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Abstract: As emerging contaminants, nano-plastics have become a major cause for concern for their
adverse effects on the ecosystem and human health. The nano-sized properties of nano-plastics
enable their exposure risks to humans through the food chain or other ways. However, the fate and
adverse impact of nano-plastics on the human cardiovascular system are lacking. In this regard,
the human umbilical vein endothelial cell line HUVEC was applied as a cell model to investigate
the biological effects of noncharged polystyrene nano-plastics (PS NPs) and amino-functionalized
nano-plastics (NH2-PS NPs). The positively charged PS NPs exhibited higher cytotoxicity to HUVEC,
as evidenced by the decreased cell viability, enhanced ROS generation, and decreased mitochondria
membrane potential triggered by NH2-PS NPs. Importantly, RT-PCR analysis revealed that NH2-PS
NPs dysregulated the mitochondrial dynamics, replication, and function-related gene expression.
This study demonstrated that NH2-PS NPs presented higher risks to endothelial cells than non-
charged nano-plastics by interfering with mitochondria, which supported the direct evidence and
expanded the potential risks of PS NPs.

Keywords: polystyrene nanoparticles; HUVEC; oxidative stress; mitochondria

1. Introduction

The increasing accumulation of plastic wastes in the environment has become a major
cause for concern because of their adverse effects on the ecosystem and human health [1–3].
UV-exposure, and external and biological degradation were reported to be responsible
for the breakdown of plastics into micro-particles <5000 nm in diameter, and further into
nanoparticles (NPs) <100 nm in diameter [4,5]. As emerging contaminants, nano-plastics
refer to plastic particles with sizes ranging between 1 nm and 1 µm [6]. Due to their
nano-size fraction, they may be more extensively distributed and hazardous than larger-
sized particles are [7–9]. Increasingly, nano-plastics have become the newest focus of
the problematization of plastics in the environmental arena. Recently, new experimental
regimes have specifically focused on plastic exposures to assess potential adverse effects
to nano-plastics, including potentially negative impacts on low-trophic marine fauna,
affecting liver functionality, neurotoxicity, and intestinal inflammation [10–13].

Particle size plays a crucial role in interactions with organisms and cells. In this
perspective, nano-sized plastics can be easily taken up into cells and cross biological
barriers, which lead to systemic uptake occurring and finally becoming enriched in higher
organisms through the food chain [14–16]. Consequently, the risk assessing of nano-plastics
has also extended into the area of human health in relation to their accumulation in the
food chain. Due to their nano-dimensions, it is possible that nano-plastics could enter into
the circulatory system and accumulate in major organs. To date, in vitro toxicity studies
of nano-plastics have mainly focused on gastrointestinal cells, respiratory tract cells, liver
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cells, and immunity cells [17–20]. Endothelial cells line the lumen of all blood vessels,
which play essential roles in nutrition, waste transportation, and cell movement [21]. The
function of endothelial cells affects the blood vessel integrity and is associated with various
diseases, such as cancer and inflammation [22]. Despite the concern about the toxicity
of nano-plastics in humans, the information regarding their cytotoxic effects in human
endothelial cells is lacking.

It has been recognized that the size and surface charge functionalization of nanoparti-
cles influence their biological fate [23–25]. Due to the large surface area of nano-plastics,
nano-plastics may adsorb and enrich many different materials, such as toxic pollutants,
river natural organic matter, and positively charged minerals [26,27]. To date, polystyrene
(PS) nanoparticles models with different sizes and controlled surface functionalization
mimicking the nano-plastics formed during the natural degradation of plastic debris were
used to evaluate their biological effects [28,29]. Although it has been suggested that posi-
tively charged nanoparticles are potentially more hazardous than negatively charged ones,
little is known about the biological effects of nano-plastics with different charges to human
vascular endothelial cells.

In this contribution, the human umbilical vein endothelial cell line HUVEC was
applied as a cell model to investigate the biological effects of noncharged polystyrene
nano-plastics (PS NPs) and amino-functionalized nano-plastic (NH2-PS NPs). As indicated
in Scheme 1, due to the negatively charged cell membrane, the positively charged PS-NH2
NPs could facilitate the cellular uptake and perturb cell membrane integrity. Subsequently,
the internalized NH2-PS NPs could interact with the mitochondria of HUVEC, inducing
ROS generation and mitochondria membrane potential decrease. Importantly, RT-PCR
analysis revealed that NH2-PS NPs dysregulated the mitochondrial dynamics, replication,
and function-related gene expression. This study aimed to understand the cellular fate and
toxicity of PS NPs and NH2-PS NPs to HUVEC, which may help replenish the potential
risks of nano-plastics to mammals.
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2. Methods and Materials
2.1. Materials

PS NPs and NH2-PS NPs were acquired from Sigma–Aldrich (Sigma-Aldrich, St.
Louis, MI, USA). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT),
2′,7′-dichlorodihydrofluorescein di-acetate (DCF), JC1, and LDH Detection Kit were pur-
chased from Beyotime Institute of Biotechnology (Jiangsu, China). TRIzol reagent was
acquired from Takara (Takara Biochemicals, Dalian, China). The ReverTra Ace® qPCR RT
Kit and SYBR® Green Realtime PCR Master Mix were from Toyobo (Tokyo, Japan). All
oligonucleotide primers were synthesized in Sangon Biotech (Sangon, Shanghai, China).

2.2. Nano-Plastics Characterization

The particle size and zeta potential of PS NPs and NH2-PS NPs were determined
at 25 ◦C by dynamic light scattering (DLS) on the Zeta-sizer 3000 (Malvern Instruments,
Worcestershire, UK). The average of 3 measurements of 50 cycles was used as a numerical
value of zeta potential. The morphology of PS NPs and NH2-PS NPs was evaluated by
scanning electron microscopy (SEM).

2.3. Cell Culture

The HUVEC cell line was obtained from American Type Culture Collection (ATCC)
and cultured under standard cell culture conditions in RPMI 1640 (Invitrogen, Carlsbad,
CA, USA), supplemented with 10% heat-inactivated FBS (Gibco, St. Louis, MI, USA) and
1% penicillin-streptomycin (Thermo Scientific, Waltham, MA, USA). Before experiments,
the cells were pre-cultured until confluence was reached.

2.4. Cell Viability Measurement

An MTT assay was applied to determine the cytotoxicity of nano-plastics. HUVEC
cells were seeded in 96-well plates at a density of 10,000 cells per well. After 24 h of
incubation, the medium was replaced with 5, 10, 15, 20, and 25 µg/mL of PS NPs and
NH2-PS NPs and further incubated at 37 ◦C for 12 or 24 h. Then, the cells were washed
with PBS and 0.5 mg/mL of MTT working solution was added and maintained at 37 ◦C for
4 h. Finally, each well was replaced with 100 µL of DMSO to dissolve the formazan crystals,
and the absorbance was measured at 490 nm using a microplate reader (Themo Multiscan
MK3, Waltham, MA, USA). The untreated cells served as the control and their viability was
set as 100%.

Lactate dehydrogenase (LDH) release was evaluated to acquire additional information
about the cytotoxicity of the nanoparticle. Briefly, after exposure to 10 and 20 µg/mL
of PS NPs and NH2-PS NPs for 24 h, LDH analysis was carried out according to the
manufacturer’s instructions of the LDH Cytotoxicity Assay Kit (Beyotime, Shanghai, China).
The absorbance values were read at 490 nm in a microplate reader (Themo Multiscan MK3,
Waltham, MA, USA).

2.5. Living and Dead Cell Staining

HUEVC cells (50,000 cells per well) were seeded in 24-well plates and cultured at 37 ◦C
in a 5% CO2 atmosphere for 24 h. After the cells were incubated with 10 and 20 µg/mL of
PS NPs and NH2-PS NPs for 24 h, the cells were washed with PBS buffer. Afterward, the
cells were co-stained with Calcein-AM (green color for live cells) and propidium iodide
(PI) (red color for dead cells) according to the manusfacture’s instruction. We observed the
results through a microscope (Oplenic Digital Camera, Nikon, Japan) after being washed
three times with PBS.

2.6. Intracellular ROS Level Determination

The intracellular ROS generation was detected by 2′,7′-dichlorofluoresce in diacetate
(DCFH-DA). DCFH-DA is nonfluorescent but switches to the highly fluorescent DCF
when oxidized by intracellular ROS. For fluorescent imaging, HUVEC cells were seeded in
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48-well plates at a density of 5 × 104 cells per well and cultured for 18 h. Then, different
concentrations of PS NPs and NH2-PS NPs solutions were added and incubated with cells
for a further 24 h. After exposure, cells were washed thrice with PBS and were stained with
DCFH-DA (10 µM) for 30 min at 37 ◦C. Afterward, the cells were imaged by a fluorescence
microscope (Nikon PCS603-07) with an OPLENIC industrial digital camera.

For quantitative analysis of ROS, HUVEC cells were seeded in 12-well plates at a
density of 10 × 104 cells per well. Cells were treated with the different concentrations of
PS NPs and NH2-PS NPs for 48 h and were stained with DCFH-DA (10 µM) for 30 min at
37 ◦C. Then, the cells were washed, trypsinized, and re-suspended in PBS. Flow cytometry
measurements were conducted using Cyan-LX (Dako Cytomation, California, USA)). The
mean fluorescence was determined by counting 10,000 events.

2.7. Mitochondria Membrane Potential Detection

The mitochondrial membrane potential (MMP) was measured by JC-1 staining, which
can accumulate in active mitochondria. Briefly, HUVEC cells were seeded in 12-well plates
and grown for 24 h. After the cells were treated with PS NPs and NH2-PS NPs for 24 h at
37 ◦C, the cells were washed and stained with a 10 µg/mL JC-1 solution for 30 min at 37 ◦C.
Then, the cells were imaged by the fluorescence microscope (Nikon PCS603-07) with the
OPLENIC industrial digital camera.

2.8. Quantitative Real-Time PCR Analysis

The mRNA expression level of mitochondria function-related genes were measured
by semi-quantitative real-time PCR analysis (RT-qPCR). HUVEC cells were seeded at an
initial density of 2.5 × 105 cells/well in 6-well plates and after treatment with different
concentrations of PS NPs and NH2-PS NPs for 24 h. The cells were collected to isolate RNA
with TRIzol reagent (Takara Biochemicals, Dalian, China) according to the manufacturer’s
protocol. Subsequently, first-strand cDNA was synthesized using the ReverTra Ace qPCR
RT Kit (Toyobo, Tokyo, Japan). The quantification of cytokines expression was employed
by using the SYBR green system (Toyobo, Tokyo, Japan). The sequences of primers for
qPCR are listed in Table 1. The PCR parameters were as follows: 95 ◦C for 1 min, 40 cycles
of 95 ◦C for 15 s, and 60 ◦C for 1 min. The gene expression was analyzed with the 2−44Ct

method and normalized to the housekeeping gene Gapdh as the endogenous reference.

2.9. ATP Activity Assay

The relative cellular ATP activity was measured by using a firefly luciferase-based
ATP assay kit (promega). Briefly, HUEVC cells were seeded in 96-well plates for 24 h to
achieve 80% confluence. After the cells were incubated with 10 and 20 µg/mL of PS NPs
and NH2-PS NPs for 24 h, the cells were washed with PBS buffer and 100 µL of PBS was
further added to the well. Another 100 µL of the diluted kit reagent was mixed with the
cells for 2 min. The luminance (relative luminescence units, RLU) was measured by a
micro-plate reader (Themo Multiscan MK3, Waltham, MA, USA).

2.10. Statistics

All data were expressed as means ± standard error of the mean (SEM). Statistical
analysis was performed using GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA).
Statistical differences between replicates were tested using one-way analysis of variance
(ANOVA) by StatView 5.0.1 (Cary, NC, USA).
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Table 1. Sequences of primer pairs used in the real-time quantitative PCR.

Gene Sequence

gapdh
Forward 5′-GCACCGTCAAGGCTGAGAAC-3′

Reverse 5′-TGGTGAAGACGCCAGTGGA-3′

12S rRNA
(mtDNA)

Forward 5′-TAACCCAAGTCAATAGAAGCC-3′

Reverse 5′-CTAGAGGGATATGAAGCACC-3′

tfam
Forward 5′-ATGGCGTTTCTCCGAAGCAT-3′

Reverse 5′-TCCGCCCTATAAGCATCTTGA-3′

twnk
Forward 5′-GGATCGCAGCTCAAGACTACA-3′

Reverse 5′-GGTGAATGACCAGTGTCACAT-3′

dnm1l
Forward 5′-CGACTCATTAAATCATATTTTCTCATTGTCAG-3′

Reverse 5-TGCATTACTGCCTTTGGCACACT-3′

mfn1
Forward 5′-CTGAGGATGATTGTTAGCTCCA-3′

Reverse 5′-CAGGCGAGCAAAAGTGGTAGC-3′

mfn2
Forward 5′-TGGACCACCAAGGCCAAGGA-3′

Reverse 5′-TCTCGCTGGCATGCTCCAC-3′

opa1
Forward 5′-TGGTGCTGTTTCAGTCCAAG-3′

Reverse 5′-AGCCTCACTGTCGTTTTTGC-3′

fis1
Forward 5′-CCTGGTGCGGAGCAAGTACAA-3′

Reverse 5′-TCCTTGCTCCCTTTGGGCAG-3′

atp6
Forward 5′-CTGTTCGCTTCATTCATTGC-3′

Reverse 5-AGTCATTGTTGGGTGGTGATT-3′

atp5h
Forward 5′-GCTGGGCGAAAACTTGCTCTA-3′

Reverse 5′-CCAGTCGATAGCTGGTGGATT-3′

slc25a4
Forward 5′-ATCACGCTTGGAGCTTCCTAA-3′

Reverse 5′-TGCTTCTCAGCACTGATCTGT-3′

co-1
Forward 5′-CGTTGTAGCCCACTTCCACT-3′

Reverse 5′-TGGCGTAGGTTTGGTCTAGG-3′

cox7a
Forward 5′-CTCGGAGGTAGTTCCGGTTC-3′

Reverse 5′-TCTGCCCAATCTGACGAAGAG-3′

cycs
Forward 5′-CTTTGGGCGGAAGACAGGTC-3′

Reverse 5′-TTATTGGCGGCTGTGTAAGAG-3′

3. Results and Discussion

The nanoparticle–cell interaction and fate of nanoparticles are mediated by different
factors, among which size, surface charge, composition, and cell type play an important
role. During the degradation process, plastics can undergo a considerable structural
transformation such as surface functionalization [30]. In our study, PS NPs and NH2-
PS NPs were chosen to model NPs to investigate their biological toxicity to HUEVC.
Considering that nanoparticle characterization is the primary part for nanoparticle toxicity
screening, the particle size and zeta potential of PS and NH2-PS NPs were first examined
by dynamic light scattering (DLS). As shown in Figure 1a,b, the hydrodynamic size of PS
NPs was 50 nm and the zeta potentials were –17.6 and –5.6 mv for PS and NH2-PS NPs,
respectively, according to DLS measurements. As shown in Figure 1c,d, PS and NH2-PS
NPs exhibited homogeneous size distributions and the average primary particle sizes were
50 nm.
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Figure 1. Hydrodynamic diameter of PS NPs (a) and zeta potential of PS NPs and NH2-PS NPs
determined by dynamic light scattering (DLS) (b); scanning electron microscopy (SEM) images of PS
NPs (c) and NH2-PS NPs (d). The scale bars represent 100 nm.

Previous studies have revealed that amine-functionalized PS NPs with a size of 50 nm
exhibited a much obvious increased cellular uptake in HepG2 cells [17], alveolar cells [19],
and SNU-1 [31] than PS NPs did, indicating that surface functionalization facilitated the
internalization process of PS NPs. The internalization of PS NPs is strongly related to
their potential risks. The cytotoxicity is an important indicator to evaluate the risk of
the nano-plastics. Thus, we initially examined the extent of cytotoxicity caused by the
PS NPs and PS-NH2 NPs by MTT assay. As shown in Figure 2a,b, after 12 h and 24 h
of treatment, negligible cytotoxicity was observed in PS NPs-treated groups within the
tested concentrations, while PS-NH2 NPs exhibited concentration- and time-dependent
cytotoxicity. At the concentration of 20 µg/mL, the cell survival rate was decreased to less
than 30%. Various studies have reported that the cytotoxicity of plastics might vary in
different cell lines and with different surface functionalization. For example, 100 µg/mL
of PS-NH2 with a size of 60 nm was reported to cause 75% inhibition of cell viability in
human BEAS-2B cells in 16 h [32]. In addition, PS-NH2 at a concentration of 50 µg/mL was
reported to exhibit a higher inhibition of cell viability in HepG2 cells than PS-COOH [17]. A
recent study revealed that 50 nm aminated particles showed the greatest toxicity within 1 h
of treatment in SUN-1 cells (≥7.5 µg/mL) [31]. We and others’ work emphasized that 50 nm
amine-functionalized PS NPs were more toxic than PS NPs were, perhaps because of their
positive charge more easily passing through the phospholipid bilayer of the cell membrane
and causing membrane damage to a greater extent than noncharged counterparts.
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NH2-PS NPs for 24 h (d). Error bars correspond to standard deviations. n = 5. * p < 0.05, ** p < 0.01,
*** p < 0.001 compared with control group, ## p < 0.01, ### p < 0.001 compared between PS NPs and
NH2-PS NP. The scale bars represent 100 µm.

LDH release is regarded as an important indicator of cell membrane integrity. Cationic
particles are known to cause great extents of lipid bilayer disruption [33]. LDH analysis
was carried out according to the manufacturer’s instructions of the LDH Cytotoxicity Assay
Kit and the absorbance values were read at 490 nm in a microplate reader. As expected,
upon treatment of 20 µg/mL of PS-NH2 NPs, the LDH release was significantly increased,
as compared to control or PS NPs, indicating that the positively charged PS-NH2 NPs could
damage the cell membrane integrity of HUVEC (Figure 2c). The live/dead staining was
applied to visualize the effects of PS NPs and NH2-PS NPs on HUVEC cells viability. As
shown in Figure 2d, a strong green fluorescence signal was observed in the control group.
As compared to 20 µg/mL of PS NPs, the significantly decreased green fluorescence and
bright red fluorescence reflect that many more HUVEC cells were dead in the PS-NH2
NPs-treated groups. This result was consistent with the results of MTT.

To understand the cell oxidative stress caused by PS NPs and PS-NH2 NPs, we
monitored the intracellular reactive oxygen species (ROS) level in HUVEC cells by
2′,7′-dichlorofluorescein diacetate (DCFH-DA) staining. DCFH-DA is nonfluorescent but
switches to the highly fluorescent DCF when oxidized by intracellular ROS. As shown
in Figure 3a, as compared to the control, the brighter green fluorescence was detected in
the 20 µg/mL PS NPs- and NH2-PS NPs-treated HUVEC. Quantitative measurement of
ROS generation was conducted by flow cytometry. As shown in Figure 3b, the peak of the
fluorescence was increased when treated with 10 and 20 µg/mL of PS NPs and NH2-PS NPs.
From the mean fluorescence intensity of flow cytometry, it was found that there was no
difference between PS NPs and NH2-PS NPs (Figure 3c). ROS are recognized as important
initiators and mediators of cell death. It is well known that nanoparticles are enabled to
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induce cellular toxicity via elevated ROS [34]. However, a low-to-moderate increase in
intracellular ROS serves as a secondary messenger, which have proliferation properties [35].
Our study revealed that, as compared to NH2-PS NPs, 10 µg/mL of PS NPs exhibited a
lower cytotoxicity but higher ROS level, suggesting that PS NPs with different changes
may induce cytotoxicity via a different mechanism. The higher cytotoxicity of NH2-PS NPs
may be ascribed to their direct damage to the cell membrane, which is evidenced by the
LDH release results.
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Figure 3. The effects of PS NPs and NH2-PS NPs on ROS production in HUVEC. The fluorescent
images (a) and flow cytometry analysis (b) of HUVEC cells upon treatment with 20 µg/mL of PS NPs
and NH2-PS NPs, co-stained with DCFH-DA. The mean fluorescence intensity (MFI) was analyzed
by FlowJo and made into the graph (c). The scale bar represents 20 µm. N = 4, * p < 0.05, ** p < 0.01,
*** p < 0.001 compared with control group.

Considering that increased intracellular ROS may attack mitochondria and lead to
mitochondrial dysfunction, the mitochondrial membrane potential in HUVEC treated
by PS NPs and NH2-PS NPs was examined by JC-1 staining and the fluorescence was
monitored by fluorescent microscopy. The red fluorescence represents JC-1 aggregates,
indicating high mitochondrial membrane potential, while the green fluorescence represents
the JC-1 monomer, indicating low mitochondrial membrane potential. From Figure 4a, the
bright red fluorescence in the control suggested the healthy state of control cells. However,
NH2-PS NPs exposure significantly downregulated the mitochondrial membrane potential
in HUVEC cells, which was manifested as a decrease in red fluorescence and an increase in
green fluorescence. The quantification results also confirmed the decreased mitochondria
membrane potential upon treatment of PS NPs and NH2-PS NPs. In the present study, we
demonstrated that NH2-PS NPs could cause a greater change in mitochondria membrane
potential than PS NPs. The positive changes of NH2-PS NPs facilitated their absorption to
the mitochondria membrane and direct attacking of mitochondria, leading to a depolarized
mitochondria membrane potential. As indicated in Figure 4b, the relative ATP activity in
the 10 and 20 µg/mL NH2-PS NPs-treated HUEVC cells decreased to 82% and 53% of the
control, respectively.
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Figure 4. The fluorescent images (a) of HUVEC with treatment of 10 and 20 µg/mL of PS NPs and
NH2-PS NPs on mitochondrial membrane potential in HUVEC. The effects of PS NPs and NH2-PS
NPs on mitochondrial replication in HUVEC. The mean fluorescence intensity was quantified by
Image J software (b). The images share the same scale bar of 100 µm.

The mitochondria membrane potential plays an essential role in maintaining mito-
chondria function; thus, we first investigated the mitochondrial dynamics-related gene
expression by semi-quantitative real-time PCR analysis (RT-qPCR) after exposure of PS NPs
and NH2-PS NPs. The morphology of mitochondria is determined by the balance between
mitochondrial fusion and division [36]. Thus, the expression levels of genes related to mito-
chondrial fusion and fission were first detected. As indicated in Figure 5, PS NPs treatment
had limited effect on the expression of mitochondrial fusion and fission-related genes in
HUVEC cells. However, upon treatment of NH2-PS NPs, the mRNA expression level of
mfn2 was significantly increased as compared to the control, which suggested that NH2-PS
NPs exhibited the potential to promote the outer membrane fusion of mitochondria. In
addition, mRNA expression levels of fis1, dnm11, and opa1 in NH2-PS NPs-treated groups
were significantly decreased, which are associated with mitochondria division and fusion
of the inner membrane. These results suggested that NH2-PS NPs could disrupt the balance
between mitochondrial fusion and division.
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Figure 5. The RT-qPCR analysis of PS NPs and NH2-PS NPs on the relative expression of mito-
chondrial dynamics-related genes dnm1l (a), mfn1 (b), opa1 (c), mfn2 (d), and fis1 (e); on the relative
expression of mitochondria replication-related genes twnk (f), mt-DNA (g), and tfam (h); on the
relative expression of mitochondria function-related genes cycs (i), mt-atp6 (j), mt-co-1 (k), cox7a2 (l),
atp5pd (m), and slc25a4 (n). Error bars correspond to standard deviations. n = 4. * p < 0.05, ** p < 0.01,
*** p < 0.001 compared with control group, # p < 0.05, ## p < 0.01, ### p < 0.001 compared between PS
NPs and NH2-PS NP. Effect of PS NPs and NH2-PS NP on the relative activity of HUEVC cells (o),
n = 4. ** p < 0.01, *** p < 0.001 compared with control group.

In addition, the mitochondria replication-related genes expression was quantified
by RT-qPCR. After exposure to NH2-PS NPs, the mitochondrial DNA content decreased
significantly at 10 and 20 µg/mL, and the mitochondrial dynamics-related gene expression
was decreased significantly, especially tfam and twnk (Figure 5f,h). Finally, we examined the
effects of PS NPs and NH2-PS NPs on mitochondrial function from the expression levels
of ATP synthesis-related genes (atp6h, slc25a4, atp5h) and respiratory chain-related genes
(cycs, co-1, cox7a2). Obviously, ATP synthesis-related atp6h and mitochondrial respiratory
chain-related gene co-1 exhibited a decreased expression upon exposure to 20 µg/mL of PS
NPs. However, upon treatment of 10 µg/mL of NH2-PS NPs, the behavior of mitochondria
function-related genes, especially slc25a4, cycs, and cox7a2, significantly decreased. In the
20 µg/mL NH2-PS NPs-treated groups, the examined genes including cycs, mt-co-1, cox7a2,
and slc25a4 showed a significant downward tendency (Figure 5i,k,l,n), indicating the po-
tential risks of NH2-PS NPs to mitochondria function of HUVEC. Mitochondria are vital
subcellular organelles to eukaryotic cells, which play valuable roles in energy production,
ROS generation, and cellular signaling [37]. Therefore, we assessed the effects of PS NPs
on the ATP production capacity. As indicated in Figure 5o, the relative ATP activity in
the 10 and 20 µg/mL NH2-PS NPs-treated HUEVC cells decreased to 80% and 50% of the
control, respectively. Our results revealed that NH2-PS NPs could dysregulate the mito-
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chondrial dynamics, mitochondrial replication, and mitochondrial function-related genes
mRNA expression, and downregulate ATP production capacity, indicating the impairment
of mitochondria function.

In summary, our study demonstrated that positively charged PS NPs behave more
toxic to HUVEC cells, as evidenced by the dosage-related cell cytotoxicity. In addition,
NH2-PS NPs result in oxidative stress and induce damage to the mitochondria membrane
potential, which are essential factors to maintain the mitochondria function. Moreover, NH2-
PS NPs exhibited a stronger ability to dysregulate the mitochondrial dynamics, replication,
and function-related genes expression. Our results highlighted the importance of surface
charge on the biological interaction of PS NPs.
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