Skip to main content
. 2022 Apr 21;14(5):909. doi: 10.3390/pharmaceutics14050909

Table 1.

Studies on the application of CaCO3-based carriers in drug delivery.

Particles Loading Method Particle Size Loaded Drug Loading
Efficiency
Release Mechanism and Major Effect
CaCO3 Physical
adsorption
400–600 nm Rh6G/TD4 [70]; photosens [71,72,73]; porphyrazine [74] 0.8–15.7% Phase-induced release; sustained release effect; pH dependent
0.8–5 μm Alkaline phosphatase [75]; guanine kinase [76]; doxorubicin (DOX) [77,78]; catalase [79]
20 and 80 nm μRNA [80]; cisplatin [81]
17.9 μm Ibuprofen; losartan potassium; metronidazole benzoate; nifedipine [82] 25–50% Surface effects and diffusion
Co-precipitation 113 nm Catalase [79]; gentamicin [83] 20% pH dependent;
minimum inhibitory
Microcapsules
(CaCO3 template)
Physical
adsorption
2–3 μm DQ−ovalbumine [84] Good encapsulation effect and activity protection
Lactoferrin [85]
Heparin/CaCO3/CaP 112–384 μm DOX [86] 1.4–1.9% Concentration gradient; diffusion driving force;
pH dependent;
sustainable release
Cellulose-based CaCO3 2–3.5 μm Lovastatin (LOV) [87] 12.5%
Protamine sulfate and sodium poly(styrene sulfonate)/CaCO3 5 μm Ibuprofen [88] 4.5%
Cyclodextrin/CaCO3 4–6 µm 5-Fluorouracil; Na-L-thyroxine [89]
ACC/poly(acrylic acid) Co-precipitation 62 nm DOX [90] >9%
Mucin/CaCO3 5.8 μm DOX; aprotinin; insulin [91] 13%, 10%, 80% Mucin content dependent; phase-induced release