMLC, LLP and Spitz models [6]. In addition, 
HKMLC model included more risk predictors such as 
education, dietary habits, and residential radon exposure, 
which explained a significantly improved discrimination 
of HKMLC model for estimated absolute risk. Previously, 
researchers tried to use the simplest models for cancer 
risk prediction because the clinicians have less time to 
perform the data collection and risk calculation [10, 13]. 
However, with the improvement of online survey and 
human–computer interface, interview and risk calcula-
tion is no longer a barrier for the utility of sophisticated 
risk prediction model such as the HKMLC model.

A strength of HKMLC model is the improvement on 
discriminative power for never smokers. The AUC was 
improved from 0.604 to 0.710 comparing with Spitz 
model. As we know, smoking is a predominant risk fac-
tor for lung cancer and most cases of lung cancer are 
smokers. Most risk prediction models were developed 

for ever smokers and of little doubt, smoking played 
a key role in these risk models. However, smoking rate 
has dropped continuously in recent decades, which 
prompted the researchers to shift their attentions to the 
etiology of lung cancer among never smokers. The focus 
is more on some environmental risk factors with low or 
moderate potency of carcinogenicity, such as environ-
mental tobacco smoke, indoor and outdoor air pollu-
tion, and dietary habits [14]. Residential radon exposure 
causes approximately 21,000 deaths annually from lung 
cancer, making it the second most important cause of 
lung cancer after smoking, but it is usually neglected by 
researchers [15]. To the best of our knowledge, this is 
the first study to consider residential radon exposure as 
a predictor for lung cancer risk. The present study also 
explored the possible contribution of ambient PM10 
exposure in the risk model.

Prediction models have recently changed focus to 
include genetic markers and/or clinical assessment, as 
well as attempts to further improve overall performance. 
Several to tens of single nucleotide polymorphisms were 
added to prediction models such as the extend LLP 
model, Gene-Based Risk Score, Chinese Multifactorial 
Genetic Model, and Gene Variants in African Ameri-
cans Model et al. [6]. However, there were no universal 
improvements in discrimination compared with mod-
els built on epidemiological data alone. Epidemiologi-
cal plus clinical assessment models were also explored 
for lung cancer risk prediction such as the Extended 
Bach Model, Korean Men Model, Pulmonary Function 
With Lung Response Model, Two-Stage Clonal Expan-
sion Models and Extended Spitz Model. Several clinical 
assessment models were also studied, including LDCT, 
pulmonary function, DNA capacity and clinical traits. 
However, the improvement of model performance was 
very limited [6].

There were several limitations of this study. Firstly, 
the number of cases and controls were quite uneven 
after stratification by smoking as the matching criterion 
of this case–control study was age only. The nature of 
more smokers among lung cancer cases caused the small 
number of lung cancer cases in never smokers and small 
number of controls in current smokers. The small sam-
ples size in some strata might lead to unstable results 
although we used repeated cross-validation methods. 
Also, some subgroups of potential risk factor were small 
and might be excluded by predictors selection process. 
Secondly, the model was developed among males and it 
may not be directly applied to the females without a fur-
ther validation. Thirdly, the HKMLC model might only 
have internal validity. External validation especially in 
large prospective cohorts in other geographical areas is 
warranted to examine the reliability and generalizability 
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of the findings. Fourthly, our dataset didn’t provide the 
complete data of dietary quality and quantity. The fre-
quency of meat, fruit/green vegetable was an alternative, 
which limit the evaluation on the role of dietary in cur-
rent model.

In conclusion, the current study developed a lung can-
cer prediction model with moderate discrimination and 
residential radon exposure improved the discrimination 
power for never smokers. Although this newly developed 
model demonstrated a relatively higher discriminative 
accuracy than those developed in many other popula-
tions, we recommend external validation of this model in 
other populations.
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