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Abstract: Val d’Agri is an important orchard area located in the Basilicata Region (Southern Italy).
A phenomenon affecting cv. “Golden Delicious” apples which lead to tree death has been observed
in the past several years in this area. This phenomenon has already been detected in about 20 hectares
and is rapidly expanding. The symptoms observed were “scaly bark” and extensive cankers, mainly
located in the lower part of the trunk, associated with wood decay. Dead plants ranged from 20%
to 80% and, in many cases, trees were removed by farmers. In order to identify the causes of this
phenomenon, investigations were started in autumn/winter 2019. In order to determine the possible
causal agents, fungal and bacterial isolations, from symptomatic tissues, were performed in laboratory.
Bacterial isolations gave negative results, whereas pure fungal cultures (PFCs) were obtained after
3–4 passages on potato dextrose agar (PDA) media. Genetic material was extracted from each PFC
and amplified by PCR using three pairs of primers: ITS5/4, Bt2a/Bt2b and ACT-512F/ACT-783R.
The amplicons were directly sequenced, and nucleotide sequences were compared with those already
present in the NCBI GenBank nucleotide database. All isolated fungi were identified based on
morphological features and multilocus molecular analyses. Neofusicoccum parvum, Diaporthe eres
and Trametes versicolor were most frequently isolated, while Pestalotiopsis funerea, Phomopsis spp. and
Diaporthe foeniculina were less frequently isolated. All nucleotide sequences obtained in this study
have been deposited into the EMBL database. Pathogenicity tests showed that N. parvum was the most
pathogenic and aggressive fungus, while Phomopsis sp. was demonstrated to be the less virulent one.
All the investigated fungi were repeatedly reisolated from artificially inoculated twigs of 2-year-old
apple trees, cv. “Golden Delicious”, and subsequently morphologically and molecularly identified.
The role played by the above-mentioned fungi in the alterations observed in field is also discussed.

Keywords: apple die-back; canker; fungi; multi-loci phylogeny; wood decay

1. Introduction

Apple die-back syndrome is a complex disease initially characterized by a stunted
appearance of the plants and the presence of chlorosis symptoms on leaves. As the disease
develops, cracks and necrotic lesions of the cortex appear mostly at the base of the stem
and at the grafting point. Subsequently, “scaly bark” and extensive cankers, generally
located in the lower part of the trunk develop, which are also associated with wood
decay, and the progressive death of the trees is registered. Many authors worldwide
investigated the apple die-back syndrome, attributing it to different causal agents, such as
various phytopathogens or other possible physiological causes [1–5]. Furthermore, in 2011,
Cloete et al. [6] reported the presence of the die-back syndrome and cankers on apples and
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pears in South Africa, from which they isolated several fungal pathogens belonging to the
Diplodia, Phaeoacremonium, Phomopsis, Neofusicoccum and Eutypa genera. A very recent study
by Di Francesco et al. [5], which characterized, in Brazil, apple cultivars’ susceptibility to
Neofusicoccum parvum (Pennycook & Samuels) P.W. Crous, Slippers & A.J.L. Phillips, stated
that due to climate change, this fungus is emerging as a new pathogen on species of the
Rosaceae plant family. An apple tree die-back syndrome causing severe tree losses was also
observed in the main apple producing regions in Tunisia, as described by Souli et al. [7].
The authors identified, both morphologically and molecularly, Phytophthora and Pythium
species as being the causal agents and the factors that promoted apple tree die-back. They
also showed that soil salinity contributed to increase the disease severity [7].

In Italy, apple cultivation is mainly concentrated in the northeast part of the country,
specifically in Trentino Alto Adige/Südtirol region. This area comprises about half of
the harvested hectares and has an intensive growing system, producing almost 70% of
the Italian apples. However, some other Italian regions such as Veneto, Emilia-Romagna,
Piedmont, Campania and Basilicata also successfully cultivate apple trees with quite
relevant productions. Overall, in 2019 in Italy, the surface cultivated with apple was about
58,000 hectares and the apple production reported in the same year was about 23 million
quintals [8].

Due to the economic importance of this crop in Italy, many studies regarding its
cultivation and phytosanitary status have been performed. The phytosanitary surveys on
apples cultivated in Bolzano area, was investigated by Lindner [9]. The author reported
the cortical damage of apple cvs. “Gala”, “Golden Delicious” and “Red Delicious”, in
spring 2007, and alterations very much resembling the “blister bark” and “paper bark”
symptoms often associated the with withering and drying of the branches were also
described. Nevertheless, the author reported that they did not isolate any bacterial or
fungal pathogen from the plants, concluding that the cause of the observed symptoms was
probably to be found among particularly unfavorable climatic conditions registered during
the winter and spring periods. The same author also observed damages at the grafting
point level and identified two fungi, known as canker agents, namely Phomopsis mali and
Diplodia malorum.

The apple tree die-back syndrome was reported during 2008–2009 in many apple
orchards in the north of Italy and since that period many other trees have become infected,
especially young plants.

The phytosanitary status of the apples from Trentino region (Northern Italy) was
investigated by Prodorutti et al. [10]. The authors reported an increase in the die-back
symptoms on apple trees, showing that plants were usually stunted with cracking and
necrosis in the lower part of the trunk and on the graft union site. The trees died during the
growing season. Furthermore, the same authors reported that the incidence of the disease
was, in some cases, very high (reaching almost 80%), and that the most affected trees were
the youngest ones of about 2–5 years old that had been subjected to various types of stress.
One bacterium, Pseudomonas syringae pv. syringae, and a few fungi, such as Phomopsis spp.,
Neonectria spp. And some Botryosphaeriaceae, were isolated from trunk tissues, taken from
symptomatic trees. Their role in the syndrome expression was also demonstrated, even if
they appeared not to cause the death of the artificially inoculated branches [10].

The Val d’Agri area, located in the Basilicata Region (Southern Italy), has geographical
and climatic conditions that favor apple cultivation. In particular, “Fuji” and “Golden
Delicious” apple cultivars are mostly grown in the area. Apple orchards belong to private
farmers and are kept as small-scale cultivation systems. During the autumn/winter 2019,
in the Val d’Agri area, on about 20 hectares cultivated with apples, symptoms characterized
by “scaly bark” and extensive cankers, mainly located in the lower part of the trunk and
associated with wood decay, were observed. Additionally, dead plants ranged from 20 to
80%, and in many cases, trees were removed by farmers. In order to identify the causes of
this phenomenon, investigations were started in 2019. It is to be mentioned that despite
good prevention and control measures employed so far against the key diseases on fruit
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trees in the south of Italy, including the Basilicata region, knowledge about the distribution
and the pathogens involved in apple die-back syndrome is still missing. These data are
very important since the presence of the die-back syndrome could economically affect
the growers in the region. The identification and characterization of various fungal and
bacterial pathogens attacking fruit trees, including apples, were initially based on only the
morphological features of the pure cultures obtained in vitro [11,12]. However, over time,
despite the ease of application, the morphological features proved to be inefficient to further
classify fungal and bacterial pathogens. Therefore, other solutions, including molecular
approaches, were investigated in order to identify and characterize the phytopathogens
associated with the die-back symptoms [6,7,13,14]. Nowadays, several gene regions or
genes, such as the Internal Transcribed Spacer (ITS) of the ribosomal DNA (rDNA), β-
tubulin (TUB-2) and actin (ACT) protein-coding genes, are extensively utilized to identify
and characterize phytopathogens [15–23].

The aim of the present study was to investigate the die-back syndrome on apple or-
chards from the Val d’Agri area (Basilicata region, Southern Italy). More precisely, the main
objectives of the present study were to: (1) identify fungi or bacteria eventually associated
with the die-back symptoms observed on apple trees; and (2) perform pathogenicity tests
on apple trees in order to verify the involvement of the identified pathogens in the apple
die-back disease observed in the Val d’Agri area.

2. Results
2.1. Pathogens Isolations

Pure culture fungal isolates on PDA media from die-back symptomatic material
obtained in this study were selected for further characterization through morphological
and cultural characteristics, DNA sequencing and phylogenetic analysis (Table 1).

From apple die-back symptomatic samples, the above-described fungi were isolated
with different frequencies. Among the most frequently isolated fungi were the N. parvum,
with a 55% isolation frequency (IF%), followed by D. eres, with a 15% IF, and T. versicolor,
with a 14% IF. All the other fungi were less frequently isolated with an IF ranging from
10–12%, except for Phomopssis spp., which was very rarely isolated (<5% IF).

Despite repeated trials to isolate bacteria from symptomatic apple wood, no bacterial
colonies were ever obtained. During the investigation for the identification of the apple die-
back disease cause no symptom or damage of the root system were noticed. Furthermore,
all isolation attempts, performed from roots taken from the symptomatic apple trees, gave
negative results.

2.2. Morphological Identification

Based on their cultural and morphological features, pure fungal isolates were classified
in five distinct genera: Neofusicoccum [24], Diaporthe [25–28], Trametes [29–33], Pestalotiop-
sis [34–36] and Phomopsis [6,37–40] (Table 1 and Figure 1). In particular, in the case of
Diaporthe grayish or white colonies on PDA and alpha and beta conidia were observed;
in the case of Neofusicoccum, grey-black colonies and fusiform conidia, nonseptate when
young and biseptate ellipsoidal (partially light brown with a darker middle center) when
old, were detected. In the case of Phomopsis, white colonies and alpha and beta conidia were
observed. For Pestalotiopsis, reddish colonies and 4-septate conidia, fusiform to ellipsoid
and straight to slightly curved, were noticed. Trametes genus was identified based on white
colonies and the presence of clavate basidia with an inflated epibasidial segment, 4-spored,
clamped at the base and basidiospore cylindrical in large spores with slightly inflated top,
ellipsoid to ovoid.
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Table 1. Fungal isolates obtained during this study with their respective GenBank accession numbers
and percentage of identity when compared to reference nucleotide sequences for the same species
from the NCBI nucleotide database.

Isolate
Name Species

GenBank Accession Number * Identity (%) *

ITS ** TUB-2 ** ACT ** ITS ** TUB-2 ** ACT **

Noefp1 Neofusicoccum
parvum LR757960 OU022063 OU023206 >99–100 >99 100

Neofp2 N. parvum LR757961 OU022064 OU023207 -//- -//- -//-

Neofp3 N. parvum LR757962 OU022065 OU023208 -//- -//- -//-

Neofp4 N. parvum LR757963 OU022066 OU023209 -//- -//- -//-

Neofp5 N. parvum LR757964 OU022067 OU023210 -//- -//- -//-

Neofp6 N. parvum LR757965 OU022068 OU023211 -//- -//- -//-

Neofp7 N. parvum LR757966 OU022069 OU023212 -//- -//- -//-

Tramtv1 Trametes
versicolor LR759930 - - >99–100 - -

Tramtv2 T. versicolor LR759931 - - -//- - -

Tramtv3 T. versicolor LR759932 - - -//- - -

Tramtv4 T. versicolor LR759933 - - -//- - -

Tramtv5 T. versicolor LR759934 - - -//- - -

Tramtv6 T. versicolor LR759935 - - -//- - -

Diapore1 Diaporthe eres OU020696 OU022056 OU023199 >99 >99–100 >99

Diapore2 D. eres OU020697 OU022057 OU023200 -//- -//- -//-

Diapore3 D. eres OU020698 OU022058 OU023201 -//- -//- -//-

Diapore4 D. eres OU020699 OU022059 OU023202 -//- -//- -//-

Diaporf1 Diaporthe
foeniculina OU020700 OU022060 OU023203 >99–100 100 >99

Diaporf2 D. foeniculina OU020701 OU022061 OU023204 -//- -//- -//-

Diaporf3 D. foeniculina OU020702 OU022062 OU023205 -//- -//- -//-

Pestf1 Pestalotiopsis
funerea OU020703 OU022070 - >99 >99 -

Pestf2 P. funerea OU020704 OU022071 - -//- -//- -

Pestf3 P. funerea OU020705 OU022072 - -//- -//- -

Phomp1 Phomopsis sp. OU026160 - - >99 - -

Phomp2 Phomopsis sp. OU026161 - - -//- - -

Phomp3 Phomopsis sp. OU026162 - - -//- - -

Note: * The percentage of identity was established after comparing the nucleotide sequences from this study with
at least two of the reference species existent in the database for each fungal species. ** ITS = Nuclear ribosomal
internal transcribed spacer regions; TUB-2 = β-tubulin 2 gene; ACT = actin gene. “-” = no data were obtained/or
exist in the GenBank nucleotide database. “-//-” = identical values as those in the previous row are reported.
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Figure 1. Pure fungal cultures on PDA obtained from samples of apples with dieback symptoms. 
(a,g) = Trametes versicolor; (b,h) = Diaporthe eres; (c,i) = Diaporthe feoniculina; (d,j) = Pestalotiopsis fu-
nerea; (e,k) = Phomopsis spp.; (f,l) = Neofusicoccum parvum. 

2.3. Molecular Characterization 
The PCR amplifications for each gene investigated yielded amplicons of expected 

sizes: ITS5/ITS4 (~700 bp), tub-2 (~500 bp) and ACT (~300 bp), which, after direct se-
quencing in both directions, using the same primers as for the amplification, led to 26 
nucleotide sequences (Table 1). A megablast search, excluding “uncul-
tured/environmental sample sequences”, performed in the NCBI’s nucleotide database 
(www.ncbi.org, accessed on 12 January 2022) for all nucleotide sequences obtained in this 
study, identified at Genus level all fungal isolates (Table 1). 

2.4. Phylogenetic Analysis 
Single locus analysis gave consistent results for all three loci (ITS, tub-2 and ACT), 

and the topology of trees was congruent in terms of species grouping. All sequences ob-
tained in this study have been deposited in the European Molecular Biology Laboratory 
(EMBL-EBI) nucleotide database (www.ebi.ac.uk, accessed on 12 January 2022) and their 
GenBank accession numbers are presented in Table 1. 

The final alignment dataset, for the ITS region, was composed of a total number of 
658 characters. It contained 58 nucleotide sequences, including five outgroup species, 
namely: Diaporthella corylina (acc. no. KC343004) utilized for Diaporthe fungi; Valsa japon-

Figure 1. Pure fungal cultures on PDA obtained from samples of apples with dieback symptoms.
(a,g) = Trametes versicolor; (b,h) = Diaporthe eres; (c,i) = Diaporthe feoniculina; (d,j) = Pestalotiopsis funerea;
(e,k) = Phomopsis spp.; (f,l) = Neofusicoccum parvum.

2.3. Molecular Characterization

The PCR amplifications for each gene investigated yielded amplicons of expected sizes:
ITS5/ITS4 (~700 bp), tub-2 (~500 bp) and ACT (~300 bp), which, after direct sequencing
in both directions, using the same primers as for the amplification, led to 26 nucleotide
sequences (Table 1). A megablast search, excluding “uncultured/environmental sample
sequences”, performed in the NCBI’s nucleotide database (www.ncbi.org, accessed on 12
January 2022) for all nucleotide sequences obtained in this study, identified at Genus level
all fungal isolates (Table 1).

2.4. Phylogenetic Analysis

Single locus analysis gave consistent results for all three loci (ITS, tub-2 and ACT), and
the topology of trees was congruent in terms of species grouping. All sequences obtained in
this study have been deposited in the European Molecular Biology Laboratory (EMBL-EBI)
nucleotide database (www.ebi.ac.uk, accessed on 12 January 2022) and their GenBank
accession numbers are presented in Table 1.

The final alignment dataset, for the ITS region, was composed of a total number of
658 characters. It contained 58 nucleotide sequences, including five outgroup species,
namely: Diaporthella corylina (acc. no. KC343004) utilized for Diaporthe fungi; Valsa japonica
(acc. no AF191185) for Phomopsis sp. fungi; Sordaria alcina (acc. no. AY681198) for the
Pestaliopsis sp. Fungal group; Grifola frondosa (acc. No. AY049140) utilized for Trametes
sp. Fungi; and for the Neofusicoccum parvum group, Diplodia seriata (acc. no. MH221102).
Phylogenetic analysis based on the ITS region variation showed that fungal isolates from
the same species clustered together into the same clade and, as expected, outgroup species
were placed separately from the other groups (Figure 2).

www.ncbi.org
www.ebi.ac.uk
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Figure 2. Molecular phylogenetic tree obtained through the neighbor-joining (NJ) method, based on
the 58 ITS region sequences data (658 bp) from fungal isolates in the present study and published
sequences. Five fungal species (Diaporthella corylina, Valsa japonica, Sordaria alcina, Grifola fondosa
and Diplodia seriata) were used as outgroups in the analysis. The optimal tree with the sum of
branch length = 1.38532669 is shown. The confidence probability estimated using the bootstrap test
(1000 replicates) is shown next to the branches. The tree is drawn to scale, with branch lengths in the
same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary
distances were computed using the Tajima–Nei method and are in the units of the number of base
substitutions/site. Scientific names of the fungi along with collection place, isolate abbreviation and
GenBank AC number are shown in the trees.
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Overall, the 53 nucleotide sequences obtained in this study, based on the ITS region
sequence analysis, clustered in two clades which contained all six fungal species. Two of
these species belonged to Diaporthe genus, namely, Diaporthe eres Nitschke and D. foeniculina
(Sacc.) Udayanga & Castl., and others have been identified as N. parvum, Pestalotiopsis
funerea (Desm.) Steyaert, Phomopsis sp. Sacc. & Roum. and T. versicolor (L.) Lloyd (Figure 2).
Within the phylogenetic tree, the first clade grouped together five of the species previously
mentioned, while the second clade contained only one species, Trametes versicolor, clearly
separated from the others. Additionally, the fungal species isolated and identified in this
study were positioned close to similar reference species downloaded from the GenBank
for each fungus, and their location was well supported by very high (97–100%) bootstrap
values (Figure 2). The ITS data confirmed the previous preliminary fungal identification
based on morphological features.

Since ITS alone does not provide sufficient resolution to exactly classify fungi at species
level, other loci were considered for the phylogeny-based identification of the taxa investi-
gated in this study. In particular, the β-tubulin (tub-2) gene, a very well-known molecular
locus extensively used in phylogenetic studies of phytopathogenic fungi [35,38–40], was ex-
amined. A total number of 39 nucleotide sequences of the tub-2 partial gene were obtained
and employed along with the species D. corylina, B. dothidea and S. alcina, used as outgroups
in phylogenetic analysis, which was carried out using the NJ method, as performed for the
ITS (Figure 3).

Results from the phylogenetic analysis of the fungal species from this study, based
on the tub-2 gene, have shown that they grouped together with similar species from the
GenBank database. A better separation within the clades and subclades compared to what
obtained from the ITS was also observed (Figure 3). Two separate clades were obtained
from the nucleotide sequences investigated in this study. In one, Neofusicoccum isolates
grouped together into the same subgroup, which was very well supported (98% bootstrap
support value), and were separated from the Pestalotiopsis subclade, which was also highly
supported (99% bootstrap support value), whereas the Diaporthe isolates were all placed in
a separate clade and were clearly distinguished in two subclades as species, e.g., D. eres and
D. foeniculina, both sharing their vicinity with the same outgroup, D. corylina (Figure 3). All
fungal species based the tub-2 gene variation were grouped together with the same species
from the GenBank with an elevated bootstrap support (98–99%). The separation of the
fungal species within each clade or subclade, strongly supported by high bootstrap values,
was 99% for D. eres, D. feoniculina and N. parvum and 98% in the case of P. funerea (Figure 3).

Regarding the third gene, namely actin, despite our repeated PCR trials, amplicons
could not be obtained for all fungal species (Figure 4). Therefore, the alignment for the
ACT gene used in phylogenetic analysis contained 298 characters and involved only
24 nucleotide sequences. Moreover, ACT gene analysis showed that the two Diaporthe
species identified in this study along with their reference species from the GenBank were
well separated from the Neofusicoccum sp. isolates and, thus, clustered in two differ-
ent clades also supported by very high bootstrap values of 94% and 99%, respectively.
In addition, Neofusicoccum isolates were grouped together with their reference species
with a 99% bootstrap support value (Figure 4). The phylogenetic reconstruction based
on the ACT gene reconfirmed the molecular identification based on other loci at species
level for each fungal species analyzed and also was in concordance with the preliminary
morphological characterization.
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method and are in the units of the number of base substitutions/site. Scientific names of the fungi
along with collection place, isolate abbreviation and GenBank AC number are shown in the trees.
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Figure 4. Molecular phylogenetic tree obtained through neighbor-joining (NJ) method based on
the 24 ACT gene sequences data (298 bp) from fungal isolates in the present study and published
sequences. The fungal species (D. helianthi and B. dothidea) were used as outgroups in the analysis.
The optimal tree with the sum of branch length = 0.90526841is shown. The confidence probability
estimated using the bootstrap test (1000 replicates) is shown next to the branches. The tree is drawn
to scale, with branch lengths in the same units as those of the evolutionary distances used to infer
the phylogenetic tree. The evolutionary distances were computed using the Tajima–Nei method and
are in the units of the number of base substitutions/site. Scientific names of the fungi along with
collection place, isolate abbreviation and GenBank AC number are shown in the trees.

Multilocus phylogenetic analyses for Diaporthe, Neofusicoccum and Pestalotiopsis spp.
isolates showed that the topology of the trees was congruent in terms of grouping for all fun-
gal species investigated, supporting the single locus phylogenetic outcomes (Figures S1–S3
in Supplementary Material).

2.5. Pathogenicity Trial

In the artificial inoculations test, on twigs of 2-year-old apple trees (cv. “Golden
Delicious”), using the six fungi investigated in this study, the size of the observed lesions
greatly varied among isolates (F6,77 = 390, p < 0.001). Furthermore, the tested fungal isolates
produced lesions in the host that were always larger than those observed from the control
(Tukey t-tests, p < 0.001 in all cases). Most of the fungal isolates (D. eres, P. funerea, Phomopsis
spp. and T. versicolor) developed smaller lesions than D. foeniculina and N. parvum. No
lesion developed after control treatment (Figure 5).
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Among all fungi investigated, N. parvum produced the longest lesions (53.98 mm).
It proved to be also the most pathogenic since the inoculated tree showed very strong
die-back symptoms, such as reddish-brown cankers on the twigs, associated with internally
brown necrosis. Finally, the death of all twigs and whole branches was observed at one
month after artificial infection. D. feoniculina produced 25 mm length cankers on twigs with
internally brown necrosis and death of some twigs and branches was also noticed. D. eres,
P. funerea and Phomopsis formed similar lesions as described above but of a shorter length,
which ranged between 8–14 mm. In the case of T. versicolor, symptoms of wood caries were
also seen (Figure 5).

All the inoculated fungi were always reisolated from the lesions and based on molecu-
lar methods were identical to the cultures used for inoculation.

3. Discussion

This study is the first to address the presence of the die-back syndrome on apple
orchards in the Val d’Agri region and to isolate and further characterize fungal species
which could be involved in the observed disease through morphology, DNA sequencing
and phylogenetic analysis. The search for the causal agent of the apple die-back syndrome
contributed to in vitro isolation of six fungi, already known to be involved in different
diseases in apple and other plant species. Both cultural and morphological features of
the five phytopathogenic genera, namely Neofusicoccum, Diaporthe, Trametes, Pestalotiposis
and Phomopsis, identified in the present study were consistent and resembled the above-
mentioned ones.

The morphological classification of fungi is an inexpensive and rapid tool but has
also many limitations. As a consequence, current mycotaxonomy has changed a lot,
now employing other methodological approaches, such as phylogeny, chemotaxonomy,
genetics, ecology or molecular biology [35,41–46]. The preliminary identification of the
fungi isolated from the apple plant, in the present study based on morphological features,
was confirmed by molecular outcomes gained from the sequencing of the ITS region, (tub-2
and actin (ACT) genes. A lesser variation was noticed over the ITS region, for all fungal
species investigated, and only in the case of the reference sequences downloaded from
the database, which was probably due to sequencing errors. It is widely accepted that
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sometimes the sequences deposited in the GenBank are of poor quality and around 30% of
the ITS sequences deposited may be associated with the wrong taxon [47].

ITS locus alone, despite its advantages and official recognition as a DNA barcoding
marker [48–52], can be limited in providing enough resolution in the case of closely-
related fungal species [53]. Considering all these limitations, for an accurate fungal species
identification other loci like tub-2 and ACT were explored, showing that nucleotide variation
was higher in ACT gene, followed by the tub-2 gene for all fungal species investigated.

Typically, different wood-rotting fungi have been associated with the die-back syn-
drome in apple over the years as Coriolus spp., Stereum spp., Schizophyllum commune [1].
Apart from these, Sphaeropsis pyriputrescens Xiao & J.D Dogers fungus was reported to cause
cankers and twig die-back on apple and crabapple trees in the USA [54]. Cloete et al. [6]
found that apple and pear trees in South Africa are the hosts of many fungi associated with
the die-back symptoms, such as Diplodia spp., Neofusicoccum spp., Phaeoacremonium spp.
and Phomopsis sp. Very recent studies of Jabiri et al. [55] reported symptoms of dieback
disease, such as root rot, yellow leaves and wilting, caused by Phytopytium vexans on young
apple trees (6–10 years old) of cv. “Golden Delicious” in Morocco.

The Diaporthe genus has also been associated to the shoot canker or fruit rot in
pear [56,57]. Dissanayake et al. [28,58], based on molecular phylogenetic analysis, revealed
seven new species, within the above-mentioned genus, in Italy. Among the Diaporthe
species, D. eres has recently been reported to be linked to necrosis and stem cankers
and caused the death of young apple rootstocks in Canada [59]. Moreover, D. eres, is
among the most serious phytopathogenic fungi affecting many plant species all over the
world [26,28,56–63]. The outcomes from this study, showing the frequent isolation from
apple with die-back symptoms of D. eres, agree with the previous studies by Sessa et al. [64]
who reported the D. eres isolation from peach and apple with wood disease symptoms, such
as wedge-shaped necrosis and canker. Additionally, the identification of more than one
species of Diaporthe, namely D. eres and D. neotheicola, on the same plant species in our study
is in agreement with the earlier works of van Niekerk et al. [40] and of Thompson et al. [65],
who reported that the same host plant may be colonized by different Diaporthe spp. at the
same time.

Neofusicoccum parvum, which recently emerged as a phytopathogen, was also among
the most frequently isolated fungi in the present study. The Neofusicoccum Crous, Slippers
and A.J. L. Phillips Genus was described by Crous et al. [24], aiming to include Botryosphaeri-
aceae with Fusicoccum-like anamorphs [66]. This fungus has been already reported to cause
cankers on many cultivable plant species [67], including apple and pear [68], but it seems
that it is expanding its host range, as demonstrated by the very recent study by Choi
et al., in Korea [69]. Moreover, N. parvum was the most aggressive fungus in our study, as
demonstrated by both natural and artificial inoculations on apple from Val d’Agri, also
causing the death of the entire tree.

Trametes versicolor was among the wood fungi frequently isolated in the present investi-
gation. Fungi from the Genus Trametes are white rot polypores. Nearly 60 species are known
worldwide on many hosts, and some are used for medicinal purposes [70–72], The taxon-
omy situation within T. versicolor is still complex, since unresolved phylogenies and unclear
species boundaries exist [31,33]. The study of Kile [73], who examined host-pathogen
relationships between the apple tree, T. versicolor and factors affecting host susceptibility,
showed that the fungus was a facultative parasite which caused the white rot of the sap-
wood and the susceptibility of living wood to fungal decay increased with the age of the
tree, due to a natural decline in host plant resistance. The frequent isolation of T. versicolor
from apple trees showing die-back symptoms agree with the study of Darbyshire et al. [74],
which associated the die-back of apple trees in Australia to the wood-rotting fungus T.
versicolor and also showed that it is a low-sugar disease. An association between Coriolus
versicolor (syn. T. versicolor) and the die-back disease of apples in Washington state, de-
scribed by Dilley and Covey, supported the present study outcomes [75]. We can assume
that frequent in vitro isolation of T. versicolor from apple trees obtained in our study and
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the die-back symptoms observed after natural and/or artificial inoculation to this host can
be associated with this disease.

Many studies reported that the Diaporthe (Phomopsis) fungi has been associated with
shoot blight and canker, decay, wilting, necrosis of bark and fruit rot in several fruit tree
species worldwide [27,37,76–78]. The isolation of Phomopsis sp. in this study agrees with
the earlier studies by Pertot and Vindimian [79], who reported the diffusion of P. mali,
causing the dieback of young apple trees in Trentino (Northern Italy). Cloete et al. [6] also
found three Phomopsis sp. isolates from pear and apple exhibiting die-back symptoms and
considered them as a possible inoculum source for grapevine trunk disease pathogens. Our
outcomes concord with the results of Bai et al. [56], who identified the presence of these
fungi on pear in China, and of Kanematsu et al. [37], who, in Japan, showed that they were
responsible for shoot cankers.

Regarding Diaporthe species, our results from pathogenicity tests are similar to those
reported by Sessa et al. [64], who investigated the diversity and the virulence of the
Diaporthe species associated with wood disease symptoms in deciduous fruit trees in
Uruguay. The same authors recognized them to be the causal agents of twig and branch
cankers, showing that D. eres and D. foeniculina produced necrosis. Furthermore, another
study by Abramczyk et al. [62] characterized isolates of D. eres based on morphological and
pathological characteristics, which were isolated from fruit plants and genetically identified
as D. eres species complex [78]. Additionally, they demonstrated that in pathogenicity tests
D. eres produced small necrosis of about 12–17 mm in diameter, occurring at the site of
inoculation. D. eres colonies were obtained from the artificially inoculated tissue, again
confirming the results obtained in our study on this fungus, showing its pathogenic abilities
towards apple trees.

Pathogenicity tests results showing that N. parvum was the most virulent among all
fungal species isolated and identified on apple trees from the Val d’Agri region match those
by Cloete et al. [6]. The authors analyzed fungi associated with die-back symptoms of
apple and pear trees cultivated in proximity of grapevine in Western Cape, South Africa,
and found that a species of Neofusicoccum (N. australe) was among the most virulent species
towards apple, with mean necrotic lesions of about 40.2 mm length. In the same study,
Phomospsis sp. was observed to be less virulent (necrotic lesions of about 11.8 mm in length),
and this was similar to the results obtained in the present study (necrotic lesions of about
8 mm in length). Another study by Espinoza et al. [80] found that Neofusicoccum spp. was
associated with the stem canker and dieback of blueberry in Chile and reported, for the first
time, N. parvum as a canker-causing agent on blueberry. In their study, the same authors
performed pathogenicity tests on kiwi, blueberry and apple and found that N. parvum was
the most aggressive fungus, in all hosts, and this is also in accordance with our results.

4. Materials and Methods
4.1. Biologic Material

Pieces of symptomatic trunks from the apple cv. “Golden Delicious”, showing die-back
symptoms, were collected in autumn/winter 2019. During this period, apple orchards
located in the Val d’Agri area were surveyed for the presence of apple die-back symptoms.
A total number of 50 samples, made of pieces of living material (bark and cankered trunks)
showing die-back symptoms, more specifically, “scaly bark” and extensive cankers, mainly
located in the lower part of the trunk, and wood decay were obtained from trees 3–12 years
old (Figure 6). They were brought to the Plant Pathology Laboratory at the University of
Basilicata and stored in fridges, at 4 ◦C, until used.
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4.2. Pathogen Isolation

Symptomatic wood pieces were cut under laminar flow sterile conditions into small
parts, surface-sterilized by soaking in a 70% ethanol solution for 1 min, in a 1% NaOCl
solution for 1 min, in 70% ethanol solution for another 30 sec and finally rinsed in sterile
water for 2 min. After sterilization, the trunk pieces were dried on a sterile paper and cut
into small parts. Small parts of about 2 × 2 mm taken from the margins between necrotic
and healthy tissue were placed on petri plates containing potato dextrose agar (PDA,
Oxoid Ltd., Hants, UK), amended with streptomycin sulphate (40 mg L−1, MerckKGaA,
Darmstadt, Germany) and were incubated at 25 ◦C in the dark until growth could be
detected. Subcultures were performed from the growing hyphae onto PDA and incubated
under the same conditions. Pure cultures were created for all obtained PDA plates.

To isolate and identify bacterial pathogens probably linked to the die-back syndrome
symptomatic wood trunk, samples were first surface sterilized and prepared, as reported
by Schaad et al. [81].

4.3. Morphological Identification

All fungal isolates obtained in this study were stored, as pure cultures (PFC), in the
culture collection of the Plant Pathology Laboratory of the School of Agriculture, Forestry,
Food and Environmental Sciences (SAFE) at the University of Basilicata on PDA slants and
maintained at 4 ◦C in fridge.

Fungal isolates were examined using a Axioscope microscope (Zeiss, Jena, Germany)
and preliminary identified by morphological characteristics.

4.4. Molecular Characterization

For molecular characterization, genomic DNA was extracted from fresh PFC mycelia
of each isolate, 7–10 days old, through an extraction protocol described by Mang et al. [43].
Genomic DNA quality and quantity were checked using a Nanodrop ND-1000 spectropho-
tometer (Thermo Scientific Inc., Willmington, DE, USA) and the material was stored at
−20 ◦C in 1.5 mL Eppendorf tubes until further use. In order to determine the fungal
species, three different genes/regions were amplified. Namely, the internal transcribed
spacers (ITS1 and ITS2) of the ribosomal RNA (ITS); β-tubulin (tub-2) and actin (ACT). The
oligonucleotides used for PCR amplifications were: ITS5/ITS4 [82], Bt2a/Bt2b [83] and
ACT512F/ACT783R [84] (Table 2).
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Table 2. Details of primers pairs used in this study for the amplification and sequencing of
fungal DNA.

Locus * Primer Sequences 5′→3′ Reference

ITS
ITS5 5′-GGA AGT AAA AGT CGT AAC AAG G-3′

White et al., 1990ITS4 5′-TCC TCC GCT TAT TGA TAT GC-3′

TUB-2 Bt2a 5′-GGT AAC CAA ATC GGT GCT GCT TTC-3′ Glass and Donaldson, 1995
Bt2b 5′-ACC CTC AGT GTA GTG ACC CTT GGC-3′

ACT ACT-512F 5′-ATG TGC AAG GCC GGT TTC GC-3′ Carbone and Kohn, 1999
ACT-783R 5′-TAC GAG TCC TTC TGG CCC AT-3′

* ITS: internal transcribed spacer regions and intervening 5.8S rRNA gene; TUB-2: partial beta tubulin gene; ACT:
actin gene.

PCR amplifications were performed under the conditions explained in Mang
et al. [43,85] for ITS only. For the other two genes the Phire Direct PCR Master mix
(Thermo Scientific Inc., USA) was used, following manufacturer’s instructions with some
modifications. PCR mixtures were composed of 10 µL of 2X Phire Plant PCR Buffer (includ-
ing 1.5 mM MgCl2 and 20 µM of dNTPs), Primers 0.5 µM each; 0.4 µL of Phire Hot Start II
DNA polymerase enzyme, 5 µL of template DNA (20 ng/µL) and double distilled water up
to 20 µL. The PCR cycling protocol consisted of: an initial denaturation at 98 ◦C for 5 min
for 1 cycle; then 40 cycles of denaturation at 98 ◦C for 5 s; annealing at 60 ◦C for ITS and at
62 ◦C for tub-2 and ACT genes for 5 s; extension at 72 ◦C for 20 s, followed by a final exten-
sion at 72 ◦C for 1 min for 1 cycle. All PCR products were separated in 1.5% agarose gels in
Tris-Acetic acid-EDTA (TAE) buffer and visualized under the UV after staining with SYBR
Safe DNA Gel Stain (ThermoFisher Scientific™, Carlsbad, CA, USA). A 100-bp GeneRuler
Express DNA Ladder (ThermoFisher Scientific™ Baltics UAB, Vilnius, Lithuania) was
used as a molecular weight marker. Direct sequencing of all PCR products was performed
by BMR Genomics [Padua, Italy], using a 3130xl automatic sequencer in both directions
and using the same primers as for the PCR. Subsequently, the sequence information was
analyzed by the local alignment search tool using BLASTn [86,87] in the National Center
for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/BLAST,
accessed on 12 January 2022). Annotations were based on BLAST searches with a minimum
of 99–100% identity over at least 80% of the length of the nucleotide sequence, which are
the commonly used thresholds for reliable sequence annotation [88]. Nucleotide sequences
primary identification was carried out through the BLASTn search tool program [86,87] of
the NCBI by comparing all sequences obtained in this study with those already present in
the database.

4.5. Sequences Alignments and Phylogenetic Analysis

All nucleotide sequences produced by this study and identified based on high sequence
identity (>99–100%) to similar species already present in nucleotide databases, along with
few additional reference sequences downloaded from GenBank (http://www.ncbi.nlm.
nih.gov/GenBank, accessed on 12 January, 2022), were used for the phylogenetic analysis.
Subsequently, they were manually edited and aligned with the ClustalX version 2.0 [88]
program, using the MEGA X (Molecular Evolutionary Genetic Analysis) [89] phylogeny
package to build representative alignments (Table 3). As reported in previous studies by
Slippers et al. [66] and by Crous et al. [24], N. parvum and N. ribis are closely related cryptic
species within the recently described Genus Neofusicoccum (Botryosphaeriaceae, Ascomycetes).
Therefore, in case of the ACT gene, when no other reference species were available in the
GenBank nucleotide database, this fungal species was also used, allowing us to perform
the phylogenetic investigation (Table 3).

http://www.ncbi.nlm.nih.gov/BLAST
http://www.ncbi.nlm.nih.gov/GenBank
http://www.ncbi.nlm.nih.gov/GenBank
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Table 3. List of taxa, fungal isolates and GenBank accession numbers of the genes analyzed in this study and used for phylogenetic analysis.

Taxa
Isolate Name Culture No. Gene GenBank Accession Number * Reference

ITS TUB-2 ACT ITS TUB-2 ACT

Diaporthe eres CBS 186.37 CPC 30116 CBS:145040 MH855881 MG281261 MK442634 Wu et al., 2019

D. eres SS48 NEFF 3-23-4 Pho12 KP903620 MW208555 JN230370 GenBank

D. eres STEU 8322 DB14AGO27 MIFCC 316 KY312645 MH063919 MN136112 GenBank

D. eres STEU 8323 Nc1 CBS:587.79 KY312646 LC316667 KJ420770 GenBank

D. eres Fi2333 MJL13 DNP128 KR023623 MT109632 KJ420762 GenBank

Diaporthe foeniculina ISPaVe 2156 ColPat-560 ISPaVe 2156 LN651172 MK522116 LN651174 GenBank
a Lopez-Moral et al., 2020

D. foeniculina A1907B Av-1 ISPaVe 2157 MT230444 MT374093 LN651175 GenBank
c Udayanga et al., 2014

D. foeniculina P101b CAA133 MEP12891 MT735646 KY435665 KC843283
GenBank

a Mathioudakis et al., 2020
c Udayanga et al., 2014

** Diaporthella corylina CBS121124 CBS121124 CBS:592.81 KC343004 KC343972 N/A Gomes et al., 2013

** Diaporthe helianthi N/A N/A AR4131 N/A N/A KF199885 c GenBank

Neofusicoccum parvum B32 ACBA15 YELO-21a KJ499738 MG970291 MH393619 GenBank

N. parvum B65 AKKA308.2 CMW 7773 KJ499740 MH221123 - e GenBank
c Hunter et al.,2006

d N. ribis - e - e CMW 7773 - e - e DQ267605 GenBank

N. parvum B135 11215_3 N/A KJ499742 JX398944 N/A GenBank

N. parvum B146 MFLUCC_12-0380 N/A KJ499743 MN643160 N/A GenBank

N. parvum Fi2326 GDTCMF23 N/A KR002830 MT424811 N/A GenBank

N. parvum JRad16 CBS:130994 N/A KY680281 a MT529709 N/A GenBank
a Zhang et al., 2021

N. parvum CMW9081; ICMP 8003 CMW994 N/A NR119487 a AY236912 N/A GenBank
a Slippers et al., 2004

** Diplodia seriata ASJ297 HL1 N/A MH221102 JF4040814 N/A GenBank
b Botryosphaeria dothidea N/A N/A HPLW1 N/A N/A JF440940 a Tang et al., 2012

Pestalotiopsis funerea ML4DY ML4DY N/A EF055197 EF055234 N/A GenBank

Pestalotiopsis sp. SGSGf16 TAP18N030 N/A EU715650 LC427211 N/A GenBank

Pestalotiopsis sp. ZC-W-1-1 BRIP 66615 N/A KR822153 MK977634 N/A GenBank

Pestalotiopsis sp. NW-FWA2867 ZX18A N/A MG098325 MW218534 N/A GenBank

** Sordaria alcina CBS 109460 CBS 109460 N/A AY681198 a AY681232 N/A Liu et al., 2010
a Cai et al., 2006
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Table 3. Cont.

Taxa
Isolate Name Culture No. Gene GenBank Accession Number * Reference

ITS TUB-2 ACT ITS TUB-2 ACT

Phomopsis sp. FN-1-N1-2-2 N/A N/A KJ465317 N/A N/A GenBank

Phomopsis sp. blx-2-51 N/A N/A MN944543 N/A N/A GenBank

Phomopsis sp. Peach N/A N/A MK934328 N/A N/A GenBank

Phomopsis sp. 136.1-COLP-L N/A N/A KT182885 N/A N/A GenBank

** Valsa japonica CBS375.29 N/A N/A AF191185 N/A N/A Adams et al., 2002

Trametes versicolor D. HaelewF-1599pt.2a N/A N/A MN749366 N/A N/A GenBank

T. versicolor STEU 8295 N/A N/A KY312629 N/A N/A GenBank

T. versicolor STEU 8296 N/A N/A KY312630 N/A N/A GenBank

T. versicolor 2473 N/A N/A AM269814 N/A N/A GenBank

** Grifola frondosa WC835 N/A N/A AY049140 N/A N/A Shen et al., 2002

Notes: * ITS-Nuclear ribosomal internal transcribed spacer regions; TUB- (tub-2) gene; ACT-actin gene. ** This fungal species has been used as outgroup for the phylogenetic analysis.
The sign “-” in the column table indicates either that the nucleotide sequences do not exist in the GenBank or were not obtained in this study for that particular fungal isolate. a This
study was considered only for the tub-2 nucleotide gene sequence. b This fungal species was used only for the phylogenetic analysis involving the tub-2 gene nucleotide sequences. c This
GenBank origin of the accession regards only ACT gene nucleotide sequences used for the phylogenetic analysis. d This fungal species was used only for the phylogenetic analysis
involving the ACT gene. N/A: not available.e Data not considered.
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Phylogeny reconstructions were performed with MEGAX [89] for each gene using the
neighbor-joining (NJ) statistical method [90] with an interior branch test and 1000 bootstrap
replications [91,92], nucleotide substitution type and the Tajima–Nei substitution model [93]
with uniform rates among sites. A deletion was used as treatment for gaps and missing data
and the codon positions included were 1st, 2nd, 3rd and noncoding sites. The evolutionary
distances computed using the Tajima–Nei method [93] are in the units of the number of base
substitutions/site. The same procedure described previously was used for the tub-2 and
ACT genes. An unequal number of nucleotide sequences were involved in the phylogenetic
analyses for each gene investigated, which was caused by the lack of positive PCR and
sequencing results for some of the genes and also the nonexistence of nucleotide sequences
in the GenBank database. Therefore, only single gene phylogenies could be performed,
each one containing all nucleotide sequences obtained in this study for the examined gene
plus reference species downloaded from the GenBank.

In particular, the reference sequences representing the relevant species used to build
alignments for species identification were: for D. eres and D. foeniculina (D. corylina strain
CBS121124 and only for ACT gene D. helianthi strain AR4131), N. parvum (Diplodia seriata
strain ASJ297; or Botryosphaeria dothidea strains HL1 and HPLW1 for the tub-2 and ACT
genes, respectively), Pestalotiopsis sp. (Sordaria alcina strain CBS 109460), Phomopsis sp.
(Valsa japonica isolate CBS375.29) and Trametes versicolor (Grifola frondosa isolate WC835)
(Table 3).

A different number of nucleotide sequences were obtained for each gene and fungal
species in this study; therefore, a multilocus phylogeny with three genes (ITS + tub-2 + ACT)
was possible only for Diaporthe and Neofusicoccum spp., while for Pestalotiopsis spp. a two-
gene phylogeny (ITS + tub-2) was performed using the Seaview5 program, as presented in
Table S1 and in Figures S1–S3. (Supplementary material).

4.6. Pathogenicity Trials

A trial was conducted under field conditions to examine the formation of lesions on
twigs of 2-year-old apple trees (cv. “Golden Delicious”), using a common protocol. In
particular, the pathogenicity tests were performed using 4 mm diameter mycelial plugs
taken from the margins of 7-day-old cultures on PDA amended with antibiotic streptomycin
sulphate (40 mg L–1, MerckKGaA, Darmstadt, Germany). An equal number of young apple
shoots were equally treated but using only sterile agar plugs, which were left as controls.
One fungal isolate was used for each apple tree, according to the fungal species identified
and characterized in this study, and each treatment was replicated four times. A wound of
the about the size of the agar plug was made on each woody shoot, in the phloem and cortex
tissue, with a sterile scalpel. Immediately after wounding, the plug was positioned in the
center of the wound and covered by a sterile water wetted cotton piece. In order to avoid a
rapid dehydration, lesion sites were wrapped with parafilm (Pechiney Plastic Packaging,
Menasha, WI, USA). For each fungal pathogen the trial layout was a randomized block
design with four repetitions using twigs as experimental units. The whole pathogenicity
trial consisted of six fungal pathogens, isolated in this study from apple trees in Val d’Agri,
and an agar plug only. Following inoculation, all young apple trees were placed in a
greenhouse, where they were kept under natural light conditions at 22 ◦C and at about
70% relative humidity. After 30 days of inoculation, apple twigs were inspected for lesion
development and after 45 days post-inoculation, when their necrosis was evident, the
twigs were removed and brought to the laboratory for immediate analysis. The number
of twigs with necrosis was recorded and, after the removal of the bark, the length of the
developed canker lesions was measured. In order to reisolate the causal agent, small pieces
(approx. 5 mm length) of diseased wooden tissue were cut from the edge of the necrotic
lesions from the inoculated twigs and, after surface disinfection, were placed in petri dishes
containing PDA and antibiotic streptomycin sulphate. Plates were incubated for 7 days at
20 ◦C in an incubator, under dark conditions, until growth was detected. Subsequently, the
identification of the reisolated fungi was carried out by both morphological features and
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molecular analysis, using the protocols for morphological identification, DNA extraction
and PCR conditions described above.

4.7. Statistical Analysis

Since the data obtained from the lesion measurements were normally distributed
(Shapiro–Wilk tests [94], followed by a Holm–Bonfferoni [95] correction), a one-way
ANOVA was used to test for mean differences among the investigated fungal isolates.
Tukey post hoc tests for multiple comparisons of means were also performed to detect sig-
nificant differences among the treatments. The statistical analyses performed in this study
were performed using the R version 3.6.2 software (R Core Team, Vienna, Austria) [96].

5. Conclusions

Fungal species investigated in this study are well known to be involved in the fruit
tree trunk diseases. The present study demonstrated that among all fungi investigated, N.
parvum was the most aggressive and may be involved in the heavy decline of apple trees
in the Val D’Agri area. In addition, other fungi, such as D. eres, D. foeniculina, P. funerea,
T. versicolor and Phomopsis spp., could have contributed to the aggravation of the existing
symptoms. Our field observations allowed us to assume that fungi, and in particular N.
parvum, could penetrate the trees through wounds created by cuttings. Therefore, to avoid
this, it is necessary to protect the wounds, in particular after cuttings.

Given the economic importance of apples worldwide, more investigations related
to the role played by the phytopathogens discovered in this study, which are involved
in die-back disease on apple trees, seem necessary. Future outcomes will be expected to
add beneficial knowledge to better understand this complex disease in order to establish
appropriate strategies to protect this regionally relevant and worldwide nutritionally
important crop.
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