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Abstract: Titanium and its alloys are the most widely applied orthopedic and dental implant mate-
rials due to their high biocompatibility, superior corrosion resistance, and outstanding mechanical
properties. However, the lack of superior osseointegration remains the main obstacle to successful
implantation. Previous traditional surface modification methods of titanium-based implants cannot
fully meet the clinical needs of osseointegration. The construction of local drug delivery systems
(e.g., antimicrobial drug delivery systems, anti-bone resorption drug delivery systems, etc.) on
titanium-based implants has been proved to be an effective strategy to improve osseointegration.
Meanwhile, these drug delivery systems can also be combined with traditional surface modification
methods, such as anodic oxidation, acid etching, surface coating technology, etc., to achieve desirable
and enhanced osseointegration. In this paper, we review the research progress of different local drug
delivery systems using titanium-based implants and provide a theoretical basis for further research
on drug delivery systems to promote bone–implant integration in the future.

Keywords: local drug delivery system; titanium; bone healing; osseointegration; surface modification

1. Introduction

Titanium (Ti) and its alloys are the primary materials for orthopedic and dental
implants because of their high corrosion resistance, good biocompatibility, and excellent
mechanical properties [1–3]. Clinically, osseointegration is a vital prerequisite for the
successful fixation of implants in patients [4–6]. The concept of osseointegration was first
put forward by Branemark et al. in the late 1960s. It is defined as the direct and orderly
structural and functional connection between living bone and loaded implant [7]. Although
Ti-based implants are the gold standard of clinical implants, the lack of bone–implant
integration is still the leading reason that hinders the success of operations [8,9]. In severe
cases, poor osseointegration may give rise to a second surgery or even death, causing great
physical and psychological harm to patients [10,11]. Therefore, there is an urgent need to
improve the osseointegration of Ti-based implants to meet clinical needs.

Previous studies have pointed out that the biological and physicochemical properties
of the implant surface have significant influences on the speed, quality, and quantity of
osseointegration [12,13]. Therefore, surface modification of implants is an effective method
to improve bone–implant integration [14,15]. The commonly used surface modification
methods can be divided into the additive modification and subtractive modification [16].
Additive modification refers to the addition of extra materials to implants, including inor-
ganic/organic coating, growth factor, active ion, etc., in order to enhance the bioactivity
of implants [17–19]. Subtractive modification methods (including anodic oxidation, sand-
blasting, laser treatment, acid–alkali treatment, etc.) can be interpreted as the formation of
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rough micro/nanostructure on implants to induce the adhesion, proliferation, and differen-
tiation of osteoblasts [20,21]. Previous studies have shown that the main causes of poor
osseointegration include biologically inert, inferior antibacterial ability, and easily induced
inflammatory reaction [22–26]. However, these traditional methods cannot completely
overcome the above factors and exhibit satisfactory osseointegration.

Many studies have suggested that drug-assisted therapy can improve the osseointegra-
tion of implants [27]. Many drugs, including synthetic metabolic drugs, anticatabolic drugs,
antimicrobials, and anti-inflammatory drugs are proven to remarkably optimize osseointe-
gration [28,29]. For example, synthetic metabolic drugs could enhance osseointegration
by accelerating bone deposition around the implant [30]. Antimicrobials could improve
osseointegration by inhibiting infection [31]. Generally, the research and application of
these drugs were based on conventional systemic therapy. However, this therapy still
had several side effects, such as high biological toxicity, short duration, low targeting,
etc. [32–34]. Recently, with the gradual development of the biomedical field, drugs can
be loaded on the implant surface to build a local drug delivery system [35–37]. This sys-
tem avoids the deficiency of systemic drug delivery, but also promotes bone formation,
as well as antibacterial and anti-inflammatory effects [38]. Therefore, constructing a lo-
cal drug delivery system that uses Ti-based implants is a promising method to achieve
ideal osseointegration.

Herein, we review the research progress of the local drug delivery system using
Ti-based implants (Figure 1). The construction methods and the possible effects of local
delivery of different drugs on osseointegration are discussed. We hope this review can
provide a theoretical basis for the clinical optimization of bone–implant integration.Pharmaceutics 2022, 14, x FOR PEER REVIEW 3 of 25 
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ALN: alendronate; ZA: zoledronic acid; DA: dopamine; SV: simvastatin; DEX: dexamethasone; Mino:
minocycline; ASA: aspirin; NAC: N-acetyl cysteine.

2. Local Drug Delivery Systems with Ti-Based Implants
2.1. Construction Approaches of Local Drug Delivery Systems with Ti-Based Implants

In order to realize controlled drug delivery, it is necessary to fabricate appropriate drug
delivery systems with Ti-based implants. At present, the main approaches to construct-
ing drug delivery systems with Ti-based implants include electrochemical anodization,
sandblasting and acid etching (SLA), dopamine (DA) immobilization, and layer-by-layer
(LBL) self-assembly. The advantages and limitations of the above methods are presented
in Table 1.

Table 1. General approaches for constructing drug delivery systems using Ti-based implants.

Approach Advantages Limitations

Electrochemical anodization
Mature manufacturing process;

good surface quality;
adjustable tubular diameter

Explosive drug release;
poor accuracy;

contaminated electrolytic products

Sandblasting and acid etching
Enhanced hydrophilicity;

large surface area;
great osseointegration

Uncontrollable aperture; residual
sandblasting particles;

unstable roughness

Dopamine immobilization

Strong biocompatibility;
excellent biodegradability;
enhanced adhesion ability;

wide applicability

Lower deposition rate;
weak bonding strength

Layer-by-layer
self-assembly

Complex coating construction;
controllable coating thickness;

flexible template selection;
wide applicability

Poor coating stability;
easy drug loss;

weak bonding strength

Electrochemical anodization: Electrochemical anodization is a strategy of forming an
oxide film on the surface of metals and their alloys [39,40]. This method is usually used to
fabricate TiO2 nanotubes (TNTs) when constructing a drug delivery system [41]. TNTs are
arranged vertically on Ti substrates to simulate the nanostructures in natural tissues [42].
On the one hand, the tubular diameters of TNT can be adjusted by changing the voltage
and pH in the anodizing process to obtain a suitable tubular structure to load and deliver
drugs [43]. On the other hand, TNTs prepared by anodization have been proved to regulate
the behavior of osteoblasts and stem cells and effectively improve osseointegration [44].

SLA: Currently, SLA is the most commonly used strategy for surface modification
of implants [45]. This strategy means that the abrasive medium material is sprayed on
the surface of the implant by high-speed air flow to form a depression [46,47]. After that,
acid etching is used to form smaller secondary structures and to clean impurities on the
implant surface [48]. SLA can increase the roughness of implants, facilitate drug loading,
and accelerate new bone formation around the implant [49].

DA immobilization: DA immobilization refers to the loading of drugs or factors on
the Ti-based implants with the assistance of DA [50]. On the one hand, the chemical
composition of DA is similar to that of mussel adhesion proteins, which have strong
adhesion and can stabilize drugs or other bioactive molecules [51]. On the other hand, DA
has excellent biocompatibility and biodegradability in vivo [52].

LBL self-assembly: LBL self-assembly is a surface modification method based on the
alternating assembly of oppositely charged polyelectrolytes to fabricate multilayer coat-
ings [53,54]. This method is easy to control the thickness of coatings but also can release
drugs layer by layer to promote osseointegration [55].
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2.2. Antimicrobial Drug Delivery System

According to the survey, implant-related infections occur in approximately 5–10%
of orthopedic patients [56]. The infection is mainly due to the adsorption of bacteria
on implants and the formation of bacterial biofilms [57]. The bacterial biofilm enhances
the resistance of bacteria to the immune system and antibiotics [58–60]. At present, the
most commonly applied antibacterial treatment is systemic injection or oral antibiotics.
Nevertheless, their limitations (including low local concentration, low targeting, and drug
resistance to traditional systemic therapy) pose great challenges to clinical treatment [61–63].
The researchers found that the local drug delivery system constructed on the implant
surface has a high drug loading surface area and low drug delivery kinetics, which is
expected to overcome the limitations of traditional systemic therapy [64]. The following is
an overview of recent studies on the construction of Ti-based implants in a variety of ways
for local delivery of different antimicrobials.

2.2.1. Vancomycin

Vancomycin (Van) is a glycopeptide antibiotic. It has a good antibacterial activity
for most Gram-positive bacteria due to the inhibition of the growth and reproduction of
bacteria [65,66]. Therefore, Van is widely used to promote implant antibacterial activity
and osseointegration capability [67]. For example, Zhang et al. demonstrated that Van-
loaded TNTs had increased antibacterial activity both in vitro and in vivo and did not
weaken the function of osteoblasts [68]. Moreover, several experiments showed that
the construction of different coatings on Ti-based implants was more beneficial to the
sustained release, antibacterial, and osteogenesis of the drug in vivo. For instance, Yuan
et al. fabricated Van-loaded Ti-based implants with a multilayer, functional polymer coating.
The implant could not only slowly release Van through the hyaluronidase degradation
of the coating but also improve osseointegration via inhibiting the attachment of bacteria
and promoting the attachment of osteoblasts. (Figure 2A) [69]. In addition, researchers
constructed a drug delivery system (Van-loaded TNTs) with silk fibroin coating. Silk
fibroin is a commonly used biological coating because of its slow degradation rate and
excellent biological properties [70,71]. Fathi et al. confirmed that the system enables
the continuous release of Van and the formation of bacterial biofilm and also promotes
Ti implant osseointegration [44,72]. Recently, Zhang et al. constructed a Van-loaded
biomimetic extracellular matrix (ECM) coating on the porous Ti. The composite coating
effectively inhibited the adhesion and growth of staphylococci around the implant, as well as
enhanced the differentiation of osteoblasts to achieve ideal osseointegration (Figure 2B) [73].
Biomimetic ECM-coating-loaded implants pointed out a novel direction for local drug
delivery systems because they can promote greater tissue regeneration by simulating the
microenvironment of the natural matrix.
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tion process of GS/BMP-2-Hep-Ti for enhancing antibacterial and osteogenic activity. Adapted 
with permission from Ref. [74]. Copyright 2012, Elsevier; (D) LL37-loaded NPs on Ti substrates 
could significantly improve the antibacterial and osteogenic activity. Adapted with permission 
from Ref. [75]. Copyright 2019, Dove medical press limited; (E) the schematic of the preparation 
process of FP-engineered Ti. The system could mitigate the activity of most bacteria and promote 
osseointegration. Adapted with permission from Ref. [76]. Copyright 2021, Elsevier; (F) schematic 
of ZIF-8@Levo-coated Ti-based implant fabrication and its antibacterial pathways. Adapted with 
permission from Ref. [77]. Copyright 2020, Elsevier. Abbreviations: HA-c: hyaluronate-catechol; 
Chi-c: chitosan–catechol; HAase: hyaluronidase; Ti: titanium; Van: vancomycin; pDA: polydopa-
mine; MSCs: mesenchymal stem cell; SiCaP: Si-doped calcium phosphate; pBNPs: polydopa-
mine-modified biodegradable bovine serum albumin-based nanoparticles; NT: nanotubes; NP: 
nanopores; PEG: polyethylene glycol; EPD: electrophoresis deposition; MOF: metal–organic 
framework; Levo: levofloxacin; Gel: gelatin; LBL: layer-by-layer self-assembly. 

Recently, with the development of 3D printing technology, researchers have taken 
advantage of its customizable materials to design novel drug delivery systems. For ex-
ample, Zhang et al. prepared Van-loaded multilayer porous Ti6Al4V implants by using 
micro-arc oxidized technology and 3D printing technology. They confirmed that this 
implant could suppress infection and boost bone formation [78]. In addition, Suchý et al. 
constructed Van-loaded collagen/hydroxyapatite layers on the Ti-based implant via 
electrospun technology and 3D printing technology. They found that the composite 

Figure 2. (A) Ti-based implants with multilayer, functional films inhibited bacterial adhesion and
promoted osteoblast adhesion. Adapted with permission from Ref. [69]. Copyright 2018, Royal
society of chemistry; (B) the preparation process diagram of Van-pBNPs/pep@pSiCaP-Ti scaffold
for accelerating the osteogenic differentiation of BMSCs and inhibiting bacterial adhesion. Adapted
with permission from Ref. [73]. Copyright 2020, Elsevier; (C) schematic illustration of the fabri-
cation process of GS/BMP-2-Hep-Ti for enhancing antibacterial and osteogenic activity. Adapted
with permission from Ref. [74]. Copyright 2012, Elsevier; (D) LL37-loaded NPs on Ti substrates
could significantly improve the antibacterial and osteogenic activity. Adapted with permission
from Ref. [75]. Copyright 2019, Dove medical press limited; (E) the schematic of the preparation
process of FP-engineered Ti. The system could mitigate the activity of most bacteria and promote
osseointegration. Adapted with permission from Ref. [76]. Copyright 2021, Elsevier; (F) schematic
of ZIF-8@Levo-coated Ti-based implant fabrication and its antibacterial pathways. Adapted with
permission from Ref. [77]. Copyright 2020, Elsevier. Abbreviations: HA-c: hyaluronate-catechol;
Chi-c: chitosan–catechol; HAase: hyaluronidase; Ti: titanium; Van: vancomycin; pDA: polydopamine;
MSCs: mesenchymal stem cell; SiCaP: Si-doped calcium phosphate; pBNPs: polydopamine-modified
biodegradable bovine serum albumin-based nanoparticles; NT: nanotubes; NP: nanopores; PEG:
polyethylene glycol; EPD: electrophoresis deposition; MOF: metal–organic framework; Levo: lev-
ofloxacin; Gel: gelatin; LBL: layer-by-layer self-assembly.

Recently, with the development of 3D printing technology, researchers have taken
advantage of its customizable materials to design novel drug delivery systems. For ex-
ample, Zhang et al. prepared Van-loaded multilayer porous Ti6Al4V implants by using
micro-arc oxidized technology and 3D printing technology. They confirmed that this im-
plant could suppress infection and boost bone formation [78]. In addition, Suchý et al.
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constructed Van-loaded collagen/hydroxyapatite layers on the Ti-based implant via elec-
trospun technology and 3D printing technology. They found that the composite coating
could prevent the destruction of bone structure caused by bacterial infection and enhance
osseointegration [79].

2.2.2. Gentamicin

Gentamicin (Gent) is an aminoglycoside antibiotic. Gent has shown excellent antibac-
terial activity for most Gram-negative bacteria because it can block the protein synthesis of
bacteria by binding to the ribosome of the virus. Thus, Gent is also often used to improve
implant osseointegration by enhancing the antimicrobial capacity of implants [53,80]. For
instance, Yang et al. found that Gent-loaded TNTs achieved desirable osseointegration
in the rat model by significantly inhibiting the growth of bacteria and implant-associated
infections [81].

It has been proved that the construction of coatings on the Ti surface has positive
effects on the release and function of Gent. For instance, Sharma et al. deposited Gent-
loaded silk fibroin nanoparticles coating on the Ti-based implant. They confirmed that
the coating has stronger antibacterial and osteogenic properties than bare Ti [82]. Other
studies suggested that Ti-based implants coated with hydroxyapatite (HA)/chitosan (Chi)
composite coating had good local sustained release Gent ability, excellent biocompatibility,
and osseointegration [83,84]. However, in order to extend the life of these Ti-based implants
in patients, they were often necessary to add various additional antibiotics to prevent
bacterial infection. To minimize the use of antibiotics, Lee et al. fabricated a heparin-based
Ti implant delivery system capable of releasing Gent and BMP-2. The results showed that
the system could lead to the sustained release of drugs and increase antibacterial ability.
This system also significantly improved osseointegration by facilitating osteoblast activity
and calcium deposition around the implant (Figure 2C) [74]. Additionally, Escobar et al.
constructed a Gent-loaded Ti implant and functionalized the implant with BMP-2. The
release curve of Gent met the requirements of the surgery. The implant could effectively
inhibit bacterial proliferation and enhanced osseointegration [85]. These studies implied
that the construction of a dual drug delivery system on Ti-based implants could solve the
problem of rapid drug release and the need for a large number of additional antibiotics. In
addition, researchers have prepared Gent-loaded Ti nanotubes with different pore sizes
via electrochemical anodization. Previous studies showed that mesoporous biomaterials
were excellent drug delivery materials because of their higher specific surface area and
continuously adjustable pore sizes [86–88]. Draghi et al. further investigated the effect of
the pore sizes of Ti-based implants on the local drug delivery system. They found that Ti
nanotubes with smaller diameters performed better in terms of having antibacterial effects
and improving bone–implant integration [89].

2.2.3. Antimicrobial Peptides

Antimicrobial peptides (AMPs) are one kind of oligopeptide involved in immune regu-
lation in vivo. They have excellent broad-spectrum antibacterial activity [90,91]. Therefore,
AMPs can be used to enhance antimicrobial activity and bone–implant integration. For
example, Kazemzadeh-Narbat et al. constructed AMP-loaded calcium phosphate coating
on Ti-based implants. They found that the bone conductivity, and antibacterial and osseoin-
tegration capability of this implant were stronger than those of bare Ti [92]. To optimize
the drug release ability and osseointegration of materials, researchers further fabricated
different nanomorphologies on Ti substrates. For instance, Li et al. loaded AMPs on
TNTs and proved that the implant had better osseointegration, with low biological toxicity,
and completely inhibited the growth of bacteria [93]. In addition, Shen et al. fabricated
LL37-loaded nanotubes and nanopores (NPs) on Ti substrates by the anodizing method.
They provided convincing evidence that the bonding ability to Ti substrate and osteogenic
differentiation capability of NPs coating was stronger. The release of LL37 significantly
improved the antibacterial and osteogenic activity of the implant (Figure 2D) [75]. It is
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worth mentioning that the bonding strength between nanotubes and Ti substrates was
poor. Thus, this study confirmed that NPs are promising candidate structures to replace
nanotubes. Moreover, other studies suggested that a local drug delivery system based
on mesoporous TiO2 implants [94] and silk fibroin/HA nanofibrous-coated Ti [95] could
slowly release AMPs, avoid bone infection, and improve osseointegration. However, the
bone induction activity of a single AMP-loaded implant cannot fully meet the clinical needs.
Considering that, Xin et al. designed a variety of polyethylene glycol (PEG) spacer fusion
peptides (FPs), including HHC36 and short peptides extracted from BMP-7 (BFP-1). A
one-step reaction between the chemical groups was used to fix BFP-1 on the acid-etched Ti
implants. In vivo experiments indicated that Ti implants loaded with FPs (PEG spacer no
more than 12) inhibited the activity of most clinical bacteria and promoted osseointegration
in rabbit models (Figure 2E) [76].

2.2.4. Other Antimicrobial Drugs

Researchers fabricated several other antimicrobial drug delivery systems in antici-
pation of meeting clinical needs. For example, Cremer et al. prepared a porous Ti/SiO2
material containing the oral preservative chlorhexidine. They demonstrated that the release
of chlorhexidine could facilitate osseointegration by completely preventing the formation
of bacterial biofilm on the implant surface [96]. In addition, the failure of osseointegration
caused by bacterial infection could be prevented by direct grafting of antibiotic ciprofloxacin
on Ti implants or by loading ciprofloxacin on CS/nanoHA/Ti [97,98]. In order to obtain
more superior antibacterial implants, Park et al. loaded silver nanoparticles, cephalothin,
minocycline (Mino), and amoxicillin on mesoporous TiO2. They confirmed that the combi-
nation of silver nanoparticles and minocycline could inhibit the growth and reproduction
of more kinds of bacteria [99]. Increasing attention has been paid to the construction of
multifunctional local drug delivery systems by changing the coating [100,101]. For in-
stance, Tao et al. fabricated collagen-modified Ti implants of metal–organic frameworks
(MOF)@levofloxacin (Levo) coating. To achieve the effect of the slow release of Levo, gelatin
(Gel) and Chi multilayers were spin-coated on the Ti implants. The composite coating could
release Levo in response to pH in the bacteria-mediated, acidified microenvironment. The
multifunctional coating could facilitate osseointegration by inhibiting Escherichia coli and
Staphylococcus aureus and accelerating osteoblasts proliferation (Figure 2F) [77]. Addition-
ally, Rocas et al. creatively constructed shell-stratified, amphiphilic polyurethane–polyurea
(PUUa) nanoparticles on a Ti implant, and roxithromycin was wrapped in the shell. The
composite coating could promote osseointegration by enhancing osteoblasts’ adhesion and
suppressing bacteria growth [102]. Additionally, penicillin–streptomycin/polymer [103],
tobramycin/periapatite [104], tetracycline/polymer [105]-coated Ti implants constituted
drug delivery systems for local, slow-release antibiotics with superior osseointegration.

2.3. Anti-Bone Resorption Drug Delivery System

Osteoclasts are mainly responsible for bone resorption in the process of bone forma-
tion [106–108]. Therefore, better osseointegration can be ensured by anti-bone resorption
drug delivery systems via mitigating osteoclast activity. Currently, bisphosphate drugs
(such as alendronate (ALN), zoledronic acid (ZA), etc.), which are commonly applied to
treat osteoporosis, have been proved to facilitate osseointegration of implants [109,110].
The main function of these drugs is to destroy the cytoskeleton of osteoclasts around the
implant bone and inhibit the activity of osteoclasts [111,112]. Based on this property of
bisphosphate drugs, researchers loaded them on the Ti implants. They demonstrated that
bisphosphate drugs could inhibit the activity of osteoclasts from stimulating local bone
regeneration and improve the osseointegration of Ti implants [113].

Many studies have proved that mesoporous Ti-based materials could effectively re-
lease ALN locally. For example, Pura et al. confirmed that ALN-loaded mesoporous Ti
implants could slowly release ALN and had better osseointegration than bare metal [114].
In addition, Karlsson et al. analyzed the temporal and spatial distribution of drugs in
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ALN-loaded mesoporous TiO2 implants. The results showed that the drug stayed around
Ti implants for a long time and promoted bone–implant integration [115,116]. Furthermore,
they found that the pore size of mesoporous Ti-based materials had a great effect on the
release of ALN [117]. Meanwhile, Harmankaya et al. proved that ALN-loaded mesoporous
TiO2 implants could increase bone mineral density and enhance osseointegration in the
rat tibia model [118]. In several other studies, researchers prepared different coatings on
Ti-based implants to fix and slowly release ALN for better osseointegration. For instance,
Guimarães et al. found that the construction of HA coating on the Ti implants could
enhance the immobilization of bisphosphate drugs and bone–implant integration [119]. Ad-
ditionally, Shen et al. prepared (HA-ALN/BMP-2 nanoparticle-loaded polyethylenimine
(PEI)/Gel/Chi)-coated Ti6Al7Nb using the LBL technique. The multilayer membrane
inhibited the growth of osteoclasts in vitro and also promoted local osseointegration of
Ti6Al7Nb in the osteoporosis rabbit model in vivo (Figure 3A) [120]. The team also con-
structed ALN/HA/TNT and proved that the composite coating could remarkably improve
osseointegration [121]. Furthermore, some researchers used ALN/HA/TNT as a nanorepos-
itory of antiosteoporosis drug raloxifene (Ral) to coordinate the regulation of osteoclasts
and osteoblasts. It is worth mentioning that Ral had no side effects on the uterus and
breast [97]. They found that the implant effectively decreased the activity of osteoclasts
and enhanced the activity of ALP and mineralization ability of osteoblasts [122].

The release of ZA from Ti implants also showed many advantages. For example,
Arnoldi et al. found that the release of ZA actively facilitated the proliferation and differ-
entiation of mesenchymal cells and accelerated new bone formation around Ti implants
in the early stage [123]. In rabbit models, ZA-loaded TNT also remarkably improved
implant osseointegration and stimulated new bone formation [124]. Meanwhile, Liu et al.
constructed a ZA-loaded mesoporous TiO2 layer (MLT-Z) on the Ti substrates. Through
the slow release of ZA, the implant decreased bone resorption and promoted bone forma-
tion in vitro, and enhanced osseointegration in vivo (Figure 3B) [125]. Furthermore, the
addition of HA coating, poly-D, L-lactide (PDLLA) coating, or fibroblast growth factor
(bFGF) on Ti could slowly release ZA, augment the bone volume ratio, and bone binding
rate [126,127]. Recently, Cui et al. filled the surface of a Ti implant with a new bisphosphate
drug (technetium methylenediphosphonate (99Tc-MDP))-loaded poloxamer 407 hydrogel
(TH/PTI). The composite scaffold stimulated the expression of genes related to osteogenic
differentiation and inhibited the expression of genes related to osteoclasts. It could be
clearly seen in the lower part of Figure 3C that there was an apparent gap between the
bone and the Ti6Al4V scaffold, while the bone combined with the composite scaffold
and grew together. Briefly, this composite scaffold could promote osseointegration in
ovariectomized rabbits [128].
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Figure 3. (A) The fabrication of Ti6Al7Nb/LBL/NP for suppressing the growth of osteoclasts and
promoting local osseointegration. Adapted with permission from Ref. [120]. Copyright 2016, Royal
society of chemistry; (B) MLT-Z coating could continue to release ZA. The release of ZA could
promote bone formation and inhibit bone resorption in vitro, but also enhance osseointegration
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Several other drugs have also been investigated for their ability to promote osseoin-
tegration by inhibiting osteoclast function [129]. For example, researchers fabricated
calcitonin-loaded Ti alloys and proved that the local sustained release of calcitonin could
suppress the activity of osteoclasts and improve osseointegration [130,131]. In addition,
dopamine (DA) could coordinate osteoblasts and osteoclasts. To build a local release
DA system, Wang et al. obtained rough Ti-based implants via SLA. They constructed an
SLA/CaCO3/alginate–arginine–glycine–aspartic acid (RGD)(AlgR)@DA drug delivery
system. This system could enhance bone remodeling and osseointegration by boost-
ing the differentiation of BMSCs into osteoblasts and inhibiting the differentiation of
RAW264.7 into osteoclasts (Figure 3D) [49]. A recent study suggested that KPhelligridin D
could be used as a candidate drug to inhibit osteolysis and improve osseointegration of
Ti-based implants [132].
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2.4. Bone Formation Drug Delivery System

Simvastatin (SV) is a kind of drug mainly used to reduce blood lipids in the clinic [133].
Recently, it was confirmed that it also could facilitate bone formation by enhancing the
expression of the bone morphogenetic protein (BMP-2) and stimulating osteoblast prolif-
eration and differentiation [134,135]. Based on these characteristics, Yang et al. prepared
porous Ti implants to release SV. They proved that SV could accelerate the proliferation and
differentiation of preosteoblasts and bone–implant integration by increasing the expres-
sion of ALP, type I collagen, and osteocalcin [136]. In order to further optimize the local
delivery system of SV, researchers constructed different layers on the Ti-based implants.
For instance, Liu et al. loaded poly (ethylene glycol)-poly (ε-caprolactone) micelles on TNT
arrays to achieve the role of cooperative slow-release SV. The implant also showed stronger
osseointegration [137]. In addition, Lai et al. fabricated SV and Chi/Gel multilayer-loaded
Ti-based implants. They indicated that the osseointegration capacity of Ti was improved
by enhanced expression of osteogenesis-related genes and reduced osteoclast differentia-
tion [138,139]. Moreover, SV-loaded, PLGA-coated Ti [140] and biomimetic-CaP-coated Ti
alloy [141] were confirmed to have the ability to increase the survival rate of BMSCs and
facilitate osseointegration of Ti. Currently, Liu et al. used 3D printing technology to add
hydrogel coating to SV-loaded porous Ti. The coating could promote angiogenesis and
bone regeneration, in addition to improving osseointegration [142,143]. Furthermore, to
improve the bone targeting of the drug delivery system, Liu et al. grafted tetracycline (TC)
in SV-loaded TNTs. TC is a widely used broad-spectrum antibiotic with a strong affinity
for bone minerals. The system improved the bone targeting, antibacterial activity, and
osseointegration of Ti [144].

Dexamethasone (Dex) is a kind of glucocorticoid that can promote the differentia-
tion of BMSCs [145]. Researchers verified that Ti-based-implant-mediated drug delivery
systems could achieve the continuous administration of Dex, high bioavailability, and
excellent osseointegration [146,147]. On this basis, several studies optimized Ti-based
implants and further explored the effect of Dex release on bone–Ti integration. For example,
Yang et al. constructed the Gel/Chi multilayer-loaded TNTs. The composite layer could
release Dex controllably and enhance osseointegration by promoting the proliferation and
differentiation of MSCs [148]. In addition, Li et al. fabricated vertically aligned mesoporous
silica thin-coating-loaded TNTs. The coating efficiently released Dex and accelerated os-
teogenic differentiation [149]. Recently, Wu et al. prepared polypyrrole (PPy) @HA/Dex
nanocomposite coating on the Ti surface. With the release of DEX, osteogenic factors
(tafazzin (TAZ), protein kinase phosphatase 1 (MKP-1), and four-and-a-half LIM domains 2
(FHL2)) were activated. They synergistically activated the osteogenic transcription factor
(Runx2) and enhanced the osteogenic effect (Figure 4A) [150]. This study confirmed that
PPy could effectively load Dex and promote the osteogenic ability of HA. In particular,
Ran et al. constructed the silk fibroin–dexamethasone@zeolitic imidazolate framework-8
nanoparticle-loaded Ti. This Ti could control the release of DEX for a long time, enhance
the expression of osteogenic related genes, and facilitate osteogenic mineralization [151].
The study suggested that the unique drug delivery system designed by the authors could
also be used to deliver other osteogenic-related drugs or factors.
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osteogenic effect and osseointegration by activating Runx2. Adapted with permission from Ref. [150].
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loaded hierarchical Ti scaffold. Adapted with permission from Ref. [152]. Copyright 2020, Elsevier;
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damage. Adapted with permission from Ref. [154]. Copyright 2017, Elsevier. Abbreviations: Dex:
dexamethasone; HA: hydroxyapatite; Py: pyrrole; TAZ: tafazzin; MKP-1: protein kinase phosphatase
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Several studies revealed the potential applications of antiosteoporosis drugs extracted
from herbal medicines [155–158]. Icariin (ICA) is a small molecular compound extracted
from traditional Chinese medicine (the Epimedium family of herbs). It can specifically fa-
cilitate bone formation and increase bone mineral density [159–161]. Therefore, researchers
used these properties of ICA to improve bone–implant integration. For instance, Zhu
et al. loaded ICA on the TNTs and confirmed that ICA-loaded TNTs could accelerate
osseointegration via enhancing ECM mineralization and new bone formation. These ef-
fects were more remarkable after joining Sr [162]. Furthermore, the addition of composite
coating optimized the local drug delivery system. For instance, Zhang et al. fabricated
ICA-loaded TNTs and then coated them with Chi/Gel multilayer coating to seal the drug
to achieve controlled release. The composite coating could stimulate the proliferation of
osteoblasts and osseointegration of implant via upregulating the expression of osteoblast-
related genes [163]. In addition, Ma et al. used the PLGA membrane to seal ICA on TNTs
and proved that the coating could remarkably improve bone–implant integration by in-
creasing the function of osteoblasts [164]. It is worth mentioning that the traditional surface
modification methods of implants have some challenges such as expensive equipment
and easy pollution. Taking this into account, Song et al. innovatively used inexpensive
and clean phase-transited lysozyme (PTL) to treat the Ti surface and obtained an activated
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surface with high adhesion. Then, they constructed ICA-immobilized Chi/HA composite
coating on PTL-primed Ti to facilitate osseointegration [165].

Several studies pointed out that some vitamins had certain bone targeting and could
promote osteoblast maturation [166,167]. With these properties in mind, researchers used
them to promote the osseointegration of implants. For example, He et al. used 3D printing
technology to fabricate layered TNTs to simulate the trabecular structure. Then, 1α, 25-
dihydroxyvitamin D3 was added to the Ti scaffold and sealed with hydrogel. The composite
scaffold could facilitate early osseointegration (Figure 4B) [152]. Additionally, Sarkar et al.
constructed HA-coated Ti implant and added curcumin and vitamin K2 to it. The implant
loaded with dual drugs could enhance the function of osteoblasts in vitro and improve
osseointegration in vivo (Figure 4C) [153].

Previous studies have shown that excessive reactive oxygen species (ROS) on the
implant may inhibit the function of osteoblasts and bone–implant integration [168,169]. In
order to solve this problem, Chen et al. fabricated Chi–catechol (Chi-C)/Gel/HA composite
coating on the Ti substrate. The composite coating could facilitate cell adhesion and mitigate
ROS damage via interfering with the expression of integrin and cadherins (Figure 4D) [154].
In addition, proanthocyanidin-loaded HA/Chi/Tiimplant constructed by Tang et al. could
also effectively improve osseointegration under oxidative stress [170].

Moreover, some growth factors (e.g., transforming growth factor-β1 [171], platelet-
derived growth factor-BB [172]), hormones (e.g., parathyroid hormone [173], insulin [174])
could be loaded and released by Ti-based implants to accelerate bone formation and
improve osseointegration.

2.5. Anti-Inflammatory Drug Delivery System

As a foreign body, implants may cause an inappropriate or excessive immune response,
leading to cell or tissue damage and a series of inflammatory reactions, thus resulting in
poor bone–implant integration [175]. Previous studies confirmed that macrophages played
an important role in regulating inflammation. Specifically, the polarization of macrophages
from the M1 pro-inflammatory phenotype to the M2 anti-inflammatory phenotype could
inhibit inflammation [176]. Based on this property, Shen et al. confirmed that Ti/LBL/Mino
enhanced the osteogenic differentiation of mesenchymal stem cells by promoting the
conversion of macrophages to anti-inflammatory phenotype (Figure 5A) [177]. In addition,
the wear particles produced after the implantation of the implant were also found to cause
inflammation [178,179]. Ren et al. solved the inflammation caused by wear particles around
the implant by smearing erythromycin on Ti [180]. Moreover, Wei et al. fabricated poly
(lactic-co-glycolic acid) (PLGA)@aspirin (ASA) nanofiber coatings on polydopamine (PDA)
modified Ti via electrospinning. Studies showed that the material inhibited osteolysis
caused by abrasive particles. The material also improved osseointegration and suppressed
immune response (Figure 5B) [181]. On the other hand, the inadequate antioxidant capacity
of cells could trigger inflammation due to the generation of excess reactive oxygen species.
Inflammation may further induce poor bone–implant integration. Thus, Lee et al. loaded
antioxidant N-acetyl cysteine [182] on the TNTs. The NAC-loaded TNTs could achieve
local release and mitigate inflammation induced by reactive oxygen species [182,183]. In
addition, indomethacin-loaded polymer-modified Ti [184], ibuprofen-loaded TNTs [185],
and quercetin/CS/Ti-6Al-7Nb [186] showed excellent effects of anti-inflammation and
facilitating osseointegration.
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3. Discussion

The critical factor for successful implantation in vivo depends on excellent integra-
tion between the implant and bone. Previous studies showed that osseointegration was
affected by different factors, such as bacterial infection, inflammation, etc., during the
bone healing phase after implantation [25,187–189]. These factors may result in Ti-based
implants failing to stimulate the biological activity of surrounding osteocytes, triggering
infection and activating abnormal phagocytosis of macrophages. Currently, an effective
strategy for enhancing osseointegration was to construct a Ti-implant-based local drug
delivery system. The system could mitigate the effects of the above factors and achieve
ideal osseointegration by releasing different drugs around Ti implants. For example, the
release of anti-bone resorption drugs could transform bone metabolism into bone depo-
sition by inhibiting the absorptive activity of osteoclasts [190,191]. Additionally, with
the release of anti-inflammatory drugs, the system could solve aseptic loosening by mit-
igating local inflammatory responses [192]. Moreover, compared with the traditional
systemic drug delivery, local drug delivery systems have the advantages of low dosage, low
biotoxicity, high targeting, etc. Considering the above factors, the ability of antibacterial,
anti-inflammatory, inhibiting bone resorption, and promoting bone formation were selected
as the primary basis of this review, to help judge whether the local delivery system would
enhance osseointegration.

It must be noted that although there are various ways to build drug delivery systems,
they all have several limitations (Table 1). Regarding SLA, the pores only exist on the
implant surface and the pore size and distribution are uncontrollable. Regarding LBL, the
drug may be lost due to the less stringent processing conditions and lower bonding strength.
In addition, researchers should give more consideration to the problem of coating shedding.
When the coating is constructed on Ti-based implants, the relative displacement between
implants and coatings gives rise to wear [193]. With the increasing range of displacement,
the degree of wear is gradually deepened. This leads to the shedding of coatings.

As regards the local drug delivery system, it is very vital to ensure that the drug has
a controllable release rate and continuous release time at the target site. Previously, it
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was a common method to construe a HA coating on the Ti-based implants to load drugs.
However, the fabrication of HA coating required a high temperature. Therefore, it was
difficult to load drugs well and would lead to the early release of the drugs within 1 h [194].
Currently, biodegradable coatings (such as PLGA, PDLLA, hydrogel, etc.) have widely
been studied because of their controllable and continuous drug release [195]. In addition,
these biodegradable coatings could also carry a greater number and variety of drugs.

Different nanostructures, such as TNTs or NPs, can be constructed on the surface of
Ti substrates to release drugs directly from the surface of Ti-based implants [196]. It is
worth mentioning that pharmacokinetics still needs to be taken into account. In their study,
Neut et al. indicated that TNTs might lead to high biological toxicity due to explosive
drug release. With that in mind, Shen et al. compared TNT structures with NP structures.
The results showed that NP-loaded Ti had very low biotoxicity and could more effectively
accelerate the adhesion and proliferation of osteoblasts. This study suggested that NPs
may be more suitable than TNTs to improve the osseointegration of Ti-based implants.
Recently, with the continuous development of the field of biomedical, an increasing number
of researchers use 3D printing technology to customize the local delivery systems based
on Ti-based implants [197]. However, 3D printing technology also has several challenges,
such as high prices and difficulties in industrialization.

The limitation of this review lay in the small number of studies on different drugs
and several variations in drug concentrations, animal models, and detection methods used
in different studies. These factors may give rise to particular deviations in conclusions.
In addition, most studies remained in the experimental stage. Although these local drug
delivery systems showed desirable therapeutic effects in animal models, they cannot be
directly applied to patients. Therefore, there is still a long way for local drug delivery
systems based on Ti-based implants to be used for large-scale clinical applications.

4. Conclusions and Perspectives

Collectively, the construction of different local drug delivery systems, such as antimi-
crobial drug delivery systems, anti-bone resorption drug delivery systems, etc., on Ti-based
implants can effectively improve osseointegration. However, there are still some limitations
in the current methods of constructing drug delivery systems, such as infection, coating
shedding, etc. Future research should improve the shortcomings of existing methods, as
well as take into account the controllability and persistence of drug release. More studies
should be explored to optimize local drug delivery systems, in terms of aspects such as
the binding with degradable coatings, the construction of different nanostructures, and the
application of new technologies. At present, it is difficult to support the transformation of
Ti-based drug delivery systems to the clinical stage due to limited studies in vivo. In the
future, more in vivo experiments should be carried out to promote the large-scale clinical
applications of Ti-based drug delivery systems.
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