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Abstract: New strategies to rapidly develop broad-spectrum antiviral therapies are urgently required
for emerging and re-emerging viruses. Host-targeting antivirals (HTAs) that target the universal
host factors necessary for viral replication are the most promising approach, with broad-spectrum,
foresighted function, and low resistance. We and others recently identified that host dihydroorotate
dehydrogenase (DHODH) is one of the universal host factors essential for the replication of many
acute-infectious viruses. DHODH is a rate-limiting enzyme catalyzing the fourth step in de novo
pyrimidine synthesis. Therefore, it has also been developed as a therapeutic target for many diseases
relying on cellular pyrimidine resources, such as cancers, autoimmune diseases, and viral or bacterial
infections. Significantly, the successful use of DHODH inhibitors (DHODHi) against severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) infection further supports the application prospects.
This review focuses on the advantages of HTAs and the antiviral effects of DHODHi with clinical
applications. The multiple functions of DHODHi in inhibiting viral replication, stimulating ISGs
expression, and suppressing cytokine storms make DHODHi a potent strategy against viral infection.

Keywords: host-targeting antivirals (HTAs); DHODH inhibitors (DHODHi); pyrimidine synthesis;
broad-spectrum antivirals

1. Introduction

In recent years, emerging or re-emerging viruses have appeared with increasing fre-
quency, severely threatening global public health security and causing enormous economic
losses [1]. At present, the World Health Organization has announced six international
public health emergencies, the H1N1 influenza pandemic in 2009 [2], the polio epidemic in
2014 [3], the Ebola epidemic in West Africa in 2014 [4], the Zika epidemic in 2015–2016 [5],
the Ebola epidemic in the Democratic Republic of Congo that began in 2018 (announced in
July 2019) [6,7], and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pneumonia pandemic that broke out at the end of 2019 [8]. In addition, Middle East respira-
tory syndrome coronavirus (MERS-CoV), SARS-CoV, dengue virus (DENV), Chikungunya
virus, and other viruses cause epidemic infections worldwide [9–12]. These virus epidemics
and pandemics remind us that a broad-spectrum antiviral must be prepared to combat the
continual outbreaks of various viruses.

At present, most approved antivirals target viral proteins to inhibit specific steps in
the viral infection cycle and are called direct-acting antivirals (DAAs). Taking SARS-CoV-2
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as an example, in the rush of anti-SARS-CoV-2 drug development competition, remdesivir
is highly expected. It targets viral RNA-dependent RNA polymerase (RdRp) to terminate
viral RNA chain elongation by competing with the natural substrate of RdRp, adenosine
triphosphate [13,14]. Unfortunately, although remdesivir showed fair anti-SARS-CoV-2 ac-
tivity in vitro, clinical results showed no significant benefit compared with placebo [15,16],
probably because of three reasons. (1) Remdesivir needs to be converted into remdesivir-
TP in vivo to function [17,18]. (2) Remdesivir is originally developed by targeting the
Ebola virus (EBOV) RdRp [19], making it unlikely to have an equivalent impact on the
SARS-CoV-2 RdRp because of the plasticity of the virus. (3) The proofreading function of
SARS-CoV-2 nsp14 exonuclease limits the potential of remdesivir [20]. Similar to remde-
sivir, many DAAs have been proven to be clinically successful only against a certain kind
of virus but not others. Overall, DAAs have some inherent disadvantages. (1) They have
narrow-spectrum antiviral properties. Viral proteins usually share few structural similari-
ties among different species or classes. (2) Drug resistance develops against DAAs. DAAs
act directly on viral proteins, promoting mutagenesis during viral replication. (3) DAAs
are expensive and inefficient. DAAs apply the “one bug, one drug” strategy so that the
development of individual DAA to each virus is an expensive and inefficient process in the
context of continually emerging viruses [21].

Viruses are obligate parasites that rely entirely on the internal host environment to pro-
duce progeny viral particles. Therefore, viruses usually need to hijack the host machinery
to replicate. For this reason, host-targeting antivirals (HTAs), which target the host factors
required for viral infection, represent a broad-spectrum antiviral strategy. Moreover, the
treatment of acute viral infections requires only a few days, greatly facilitating tolerance
of the relative toxicity from the targeted host pathway. Compared with DAAs, HTAs
have advantages. (1) HTAs show broad-spectrum antiviral activities because viruses use
many of the same host proteins to replicate. (2) HTAs may also be effective against future
emerging viruses. HTAs inhibit the host proteins essential for viral replication, which may
also be effective against emerging viruses. (3) HTAs poorly induce the development of
drug resistance. The host genetic material is double-stranded DNA with a lower muta-
tion rate than RNA. Table 1 summarizes the host targets for antiviral treatment, such as
dihydroorotate dehydrogenase (DHODH), chemokine receptor type 5, inosine monophos-
phate dehydrogenase, cyclophilins, eukaryotic initiation factor 2α, dihydrofolate reductase,
and et al.

Table 1. Host targets and antiviral activities of host-targeting antivirals (HTAs).

Host Targets Description of Host Targets HTAs Known Antiviral Effects

DHODH
The rate-limiting enzyme in

the de novo pyrimidine
synthesis pathway

Leflunomide, teriflunomide,
and brequinar

Influenza virus, HBV, HCV,
EBOV, DENV, SARS-CoV-2,

HIV, and ZIKV

Chemokine receptors type 5
A G-protein coupled receptor,
which is an HIV-1 co-receptor

associated with CXCR4

Maraviroc, PF-232798, TAK-220,
and INCB9471 HIV

Inosine monophosphate
dehydrogenase

The rate-limiting enzyme in
the de novo biosynthesis of

guanine nucleotides

Ribavirin, mycophenolic acid,
mycophenolate mofetil, and

mizoribine

RSV, HCV, HBV, HCMV,
EMCV, ZIKV, and EBOV

Cyclophilins

A peptidyl-prolyl isomerase,
catalyzing the isomerization

of peptide bonds from trans to
cis form at proline residues to

facilitate protein folding

Cyclosporin A, NIM811, and
alisporivir HCV

Eukaryotic initiation
factor 2α

A eukaryotic initiation factor
required for most eukaryotic

translation initiation

Nitazoxanide, tizoxanide, and
RM5061

Influenza virus, HBV, HCV,
EBOV, DENV, JEV, HIV, and

ZIKV
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Table 1. Cont.

Host Targets Description of Host Targets HTAs Known Antiviral Effects

Dihydrofolate reductase

An enzyme converting
dihydrofolate into

tetrahydrofolate for the de
novo synthesis of purines,

thymidylic acid, and certain
amino acids

Methotrexate, trimetrexate, and
1-aryl-4,6-diamino-1,2-

dihydrotriazines

ZIKV, influenza virus, and
RSV

α-Glucosidase
An enzyme catalyzing the

hydrolysis of glycosidic bonds
in complex sugars

NB-DNJ and Celgosivir
HIV, HCV, human

coronavirus, influenza A
virus, and DENV

Kinases

An enzyme that catalyzes the
transfer of phosphate groups

from high-energy,
phosphate-donating
molecules to specific

substrates

Sunitinib and erlotinib DENV and EBOV

Sodium taurocholate
cotransporting polypeptide

A multiple transmembrane
transporter involved in the
circulation of bile acids, and
served as a common receptor

of HBV and HDV

Myrcludex B, CsA, ezetimibe,
and ritonavir HBV and HDV

Farnesoid X receptor
A nuclear bile acid receptor
that regulates the expression

of bile acid transporters

GW4064, WAY362450,
fexaramine, and

chenodeoxycholic acid
HBV

Diacylglycerol
acyltransferases

An enzyme catalyzing the
terminal step in triacylglycerol

synthesis
pradigastat HCV

DENV, dengue virus; EBOV, Ebola virus; EMCV, encephalomyocarditis virus; HBV, hepatitis B virus; HCV,
hepatitis C virus; HCMV, human cytomegalovirus; HDV, hepatitis D virus; HIV, human immunodeficiency virus;
JEV, Japanese encephalitis virus; RSV, respiratory syncytial virus; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; ZIKV, Zika virus.

2. The Pyrimidine Synthesis Pathway Is a Reliable HTA Target

Pyrimidine is a heterocyclic compound and a vital component of cells [22]. Therefore,
antivirals targeting the pyrimidine synthesis pathway may be effective and have a broad
spectrum of activity. Pyrimidine participates in synthesizing not only nucleotides but also
polysaccharides and phospholipids, which play an essential role in human metabolism.
When cells become cancerous [23] or infected by pathogenic microorganisms [24,25], the
overall metabolic activity and the demand for pyrimidines are increased compared with
those in quiescent cells. Munger et al. researched human cytomegalovirus (HCMV)-infected
human fibroblasts using liquid chromatography–tandem mass spectrometry and identified
167 differentially abundant metabolites. Among these metabolites, those related to de novo
pyrimidine biosynthetic pathways, such as carbamoyl-aspartic acid, cytidine triphosphate,
uridine triphosphate, and thymidine triphosphate, were significantly enriched compared
to those in the uninfected group [26]. Another study by Consigli et al. found a similar
phenomenon. The activity of aspartate transcarbamylase, which is essential for pyrimidine
synthesis, was significantly increased in adenovirus type 5-infected HeLa cells [27]. These
reports suggested that viruses would hijack the host pyrimidine synthesis pathway to
benefit their replication.

There are two ways to synthesize pyrimidines in the human body, namely, the de novo
biosynthesis and salvage pathways [25], as shown in Figure 1. The salvage pathway utilizes
extracellular uridine or cytidine to resynthesize pyrimidine nucleotides through simple
enzymatic reactions (green arrow in Figure 1). The salvage pathway is the primary source
of quiescent or differentiated cells, but it is insufficient to provide the pyrimidine pool
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for highly proliferating and virus-infected cells [28,29]. Therefore, the de novo synthesis
pathway is required for these cells. The de novo synthesis pathway provides a large pool of
pyrimidine nucleotides by using simple precursor molecules (such as amino acids, CO2,
and pentose phosphate) as substrates through a series of complex enzymatic reactions (blue
arrow in Figure 1) [30]. Step 4 is the rate-limiting step in the de novo synthesis pathway, and
dihydroorotate dehydrogenase (DHODH) is the only enzyme that oxidizes dihydroorotate
(DHO) acid to orotate (ORO) [31].
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The de novo pyrimidine synthesis pathway is divided into six steps (Figure 1) [30]. 

The first three steps proceed via the multifunctional CAD (carbamyl phosphate synthase, 
aspartate transcarbamylase, and dihydroorotate) enzymes catalyzing the conversion of L-
glutamine, aspartic acid, and bicarbonate to dihydroorotate (DHO) (steps 1–3). Then, the 
mitochondrial membrane protein dihydroorotate dehydrogenase (DHODH) oxidizes 

Figure 1. Pyrimidine synthesis pathway in humans. The de novo synthesis pathway of pyrimidine is
represented by blue arrows, and the salvage pathway is represented by green arrows. The de novo
synthesis pathway begins with dihydroorotate from glutamine and aspartate under the action of CAD
multifunctional enzymes (steps 1–3). The mitochondrial inner membrane protein DHODH oxidizes
DHO to produce orotate (step 4). Orotate is subsequently phosphorylated and produces UMP from
the bifunctional enzyme UMPS (steps 5–6). In the salvage pathway, exogenous uridine and cytidine
can be transformed into UMP and CTP, respectively. UDP is the raw material for DNA synthesis. CTP
and UTP are the raw materials for RNA synthesis. CAD, carbamoyl phosphate synthetase, aspartate
transcarbamoylase, and dihydroorotase; UMP, uridine monophosphate; DHODH, dihydroorotate
dehydrogenase; UDP, uridine diphosphate; UTP, uridine triphosphate; CMP, cytidine monophosphate;
CDP, cytidine diphosphate; CTP, cytidine triphosphate; CTPS, CTP synthase; dUDP, deoxy-UDP;
dTTP, deoxythymidine triphosphate; UMPS, uridine monophosphate synthetase; CMPK, cytidine
monophosphate kinase; NDPK, nucleoside-diphosphate kinase; CDA, cytidine deaminase; UCK,
uridine or cytidine kinase; RR, ribonucleotide reductase.

3. The Essential Role of DHODH in the De Novo Pyrimidine Synthesis Pathway

The de novo pyrimidine synthesis pathway is divided into six steps (Figure 1) [30].
The first three steps proceed via the multifunctional CAD (carbamyl phosphate synthase,
aspartate transcarbamylase, and dihydroorotate) enzymes catalyzing the conversion of
L-glutamine, aspartic acid, and bicarbonate to dihydroorotate (DHO) (steps 1–3). Then,
the mitochondrial membrane protein dihydroorotate dehydrogenase (DHODH) oxidizes
DHO to ORO (step 4), which is the rate-limiting step of the de novo pyrimidine synthesis
pathway [32]. ORO undergoes the action of orotate phosphoribosyltransferase and oro-
tate 5′-monophosphate decarboxylase to generate uridine monophosphate (steps 5 and 6).
In step 4, DHODH, as an oxidoreductase, removes two electrons from DHO and trans-
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fers them to flavin mononucleotide (FMN). FMN regeneration is necessary for sustained
DHODH catalysis. For this reason, ubiquinone, the electron acceptor in the mitochondrial
electron transport chain, is required to receive electrons from FMN to complete the catalytic
cycle [30]. This specific role of DHODH, which is involved in the de novo pyrimidine
synthesis and links this pathway to the electron transport chain of aerobic respiration,
makes DHODH the most attractive drug target in the pyrimidine synthesis pathway.

DHODH inhibitors (DHODHi) have been used to treat malignant tumors, autoimmune
diseases, viral or bacterial infections, parasitic diseases, and other diseases [23,31,33–35].
DHODHi inhibit viral infection by three mechanisms: (1) inhibiting viral replication (path-
way 1 in Figure 2), (2) promoting interferon-stimulated genes (ISGs) expression (pathway 2
in Figure 2), and (3) regulating inflammation (pathway 3 in Figure 2). This article reviews
the critical role of DHODH in the de novo pyrimidine synthesis pathway during viral
infections, with examples of several DHODHi and their clinical applications.
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Figure 2. The role of DHODHi in viral infection. The triple mechanism of DHODHi is as follows:
(1) DHODHi reduce the pyrimidine pool required for viral replication; (2) DHODHi activate ISGs
expression; and (3) DHODHi suppress the inflammatory factor storm caused by the virus. The
mechanisms by which human cells obtain pyrimidines: the de novo biosynthesis (blue arrow) and the
salvage pathway (green arrow). UMP, uridine monophosphate; DHO, dihydroorotate; ORO, orotate;
Q, ubiquinone; QH2, ubiquinol; ISG, interferon-stimulated gene.

4. DHODHi Inhibit the Virus Replication Cycle

Cytosine, thymine, and uridine are essential components of DNA and RNA. Therefore,
viral genome replication requires the synthesis of large amounts of pyrimidines, which
enables the broad-spectrum antiviral activity of DHODHi. Compared with DNA viruses,
RNA viruses require the unique uridine monophosphate (particular nucleotide produced
by DHODH) in their genomes instead of thymidine monophosphate, which suggests that
RNA viruses are more sensitive to DHODH activity [36]. At present, increasing studies
have found that DHODHi inhibit the replication of RNA viruses, especially from the early
stage of the virus replication cycle. In IBRS-2 cells infected with 100 TCID50 of FMDV
(O/MY98/BY/2010), administration of 300 µM teriflunomide at the early stage of infection
(0–4 h after infection) significantly inhibited 99% of the 2B mRNA level and VP1 viral
protein expression [32]. Similarly, in a Junin virus-infected Vero cell model (MOI = 0.1),
50 µM teriflunomide mainly inhibited viral replication in the early and middle stages
(0–6 h after infection) [37]. Intriguingly, in Vero or A549 cell models infected with DENV
serotype 2 (MOI = 2), brequinar inhibited not only the early and middle phases, but also the
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later phases (RNA synthesis, virion assembly, or release) of the viral replication cycle [38].
Therefore, DHODHi may have potent antiviral effects at all steps of RNA virus replication.

Although not as powerful as they are against RNA viruses, DHODHi are also reported
to inhibit the replication of DNA viruses. For example, in HCMV (Towne strain)-infected
human primary embryonic lung fibroblasts (HEL 299), FK778, an oral DHODHi, exhibited
a potential antiviral effect with an EC50 of 1.97 µM [39]. In the A549 cell model infected
with human adenovirus 5 (MOI = 5), the virus titers were reduced by 6 logs by compound
A3. Vaccinia virus was also sensitive to compound A3 [35].

5. DHODHi Stimulate the Expression of ISGs

Lucas-Hourani et al. screened stimulators of the innate antiviral response and estab-
lished a link between pyrimidine biosynthesis and ISGs expression [40]. They identified a
DHODHi, DD264, which possessed ideal antiviral effects by enhancing ISGs expression.
Moreover, supplementation with uridine abolished the amplification of ISGs expression by
DD264. However, whether DHODHi induction of the expression of ISGs depends on the
classic JAK-STAT pathway is not yet clear. Jin et al. used the JAK inhibitor CP-690550 to
block the JAK-STAT pathway in Peste des petits ruminants virus (PPRV)-infected HEK293T
cells. Surprisingly, the transcription of ISGs could still be upregulated by brequinar. This
result indicated that the induction of ISGs by brequinar was independent of the JAK-
STAT pathway [41]. In addition, an anti-influenza virus study suggested that leflunomide
could still play an antiviral role after inhibiting the tyrosine phosphorylation of JAK1 and
JAK3 [42]. In contrast, the antiviral activity of FA-613 relied on interferon-dependent ISGs
stimulation [43]. It seems that different DHODHi activate ISGs expression by triggering
different pathways.

6. DHODHi Inhibit the Production of Inflammatory Cytokines

For a long time, cytokines and chemokines have been considered to play essential roles
in immunopathology during viral infection, because excessive virus-induced inflammation
contributes to severe disease and death [44–49]. The DHODHi, such as leflunomide
and teriflunomide, have been clinically used to treat autoimmune diseases and suppress
cytokine production [50–54], they may also regulate excessive inflammation induced by
viruses. We previously proved that the combination of S312 and oseltamivir vastly reduced
the pathogenic inflammatory cytokine levels of IL6, MCP-1, IL5, KC/GRO (CXCL1), IL2,
IFN-γ, IP-10, IL9, TNF-α, GM-CSF, EPO, IL12p70, MIP3α, and IL17A/F in influenza A virus-
infected mice [36]. Similarly, it was reported that elevated inflammatory factor levels are
positively correlated with the severity of COVID-19, such as those of IL-2, IL-6, IL-7, IL-10,
G-CSF, MCP, MIP1α, IFN-γ, IP-10, and TNF-α [55–60]. Our unpublished data indicated that
DHODHi could also regulate hyperinflammation reactions in severe SARS-CoV-2-infected
animals by reducing pathogenic inflammatory cytokines levels. Although more research
and clinical studies are expected to illustrate the immune-regulation role of DHODHi
against SARS-CoV-2 infection, our clinical observation already showed that leflunomide
could reduce lung inflammation and the serum C-reactive protein level in COVID-19
patients [61].

Moreover, DHODHi would offer dual effects in minimizing immune overreaction
induced by viral infection. It is believed that SARS-CoV-2 induces lung damage in two
stages [46,62]. The virus replicates in the lungs directly, causing lung tissue damage in the
first stage. The second stage is characterized by the massive expression of cytokines and
chemokines and the migration of immune cells to the lungs, resulting in an excessive in-
flammatory response [55–60,63]. The severity of tissue damage in the first stage determines
the degree of inflammation in the second stage. Thus, DHODHi could act in both stages to
reduce lung damage by limiting viral replication in the first stage [64] and further inhibit
the overexpression of cytokines and chemokines from the residue tissue damage in the
second stage [65].
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7. DHODHi Applications in Antiviral Treatment

A variety of DHODHi have been proven to inhibit viral infection in vitro and in vivo [64].
Table 2 lists the antiviral activities and their current clinical applications of major DHODHi
that have been approved or are in the experimental phase. Currently, all the human
DHODHi target the ubiquinone-binding site in the N-terminal domain of DHODH (aa
30–68). Several recurring critical binding residues inside the ubiquinone-binding pocket
are targeted repeatedly by different DHODHi, indicating the essentials of these residues
for developing potent DHODHi (Figure 3).

Table 2. Ongoing research of DHODHi in antiviral infections.

DHODHi Key Binding Site
Residues Molecular Structure Antiviral Activities Clinical

Applications

Leflunomide

Tyr356, Met 43, His56,
Ala55, Ala59, Pro364,

Val134, Gln47, Arg136,
Phe98

Viruses 2022, 14, 928 7 of 18 
 

 

inflammatory response [55–60,63]. The severity of tissue damage in the first stage deter-
mines the degree of inflammation in the second stage. Thus, DHODHi could act in both 
stages to reduce lung damage by limiting viral replication in the first stage [64] and further 
inhibit the overexpression of cytokines and chemokines from the residue tissue damage 
in the second stage [65]. 

7. DHODHi Applications in Antiviral Treatment 
A variety of DHODHi have been proven to inhibit viral infection in vitro and in vivo 

[64]. Table 2 lists the antiviral activities and their current clinical applications of major 
DHODHi that have been approved or are in the experimental phase. Currently, all the 
human DHODHi target the ubiquinone-binding site in the N-terminal domain of 
DHODH (aa 30–68). Several recurring critical binding residues inside the ubiquinone-
binding pocket are targeted repeatedly by different DHODHi, indicating the essentials of 
these residues for developing potent DHODHi (Figure 3). 

Table 2. Ongoing research of DHODHi in antiviral infections. 

DHODHi. 
Key Binding Site 

Residues  Molecular Structure Antiviral Activities 
Clinical 

Applications 

Leflunomide 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Gln47, Arg136, 
Phe98  

Influenza A virus (H1N1), ZIKV, 
EBOV, SARS-CoV-2, BK virus, 

DENV, porcine epidemic 
diarrhea virus, CMV, RSV, 

herpes simplex virus type 1, and 
HCMV 

Phase I/II/III 
(SARS-CoV-2) 
Phase I (HIV) 
Phase II (BK 

virus) 

Teriflunomid
e 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Arg136, Gln47, 
Phe98  

SARS-CoV-2, Human T-
lymphotropic virus type-1, 

JUNV, influenza virus (H5N1), 
EBV, EV71, and HIV 

Phase I/II 
(HTLV-1) 

Brequinar 

Arg136, Met 43，Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134  

SARS-CoV-2 
flaviviruses, alphavirus, 

rhabdovirus, influenza viruses, 
EV71, EV70, and Coxsackievirus 

B3 

Phase I/II (SARS-
CoV-2) 

IMU838 

Arg136, Met 43, Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134 

 

SARS-CoV-2, HCMV, HIV-1, and 
HCV 

Phase II/III 
(SARS-CoV-2) 

S416 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67, 
Leu68, Pro69, Phe98, 

Met111, Val134, Arg136, 
Val143, Tyr356, Leu359, 

Thr360 

 

Influenza A virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

S312 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67,  

Influenza virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

Influenza A virus (H1N1),
ZIKV, EBOV, SARS-CoV-2,
BK virus, DENV, porcine
epidemic diarrhea virus,

CMV, RSV, herpes simplex
virus type 1, and HCMV

Phase I/II/III
(SARS-CoV-2)
Phase I (HIV)

Phase II (BK virus)

Teriflunomide

Tyr356, Met 43, His56,
Ala55, Ala59, Pro364,

Val134, Arg136, Gln47,
Phe98
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inflammatory response [55–60,63]. The severity of tissue damage in the first stage deter-
mines the degree of inflammation in the second stage. Thus, DHODHi could act in both 
stages to reduce lung damage by limiting viral replication in the first stage [64] and further 
inhibit the overexpression of cytokines and chemokines from the residue tissue damage 
in the second stage [65]. 

7. DHODHi Applications in Antiviral Treatment 
A variety of DHODHi have been proven to inhibit viral infection in vitro and in vivo 

[64]. Table 2 lists the antiviral activities and their current clinical applications of major 
DHODHi that have been approved or are in the experimental phase. Currently, all the 
human DHODHi target the ubiquinone-binding site in the N-terminal domain of 
DHODH (aa 30–68). Several recurring critical binding residues inside the ubiquinone-
binding pocket are targeted repeatedly by different DHODHi, indicating the essentials of 
these residues for developing potent DHODHi (Figure 3). 

Table 2. Ongoing research of DHODHi in antiviral infections. 

DHODHi. 
Key Binding Site 

Residues  Molecular Structure Antiviral Activities 
Clinical 

Applications 

Leflunomide 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Gln47, Arg136, 
Phe98  

Influenza A virus (H1N1), ZIKV, 
EBOV, SARS-CoV-2, BK virus, 

DENV, porcine epidemic 
diarrhea virus, CMV, RSV, 

herpes simplex virus type 1, and 
HCMV 

Phase I/II/III 
(SARS-CoV-2) 
Phase I (HIV) 
Phase II (BK 

virus) 

Teriflunomid
e 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Arg136, Gln47, 
Phe98  

SARS-CoV-2, Human T-
lymphotropic virus type-1, 

JUNV, influenza virus (H5N1), 
EBV, EV71, and HIV 

Phase I/II 
(HTLV-1) 

Brequinar 

Arg136, Met 43，Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134  

SARS-CoV-2 
flaviviruses, alphavirus, 

rhabdovirus, influenza viruses, 
EV71, EV70, and Coxsackievirus 

B3 

Phase I/II (SARS-
CoV-2) 

IMU838 

Arg136, Met 43, Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134 

 

SARS-CoV-2, HCMV, HIV-1, and 
HCV 

Phase II/III 
(SARS-CoV-2) 

S416 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67, 
Leu68, Pro69, Phe98, 

Met111, Val134, Arg136, 
Val143, Tyr356, Leu359, 

Thr360 

 

Influenza A virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

S312 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67,  

Influenza virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

SARS-CoV-2, Human
T-lymphotropic virus

type-1, JUNV, influenza
virus (H5N1), EBV, EV71,

and HIV

Phase I/II (HTLV-1)

Brequinar

Arg136, Met 43, Gln47,
Leu46, Leu42, His56, Tyr38,

Pro326, Tyr356,
Pro69, Val143, Val134
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inflammatory response [55–60,63]. The severity of tissue damage in the first stage deter-
mines the degree of inflammation in the second stage. Thus, DHODHi could act in both 
stages to reduce lung damage by limiting viral replication in the first stage [64] and further 
inhibit the overexpression of cytokines and chemokines from the residue tissue damage 
in the second stage [65]. 

7. DHODHi Applications in Antiviral Treatment 
A variety of DHODHi have been proven to inhibit viral infection in vitro and in vivo 

[64]. Table 2 lists the antiviral activities and their current clinical applications of major 
DHODHi that have been approved or are in the experimental phase. Currently, all the 
human DHODHi target the ubiquinone-binding site in the N-terminal domain of 
DHODH (aa 30–68). Several recurring critical binding residues inside the ubiquinone-
binding pocket are targeted repeatedly by different DHODHi, indicating the essentials of 
these residues for developing potent DHODHi (Figure 3). 

Table 2. Ongoing research of DHODHi in antiviral infections. 

DHODHi. 
Key Binding Site 

Residues  Molecular Structure Antiviral Activities 
Clinical 

Applications 

Leflunomide 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Gln47, Arg136, 
Phe98  

Influenza A virus (H1N1), ZIKV, 
EBOV, SARS-CoV-2, BK virus, 

DENV, porcine epidemic 
diarrhea virus, CMV, RSV, 

herpes simplex virus type 1, and 
HCMV 

Phase I/II/III 
(SARS-CoV-2) 
Phase I (HIV) 
Phase II (BK 

virus) 

Teriflunomid
e 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Arg136, Gln47, 
Phe98  

SARS-CoV-2, Human T-
lymphotropic virus type-1, 

JUNV, influenza virus (H5N1), 
EBV, EV71, and HIV 

Phase I/II 
(HTLV-1) 

Brequinar 

Arg136, Met 43，Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134  

SARS-CoV-2 
flaviviruses, alphavirus, 

rhabdovirus, influenza viruses, 
EV71, EV70, and Coxsackievirus 

B3 

Phase I/II (SARS-
CoV-2) 

IMU838 

Arg136, Met 43, Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134 

 

SARS-CoV-2, HCMV, HIV-1, and 
HCV 

Phase II/III 
(SARS-CoV-2) 

S416 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67, 
Leu68, Pro69, Phe98, 

Met111, Val134, Arg136, 
Val143, Tyr356, Leu359, 

Thr360 

 

Influenza A virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

S312 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67,  

Influenza virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

SARS-CoV-2
flaviviruses, alphavirus,
rhabdovirus, influenza

viruses, EV71, EV70, and
Coxsackievirus B3

Phase I/II
(SARS-CoV-2)

IMU838

Arg136, Met 43, Gln47,
Leu46, Leu42, His56, Tyr38,

Pro326, Tyr356, Pro69,
Val143, Val134
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inflammatory response [55–60,63]. The severity of tissue damage in the first stage deter-
mines the degree of inflammation in the second stage. Thus, DHODHi could act in both 
stages to reduce lung damage by limiting viral replication in the first stage [64] and further 
inhibit the overexpression of cytokines and chemokines from the residue tissue damage 
in the second stage [65]. 

7. DHODHi Applications in Antiviral Treatment 
A variety of DHODHi have been proven to inhibit viral infection in vitro and in vivo 

[64]. Table 2 lists the antiviral activities and their current clinical applications of major 
DHODHi that have been approved or are in the experimental phase. Currently, all the 
human DHODHi target the ubiquinone-binding site in the N-terminal domain of 
DHODH (aa 30–68). Several recurring critical binding residues inside the ubiquinone-
binding pocket are targeted repeatedly by different DHODHi, indicating the essentials of 
these residues for developing potent DHODHi (Figure 3). 

Table 2. Ongoing research of DHODHi in antiviral infections. 

DHODHi. 
Key Binding Site 

Residues  Molecular Structure Antiviral Activities 
Clinical 

Applications 

Leflunomide 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Gln47, Arg136, 
Phe98  

Influenza A virus (H1N1), ZIKV, 
EBOV, SARS-CoV-2, BK virus, 

DENV, porcine epidemic 
diarrhea virus, CMV, RSV, 

herpes simplex virus type 1, and 
HCMV 

Phase I/II/III 
(SARS-CoV-2) 
Phase I (HIV) 
Phase II (BK 

virus) 

Teriflunomid
e 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Arg136, Gln47, 
Phe98  

SARS-CoV-2, Human T-
lymphotropic virus type-1, 

JUNV, influenza virus (H5N1), 
EBV, EV71, and HIV 

Phase I/II 
(HTLV-1) 

Brequinar 

Arg136, Met 43，Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134  

SARS-CoV-2 
flaviviruses, alphavirus, 

rhabdovirus, influenza viruses, 
EV71, EV70, and Coxsackievirus 

B3 

Phase I/II (SARS-
CoV-2) 

IMU838 

Arg136, Met 43, Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134 

 

SARS-CoV-2, HCMV, HIV-1, and 
HCV 

Phase II/III 
(SARS-CoV-2) 

S416 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67, 
Leu68, Pro69, Phe98, 

Met111, Val134, Arg136, 
Val143, Tyr356, Leu359, 

Thr360 

 

Influenza A virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

S312 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67,  

Influenza virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

SARS-CoV-2, HCMV,
HIV-1, and HCV

Phase II/III
(SARS-CoV-2)

S416

Tyr38, Leu42, Met43,
Leu46, Gln47, Pro52, Ala55,
His56, Ala59, Phe62, Thr63,

Leu67, Leu68, Pro69,
Phe98, Met111, Val134,
Arg136, Val143, Tyr356,

Leu359, Thr360
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inflammatory response [55–60,63]. The severity of tissue damage in the first stage deter-
mines the degree of inflammation in the second stage. Thus, DHODHi could act in both 
stages to reduce lung damage by limiting viral replication in the first stage [64] and further 
inhibit the overexpression of cytokines and chemokines from the residue tissue damage 
in the second stage [65]. 

7. DHODHi Applications in Antiviral Treatment 
A variety of DHODHi have been proven to inhibit viral infection in vitro and in vivo 

[64]. Table 2 lists the antiviral activities and their current clinical applications of major 
DHODHi that have been approved or are in the experimental phase. Currently, all the 
human DHODHi target the ubiquinone-binding site in the N-terminal domain of 
DHODH (aa 30–68). Several recurring critical binding residues inside the ubiquinone-
binding pocket are targeted repeatedly by different DHODHi, indicating the essentials of 
these residues for developing potent DHODHi (Figure 3). 

Table 2. Ongoing research of DHODHi in antiviral infections. 

DHODHi. 
Key Binding Site 

Residues  Molecular Structure Antiviral Activities 
Clinical 

Applications 

Leflunomide 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Gln47, Arg136, 
Phe98  

Influenza A virus (H1N1), ZIKV, 
EBOV, SARS-CoV-2, BK virus, 

DENV, porcine epidemic 
diarrhea virus, CMV, RSV, 

herpes simplex virus type 1, and 
HCMV 

Phase I/II/III 
(SARS-CoV-2) 
Phase I (HIV) 
Phase II (BK 

virus) 

Teriflunomid
e 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Arg136, Gln47, 
Phe98  

SARS-CoV-2, Human T-
lymphotropic virus type-1, 

JUNV, influenza virus (H5N1), 
EBV, EV71, and HIV 

Phase I/II 
(HTLV-1) 

Brequinar 

Arg136, Met 43，Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134  

SARS-CoV-2 
flaviviruses, alphavirus, 

rhabdovirus, influenza viruses, 
EV71, EV70, and Coxsackievirus 

B3 

Phase I/II (SARS-
CoV-2) 

IMU838 

Arg136, Met 43, Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134 

 

SARS-CoV-2, HCMV, HIV-1, and 
HCV 

Phase II/III 
(SARS-CoV-2) 

S416 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67, 
Leu68, Pro69, Phe98, 

Met111, Val134, Arg136, 
Val143, Tyr356, Leu359, 

Thr360 

 

Influenza A virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

S312 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67,  

Influenza virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

Influenza A virus (H1N1,
H3N2, H9N2), ZIKV,

EBOV, and SARS-CoV-2
——

S312

Tyr38, Leu42, Met43,
Leu46, Gln47, Pro52, Ala55,
His56, Ala59, Phe62, Thr63,

Leu67, Leu68, Pro69,
Phe98, Met111, Val134,
Arg136, Val143, Tyr356,

Leu359, Thr360
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inflammatory response [55–60,63]. The severity of tissue damage in the first stage deter-
mines the degree of inflammation in the second stage. Thus, DHODHi could act in both 
stages to reduce lung damage by limiting viral replication in the first stage [64] and further 
inhibit the overexpression of cytokines and chemokines from the residue tissue damage 
in the second stage [65]. 

7. DHODHi Applications in Antiviral Treatment 
A variety of DHODHi have been proven to inhibit viral infection in vitro and in vivo 

[64]. Table 2 lists the antiviral activities and their current clinical applications of major 
DHODHi that have been approved or are in the experimental phase. Currently, all the 
human DHODHi target the ubiquinone-binding site in the N-terminal domain of 
DHODH (aa 30–68). Several recurring critical binding residues inside the ubiquinone-
binding pocket are targeted repeatedly by different DHODHi, indicating the essentials of 
these residues for developing potent DHODHi (Figure 3). 

Table 2. Ongoing research of DHODHi in antiviral infections. 

DHODHi. 
Key Binding Site 

Residues  Molecular Structure Antiviral Activities 
Clinical 

Applications 

Leflunomide 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Gln47, Arg136, 
Phe98  

Influenza A virus (H1N1), ZIKV, 
EBOV, SARS-CoV-2, BK virus, 

DENV, porcine epidemic 
diarrhea virus, CMV, RSV, 

herpes simplex virus type 1, and 
HCMV 

Phase I/II/III 
(SARS-CoV-2) 
Phase I (HIV) 
Phase II (BK 

virus) 

Teriflunomid
e 

Tyr356, Met 43, His56, 
Ala55, Ala59, Pro364, 

Val134, Arg136, Gln47, 
Phe98  

SARS-CoV-2, Human T-
lymphotropic virus type-1, 

JUNV, influenza virus (H5N1), 
EBV, EV71, and HIV 

Phase I/II 
(HTLV-1) 

Brequinar 

Arg136, Met 43，Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134  

SARS-CoV-2 
flaviviruses, alphavirus, 

rhabdovirus, influenza viruses, 
EV71, EV70, and Coxsackievirus 

B3 

Phase I/II (SARS-
CoV-2) 

IMU838 

Arg136, Met 43, Gln47, 
Leu46, Leu42, His56, 

Tyr38, Pro326, Tyr356, 
Pro69, Val143, Val134 

 

SARS-CoV-2, HCMV, HIV-1, and 
HCV 

Phase II/III 
(SARS-CoV-2) 

S416 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67, 
Leu68, Pro69, Phe98, 

Met111, Val134, Arg136, 
Val143, Tyr356, Leu359, 

Thr360 

 

Influenza A virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

S312 

Tyr38, Leu42, Met43, 
Leu46, Gln47, Pro52, 
Ala55, His56, Ala59, 
Phe62, Thr63, Leu67,  

Influenza virus (H1N1, H3N2, 
H9N2), ZIKV, EBOV, and SARS-

CoV-2 
—— 

Influenza virus (H1N1,
H3N2, H9N2), ZIKV,

EBOV, and SARS-CoV-2
——

FA-613 Tyr356, Arg136, Ala55,
Ala59, Leu 46, Thr360

Viruses 2022, 14, 928 8 of 18 
 

 

Leu68, Pro69, Phe98, 
Met111, Val134, Arg136, 
Val143, Tyr356, Leu359, 

Thr360 

FA-613 Tyr356, Arg136, Ala55, 
Ala59, Leu 46, Thr360 

 

Influenza A virus (H5N1 and 
H7N9), EV-A71, RSV, human 
rhinovirus A, SARS-CoV, and 

MERS-CoV 

—— 

PTC299 

Tyr356, Phe98, Met111, 
Leu68, Pro364, Phe62, 
Met43, Leu58, Leu46, 
Leu50, Ala55, Arg136, 
His56, Ala59, Gln47, 

Val134, VAL143, Thr63 
 

SARS-CoV-2, HCV, Poliovirus, 
EBOV, and Rift Valley Fever —— 

Compound 
A3 

Tyr356, Arg136, Ala55, 
Ala59, Leu46, Pro364, 

Phe336 
 

Influenza A virus (A/WSN/33), 
influenza B virus 

(B/Yamagata/88), Newcastle 
disease virus (La Sota), Sendai 

virus (SV52), Vesicular stomatitis 
virus, Sindbis virus, HCV, West 
Nile virus, DENV-1, NYVAC, 

hAd5, and HIV-1 

—— 

BAY2402234 

Thr63, Tyr38, Leu42, 
Met43, Leu46, Leu50, 
Leu58, Ala59, Phe62, 
Leu67, Leu68, Pro69, 

Met111, Leu359, Pro364, 
Thr360  

SARS-CoV-2 —— 

MEDS433 Gln47, Phe62, Arg136, 
Thr360 

 

HCoV-OC43, HCoV-229E, SARS-
CoV-2, and HSV 

—— 

RYL-634 
Tyr38, Leu42, Leu46, 
Gln47, Phe62, Leu67, 

Arg136 
 

HCV, DENV, ZIKV, 
chikungunya virus, EV71, HIV, 

RSV, severe fever with 
thrombocytopenia syndrome 

virus, and influenza virus 

—— 

CMV, cytomegalovirus; EBV, Epstein–Barr virus; EV70, enterovirus 70; EV71, enterovirus 71; hAd5, 
human adenovirus 5; HCoV-229E, human coronavirus 229E; HCoV-OC43, human coronavirus 
OC43; HSV, herpes simplex virus; JUNV, Junin virus; NYVAC, New York attenuated vaccinia virus; 
MERS-CoV, Middle East respiratory syndrome coronavirus; SARS-CoV, severe acute respiratory 
syndrome coronavirus. Data collected from Clinicaltrials.gov. 

Influenza A virus (H5N1
and H7N9), EV-A71, RSV,

human rhinovirus A,
SARS-CoV, and MERS-CoV

——
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PTC299

Tyr356, Phe98, Met111,
Leu68, Pro364, Phe62,
Met43, Leu58, Leu46,
Leu50, Ala55, Arg136,
His56, Ala59, Gln47,

Val134, VAL143, Thr63
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Leu68, Pro69, Phe98, 
Met111, Val134, Arg136, 
Val143, Tyr356, Leu359, 

Thr360 

FA-613 Tyr356, Arg136, Ala55, 
Ala59, Leu 46, Thr360 

 

Influenza A virus (H5N1 and 
H7N9), EV-A71, RSV, human 
rhinovirus A, SARS-CoV, and 

MERS-CoV 

—— 

PTC299 

Tyr356, Phe98, Met111, 
Leu68, Pro364, Phe62, 
Met43, Leu58, Leu46, 
Leu50, Ala55, Arg136, 
His56, Ala59, Gln47, 

Val134, VAL143, Thr63 
 

SARS-CoV-2, HCV, Poliovirus, 
EBOV, and Rift Valley Fever —— 

Compound 
A3 

Tyr356, Arg136, Ala55, 
Ala59, Leu46, Pro364, 

Phe336 
 

Influenza A virus (A/WSN/33), 
influenza B virus 

(B/Yamagata/88), Newcastle 
disease virus (La Sota), Sendai 

virus (SV52), Vesicular stomatitis 
virus, Sindbis virus, HCV, West 
Nile virus, DENV-1, NYVAC, 

hAd5, and HIV-1 

—— 

BAY2402234 

Thr63, Tyr38, Leu42, 
Met43, Leu46, Leu50, 
Leu58, Ala59, Phe62, 
Leu67, Leu68, Pro69, 

Met111, Leu359, Pro364, 
Thr360  

SARS-CoV-2 —— 

MEDS433 Gln47, Phe62, Arg136, 
Thr360 

 

HCoV-OC43, HCoV-229E, SARS-
CoV-2, and HSV 

—— 

RYL-634 
Tyr38, Leu42, Leu46, 
Gln47, Phe62, Leu67, 

Arg136 
 

HCV, DENV, ZIKV, 
chikungunya virus, EV71, HIV, 

RSV, severe fever with 
thrombocytopenia syndrome 

virus, and influenza virus 

—— 

CMV, cytomegalovirus; EBV, Epstein–Barr virus; EV70, enterovirus 70; EV71, enterovirus 71; hAd5, 
human adenovirus 5; HCoV-229E, human coronavirus 229E; HCoV-OC43, human coronavirus 
OC43; HSV, herpes simplex virus; JUNV, Junin virus; NYVAC, New York attenuated vaccinia virus; 
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395) is colored in white, and the N-terminal domain consisting of two α helices (binding sites for 
ubiquinone) is colored in blue. (C) Ribbon diagram of the DHODH ubiquinone-binding site in com-
plex with S416 (cyan). S416 binds 9 recurring residues with 4 hydrogen bonds shown in the dashed 
line. (D) Ribbon diagram of the DHODH ubiquinone-binding site in complex with brequinar (pur-
ple). Brequinar binds 7 recurring residues with 3 hydrogen bonds shown in the dashed line. (C,D) 
The oxygen atom is marked in red, and the nitrogen atom is marked in blue. The water molecule is 
depicted as the red ball. Recurring binding residues are indicated as thin green rods, and the corre-
sponding recurring frequencies among all the listed twelve drugs are marked underneath each 
amino acid. The other non-recurring binding residues specific to each drug are marked in thin grey 
rods. 
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ical treatment of multiple sclerosis [67]. Both leflunomide and teriflunomide have been 
proven to have various antiviral activities in vitro. They inhibit the replication of SARS-
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Figure 3. Recurring residues of DHODHi in ubiquinone-binding site. (A) 3D structure of human
DHODH (PDB ID: 6M2B) with ubiquinone-binding site shown in blue. (B) Ribbon diagram of human
DHODH in complex with S416 (cyan) and brequinar (purple). The C-terminal region (aa 78-395) is
colored in white, and the N-terminal domain consisting of two α helices (binding sites for ubiquinone)
is colored in blue. (C) Ribbon diagram of the DHODH ubiquinone-binding site in complex with S416
(cyan). S416 binds 9 recurring residues with 4 hydrogen bonds shown in the dashed line. (D) Ribbon
diagram of the DHODH ubiquinone-binding site in complex with brequinar (purple). Brequinar
binds 7 recurring residues with 3 hydrogen bonds shown in the dashed line. (C,D) The oxygen atom
is marked in red, and the nitrogen atom is marked in blue. The water molecule is depicted as the red
ball. Recurring binding residues are indicated as thin green rods, and the corresponding recurring
frequencies among all the listed twelve drugs are marked underneath each amino acid. The other
non-recurring binding residues specific to each drug are marked in thin grey rods.

7.1. Leflunomide and Teriflunomide

Leflunomide is a prodrug that can be metabolized to its active metabolite teriflunomide.
Teriflunomide inhibit DHODH activity by noncompetitively binding to ubiquinone [66]
at an IC50 value of ∼600 nM [23]. The FDA has approved leflunomide for the clinical
treatment of rheumatoid arthritis and psoriatic arthritis and teriflunomide for the clinical
treatment of multiple sclerosis [67]. Both leflunomide and teriflunomide have been proven
to have various antiviral activities in vitro. They inhibit the replication of SARS-CoV-2, cy-
tomegalovirus, herpesvirus, BK virus, Epstein–Barr virus, respiratory syncytial virus (RSV),
and influenza virus [37,41,42,61,68–72]. In an anti-Junin virus study, when teriflunomide
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was used in combination with the DAA drug ribavirin, the antiviral activity was superior
to single-drug treatment [37]. In influenza A virus (H5N1 or H1N1)-infected mouse models,
leflunomide treatment mitigated weight loss, reduced viral load in the lung, and prolonged
the survival time [42]. In the same study, teriflunomide inhibited the replication of the
H5N1 virus by blocking the activity of Janus kinase 1 (JAK1) and JAK3. Two studies from
the same group showed that the reduction in alveolar fluid clearance, a pathophysiologic
sequelae post-RSV infection, could be prevented by leflunomide and teriflunomide. At the
same time, the drug effects could be reversed by exogenous uridine [68,70].

Leflunomide and teriflunomide also showed strong anti-SARS-CoV-2 activity in vitro;
in particular, the antiviral activity of teriflunomide was ~2.6-fold higher than that of
favipiravir (a DAA that inhibits viral RdRp) [36]. In addition, leflunomide was tested
in a clinical trial for COVID-19 therapy at the People’s Hospital of Wuhan University,
China [61]. The results for compassionate use showed that the shedding time of patients
taking leflunomide (median 5 days) was significantly shorter than that of control patients
(median 11 days), with p = 0.046. Additionally, C-reactive protein level was reduced in
leflunomide-treated patients, confirming the dual antiviral and anti-inflammatory functions
of leflunomide. In addition, as a novel anti-SARS-CoV-2 drug, leflunomide research
received a total grant (£1.5 million) from LifeArc, a well-known public welfare research
institution in the field of global pharmaceutical innovation, on 29 May 2020 (https://www.
lifearc.org/news/covid-19-information/covid-19-funding/defeat-covid-study/, accessed
on 15 March 2022).

7.2. Brequinar

Brequinar is a more potent DHODHi (IC50 value of 10 nM for human DHODH) than
leflunomide or teriflunomide [73]. The FDA has approved brequinar for rheumatoid
arthritis and multiple sclerosis. Unlike leflunomide and teriflunomide, brequinar com-
petitively binds to ubiquinone and disrupts the catalytic cycle of DHODH [66]. It was
recently reported that brequinar possessed potential broad-spectrum antiviral activity
against flaviviruses (West Nile virus, yellow fever virus, DENV, and Zika virus), western
equine encephalitis virus, EBOV, influenza virus, enterovirus, and vesicular stomatitis virus
in vitro [38,41,74–77]. Additionally, adding exogenous uridine could reverse the antiviral
activity in vitro, indicating that the antiviral effect of brequinar may be attributed to affect-
ing pyrimidine synthesis [38,41,74–77]. Furthermore, a study by Li et al. demonstrated
that brequinar exhibited antiviral efficacy in mice challenged with 100 LD50 of FMDV [77].
Brequinar significantly prolonged the survival time of infected mice and provided a 25%
protection rate at 5 dpi (the virus-infected mice all died within 60 h) [77]. For SARS-CoV-2,
Xiong et al. demonstrated that brequinar showed excellent anti-SARS-CoV-2 effect with
CC50 = 231.30 µM, EC50 = 0.123 µM, and SI = 1880.49 [36]. Schultz et al. also found that, in
a model of wildtype BALB/c mice infected with the SARS-CoV-2 Beta strain, combined
treatment of brequinar and molnupiravir significantly reduced viral titers and pathology
compared to using monupiravir alone [78].

7.3. S312 and S416

The anti-influenza virus activity of leflunomide (EC50 > 25 µM) and teriflunomide
(EC50 = 35.02 µM) was insufficient in vitro. Brequinar has excellent anti-influenza virus
activity (EC50 = 0.241 µM) but high cytotoxicity (CC50 = 2.87 µM) [36]. Therefore, it is
necessary to develop novel DHODHi with high efficiency and low toxicity. Our previous
study screened 280,000 compounds by hierarchical structure analysis and identified two
potent DHODHi, S312 and S416, with high efficiency and low toxicity. S312 and S416
have the same novel scaffold, and both are thiazole derivatives. The particular chemical
structures endow them with unique binding characteristics in the ubiquinone-binding
pocket of human DHODH. Furthermore, compared to S312, the additional methyl group of
S416 could strengthen the binding affinity with the small hydrophobic subsite on DHODH
through a stronger Van der Waals interaction. In addition, two water molecules participate

https://www.lifearc.org/news/covid-19-information/covid-19-funding/defeat-covid-study/
https://www.lifearc.org/news/covid-19-information/covid-19-funding/defeat-covid-study/
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in forming a water-bridged hydrogen bond network, which is favorable for the binding
of the scaffold. The hydrazine group provides stability with a biologically active confor-
mation. The hydrophobic interaction and charge-assisted hydrogen bond interactions
in the hydrophilic region of the pocket lead to complementation with the tunnel-shaped
ubiquinone-binding site [79,80]. The combination of water-mediated effects and confor-
mational advantages make S312 and S416 highly effective DHODHi with IC50 values of
29.2 nM and 7.5 nM, respectively [36].

In vitro experiments have proven the broad-spectrum antiviral activity of S312 and
S416, including against influenza A virus (H1N1, H3N2, and H9N2), Zika virus, EBOV,
and SARS-CoV-2 [36]. It was worth noting that S312 (EC50 = 1.56 µM, SI = 101.41) and
S416 (EC50 = 0.017 µM, SI = 10,505.88) showed excellent anti-SARS-CoV-2 efficacy in Vero
cells. In vivo experiments in influenza-infected mice showed that S312 was superior to
oseltamivir (the DAA targeting neuraminidase of influenza viruses) in treating the late
infection phase and reducing cytokine and chemokine storms in influenza virus-infected
mice because of its dual antiviral and immune regulation activities. In addition, combined
with oseltamivir, S312 could confer an additional 16.7% survival in the severely late infection
stage [36].

7.4. PTC299

PTC299 is an oral DHODHi with an IC50 value of 1 nM for human DHODH [81].
PTC299 has favorable drug properties targeting hematological tumors and normalizes
vascular endothelial growth factor levels in cancer patients [82]. A study by Luban et al.
demonstrated that PTC299 inhibited SARS-CoV-2 replication with little cytotoxicity in Vero
E6 cells (CC50 > 10,000 nM, EC50 = 2.6 nM, SI > 3800). In addition, they also suggested
that PTC299 had broad-spectrum antiviral activity in vitro against viruses such as EBOV,
poliovirus, hepatitis C virus genotype 1b, and Rift Valley fever virus. Moreover, PTC299
also had a dual mechanism of inhibiting viral replication and reducing the production
of inflammatory cytokines, such as interleukin (IL)-6, IL-17A, and IL-17F [65]. PTC299 is
currently being evaluated in phase II/III study PTC299-VIR-015-COV19 (FITE19) to treat
COVID-19 (https://clinicaltrials.gov/ct2/show/NCT04439071, accessed on 15 March 2022).

7.5. IMU-838

IMU-838 is another oral selective immunomodulator that inhibits the intracellular
metabolism of activated immune cells by blocking DHODH activity at an IC50 value of
160 nM [83]. It has been proven that the active moiety of IMU-838, vidofludimus, exhibits
broad-spectrum antiviral activity in vitro, including against SARS-CoV-2. Notably, in SARS-
CoV-2-infected cells, the combination of IMU-838 and remdesivir (a DAA) almost entirely
reduced viral yield, suggesting that the combination of a DHODHi and DAA was an effec-
tive antiviral strategy [84]. Currently, IMU-838 is being evaluated for its therapeutic effect
against COVID-19 in phase II clinical trial of COVID-19 therapy (CALVID-1, NCT04379271)
(https://clinicaltrials.gov/ct2/show/NCT04379271, accessed on 15 March 2022).

7.6. Compound A3

Hoffmann et al. screened approximately 61,600 inhibitors of influenza virus replication
and identified compound A3 with low toxicity and high antiviral activity (CC50 = 268 µM,
EC50 = 0.178 µM, SI = 1505) [35]. Moreover, they also suggested that compound A3 had
broad-spectrum antiviral activity, including against retroviruses, RNA viruses, and DNA
viruses. Compound A3, inhibiting human DHODH at an IC50 of 1.13 µM, was more
effective in combination with ribavirin (an HTA, a guanosine analog) in anti-arenavirus
studies, further demonstrating the therapeutic benefits of combining a DHODHi and
another HTA [85].

https://clinicaltrials.gov/ct2/show/NCT04439071
https://clinicaltrials.gov/ct2/show/NCT04379271
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7.7. FA-613

Cheung et al. screened 50,240 compounds targeting influenza virus nucleoprotein,
and FA-613 was found to inhibit influenza A virus infection [43]. Their further study
indicated that FA-613 had broad-spectrum antiviral efficacy, including against enterovirus
A71, highly pathogenic influenza A virus (H5N1 and H7N9), RSV, SARS-CoV, MERS-
CoV, and human rhinovirus A. In addition, FA-613 had almost no cytotoxicity at the
effective antiviral concentration. When BALB/c mice were challenged with 3 LD50 of
influenza A/HK/415742Md/2009 (H1N1), FA-613 treatment (2 mg/kg per day) for three
days protected 30.7% of the mice from death [43]. Mechanismly, the antiviral effect of
FA-613 was reversed by the addition of exogenous uridine or orotic acid, which suggested
that FA-613 may target DHODH [43]. However, the direct DHODH inhibition by FA-613 is
still wondering.

7.8. BAY2402234

BAY2402234 is a novel potent selective DHODHi with an IC50 of 1.2 nM [86]. Math-
ieu et al. screened 492 compounds inhibiting SARS-CoV-2 replication and found that
BAY2402234 blocked almost 100% of SARS-CoV-2 particle production at 0.6 µM [87]. In
addition, the combination of teriflunomide, IMU-838/vidofludimus, and BAY2402234 in-
hibited SARS-CoV-2 replication and reduced viral yield by at least two orders of magnitude
in Vero E6 and Calu-3 cells infected with wildtype, the Alpha variant, and the Beta variant
of SARS-CoV-2 [88].

7.9. MEDS433

MEDS433, a DHODHi with an IC50 of 1.2 nM for human DHODH, was developed us-
ing 2-hydroxypyrazolo [1,5-a] pyridine as an acidic scaffold [89]. Calistri et al. demonstrated
that MEDS433 inhibited in vitro replication of HCoV-OC43 (EC50 = 0.012 µM), HCoV-229E
(EC50 = 0.022 µM), and SARS-CoV-2 (EC50 = 0.063 µM in Vero E6, EC50 = 0.076 µM in Calu-3)
at nanomolar range with low toxicity [90]. Luganinia et al. demonstrated that MEDS433
inhibited herpes simplex virus-1 and -2 in vitro (EC50~0.1 µM) and exhibited highly syner-
gistic antiviral activity when combined with acyclovir (a DAA) in a checkerboard assay [91].

7.10. RYL-634

RYL-634 is another potent inhibitor targeting human DHODH with an IC50 of 60 nM [92].
RYL-634 exhibited excellent broad-spectrum antiviral activity in vitro against hepatitis C
virus, DENV, Zika virus, chikungunya virus, enterovirus 71, human immunodeficiency
virus, RSV, and influenza virus [92]. Recently, Gong et al. further illustrated that RYL-634
had a high antiviral activity (EC50 = 0.079 µM) in EBOV-infected Huh7 cells (MOI = 0.1) [93].

8. Conclusions and Prospects

DHODHi were initially used to treat cancers or autoimmune disorders and have
gradually been applied to antiviral therapies. When viruses infect host cells, nucleotide
biosynthesis flux increases, and the cytokine storm is also triggered [55,94]. The triple an-
tiviral effects of DHODHi, including inhibiting viral replication, suppressing inflammation,
and activating ISGs expression, make DHODHi excellent antivirals. The large-scale screen-
ing has also resulted in DHODHi becoming leading antiviral compounds [35,75,85,95]. Of
note, leflunomide and brequinar have been associated with clinical side effects, such as
gastrointestinal symptoms, thrombocytopenia, reversible alopecia areata, and elevated
liver enzyme levels [96–100]. The off-target effects, not pyrimidine synthesis blockade, may
be responsible for the side effects [31]. Fortunately, these side effects were reversed after
stopping treatment [101].

Although most DHODHi exhibit broad-spectrum antiviral activity in vitro, several
small-molecule DHODHi have failed to show significant therapeutic effects in animal
models or clinically. The failure might be due to the narrow window of these molecules or
the recovery of exogenous uridine from the host. Therefore, developing a more efficient
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DHODHi is a priority. Our previous research indicated the high target occupancy rate and
low toxicity of S416, making S416 the most potent anti-SARS-CoV-2 candidate compound
in vitro reported to date [36]. The potent antiviral activity of S416 (CC50 = 178.6 µM,
EC50 = 0.017 µM, SI = 10,505.88) fully illustrates the great potential of DHODHi in the
treatment of viral infections.

Moreover, the combination of an HTA and a DAA showed superior antiviral effects
compared to that of a single drug, such as teriflunomide in combination with ribavirin [37],
brequinar in combination with molnupiravir (a DAA that inhibits viral RdRp) [78], and
S312 in combination with oseltamivir [36]. As the drug targets are distinct between an HTA
and a DAA, a synergistic treatment by combining these drugs could block multiple steps
and factors in the virus life cycle. Especially, DHODHi have several significant advantages
when combined with DAAs. (1) Due to the rapid replication cycle of viruses, DAAs
usually need to be applied shortly after infection because the targeted viral components
will amplify exponentially during the illness duration. However, DHODHi target the
host DHODH, which keeps a relatively stable level during infection. A combination of
DHODHi and DAA would have a superimposing inhibitory effect throughout the disease
course compared to a single drug alone. (2) DAAs directly target viruses but have no
effects on the host’s inflammatory responses. DHODHi harbor dual functions of inhibiting
both viral replication and excessive inflammation cytokine expressions by reducing the
cellular pyrimidine pool. (3) The uptake or incorporation of the nucleoside analogs may
be increased when pyrimidines are limiting [78]. Therefore, when DHODHi are used in
combined with DAAs of nucleoside analogs, the incorporation efficiency of nucleoside
analogs would be further increased. (4) DHODHi are effective to various viruses and viral
variants regardless of mutagenesis, so combining with DAA could expand the targeted
viral spectrum.

Targeting universal host factors necessary for viruses can finally achieve broad-
spectrum antiviral effects. As a promising example, DHODHi, which can effectively
reduce the pyrimidine pool for viral replication, stimulate the ISGs expression, and sup-
press the virus-induced cytokine storm, could serve as a broad antiviral strategy against
emerging and re-emerging viruses.
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