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Abstract: The hole transport layer (HTL) in organic solar cells (OSCs) plays an imperative role
in boosting the cell’s performance. PEDOT:PSS is a conventional HTL used in OSCs owing to its
high design cost and instability issues. It can be replaced with graphene oxide to increase the cell
performance by overcoming instability issues. Graphene oxide (GO) has gained popularity in recent
years for its practical use in solar energy due to its remarkable mechanical, electrical, thermal, and
optical properties. This work uses SCAPS-1D to examine the results of graphene oxide (GO)-based
organic solar cells by giving a comparison between the performance of absorber layers and a GO-
based HTL to see which absorber material interacts more strongly with GO. The absorber layer
PBDB-T:ITIC paired with GO as HTL outperforms the other absorber layers due to its better optical
and electrical characteristics. Numerical simulations are performed within the SCAPS software at
various absorber layer thicknesses, defect densities, and doping values to assess the influence on
device performance and efficiency. After cell optimization, the best efficiency of an improved OSC
is found to be 17.36%, and the outcomes of the simulated OSC are referenced to the results of the
experimentally implemented OSC. These results provide a possible future direction for developing
GO-based OSCs with higher efficiency.

Keywords: graphene oxide; PBDB-T:ITIC; hole transport layer; PEDOT:PSS; SCAPS; solar cell

1. Introduction

Organic solar cells are classified as third-generation solar cells not because of the year
they were invented but because of the material arrangement used in their construction.
Dye-synthesized solar cells (DSSCs), polymer-based solar cells, and, in some instances,
perovskite solar cells are all being investigated in specialized sectors such as solar energy.
Organic photovoltaic devices have received increased attention during the last decade
because of their potential uses as flexible, renewable, and nonconservative energy sources.
The primary advantages of solar cells include their low cost, mechanical flexibility, light
weight, high efficiency, and the ability to be manufactured at low temperatures, among
other things [1–6]. Calvin developed the first organic solar cell based on magnesium
phthalocyanine (MgPc) in 1958 and achieved a 200 mV open-circuit voltage [7]. Later, at
690 nm, 0.01% power conversion efficiency (PCE) was reported using an Al/MgPc/Ag
cell [8]. The efficiency of a device using polyacetylene as the absorber layer was 0.3 percent,
and the open-circuit voltage (Voc) was 0.3 V [9]. Tourillon et al. suggested an Al/poly
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(3-nethyl-thiophene)/Pt organic solar cell with a Voc and an external quantum efficiency
(QE) of 0.4 V and 0.17% [10].

The poor power conversion efficiencies (PCE) and low quantum efficiencies (QE) of
single-layer OSC structures prompted scientists to develop two-layer bilayer structures
between the electrodes. As per the existing literature [11–14], the bilayer heterojunction
(BHJ) OSC is the most extensively employed because it provides a better path for separation
and transportation of charge carrier materials, which assists in achieving high productivity.
Sariciftci et al. fabricated a C60/MEH-PPV bilayer OSC that yields an FF of 0.48% and
a PCE of 0.04% [15]. Later on, PPV/C60-based organics show a QE of 9%, a PCE of 1%,
and a fill factor of 0.48 [16]. Halls et al. created an organic cell with an electron donor
layer (EDL) of bis(phenethylamine) perylene, yielding an external QE peak of 6% and a
PCE peak of 1% [17]. Based on these core findings, energy conversion efficiency (PCE)
increased dramatically after 2000, increasing from 1 to 12% by 2013. According to a recent
study, the photocurrent density of organic solar cells (OSCs) generated by solar radiation is
nearing 20 mA/cm2, equivalent to that of inorganic solar cells [6]. In 2013, the reported
efficiency of OSC was 2.5%. The current improvement increased PCE by 18% in 2020 due
to recent developments, owing mainly to the introduction of these unique nonfullerene
acceptors (NFA) [18,19]. NFA acceptors are not associated with stability issues and play a
key role in enhancing the performance of organic solar cells (OSC) [20–28]. PEDOT:PSS
is widely used as a hole transport material (HTM) in traditional OSC [29,30] because it
provides better hole transportation and has high transmission. On the other hand, it has
some limitations (acidic and hygroscopic nature), which degrade the device’s performance.
For organic photovoltaic (PV) devices, an increase in conductivity and mobility of charge
carriers towards the corresponding electrodes enhances device performance by lowering
the recombination at interfaces. Recently, thin films of graphene oxide have been employed
as a hole transport medium in OSC, and the results are significantly better than devices
manufactured with PEDOT:PSS [31]. In a polymer-based solar cell, Liu [32] achieved
the maximum PCE with reduced GO as an HTM compared to the other HTMs. In a
heterojunction solar cell, Dan et al. utilized a hybrid bilayer of GO and PEDOT:PSS as hole
extraction material and significantly improved device performance [33]. Rafique et al. [34]
created a solution-based OSC with a GO and PEDOT:PSS composite bilayer for hole
extraction and discovered a PCE of 5.24%. Furthermore, Ozcan et al. observed an increase
in productivity of devices by more than 2% when employing GO with PEDOT:PSS [35].

For many years, the SCAPS-1D model has been widely used in thin-film solar cell
research to examine the impact of material properties and device designs on thin-film solar
cell performance. K.S. Nithya created an NFA-OSC using the SCAPS-1D software. They
used CuI as a hole transport layer (HTL), claiming it is more efficient than traditional struc-
tures. Under optimal conditions, their device achieves an efficiency (PCE) of 15.68% [36].
Aziz and colleagues modelled and discovered that the NFA bulk heterojunction (BHJ) solar
cell performed very well under optimization with few parameters. With the assistance of
nonfullerene acceptors, they achieved a PCE of 14.25% [37]. Sharma and colleagues used
SCAPS-1D to make a nonfullerene OSC, with CuSCN functioning as the hole transport
layer (HTL). After tweaking the parameters, they achieved a power conversion efficiency of
20.36% [38]. Farah et al. utilized SCAPS-1D to evaluate the efficiency of DSSC at a variety
of high-temperature settings. According to their findings, the CuI as an HTL outperforms
the other two HTLs in performance and outcome [39]. Eri et al. used graphene oxide (GO)
as the HTM in a perovskite solar cell, and they obtained better power conversion efficiency
than Spiro-MeOTAD [40]. Shobih et al. [41] used SCAPS-1D simulation to investigate the
effect of parameters to determine which factors should be optimized to improve device per-
formance. They achieved a maximum PCE of 16.51%, with GO as HTL [41]. The SCAPS-1D
is an advanced simulating tool for the design and analysis of high-performance PV cells,
including CIGS, cadmium telluride (CdTe), perovskite solar cell (PSC), and CZTS [42–47].

OSCs are considered to encourage renewable energy sources as potential alternatives
to inorganic PV cells. In this research, we have replaced conventional HTL PEDOT:PSS with
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graphene oxide as PEDOT:PSS to overcome the stability problems of HTL due to its acidic
nature. Graphene oxide does not have stability issues and yields better outcomes than
PEDOT:PSS. We also explored the performance of different groups of active layers paired
with graphene oxide and different OSC parameters that play an essential role in boosting
its performance. The results are also compared with the experimental data reported in
other literature. This work is mainly aimed at determining the most acceptable parameters
for graphene oxide-based organic solar cells with an improved device efficiency.

2. Numerical Modeling of Device
2.1. Approach and Design

SCAPS (version 3.3.07), which was developed at the Department of Electronics and
Information Systems (ELIS) of the University of Gent, Belgium, has been used to model
and simulate the devices in the various segments [48]. The application is divided into
many panels, allowing the user to adjust settings and make judgments about the output.
This software package is based on Poisson and continuity differential equations for holes
and electrons. Various iteration techniques are used to resolve continuity differential
equations with Poisson differential equations, which are the underlying concept of this
application [48,49]. These equations can be mathematically written as:

d
dx

(
ε(x)

dϕ
dx

)
= q

[
p (x)− n (x) + Nd+(x)− Na−(x) + pt(x)− nt(x)

]
(1)

dpn
dt

= Gp −
pn − pn0
τp

− pnµp
dE
dx

− µpE
dpn
dx

+ Dp
d2pn

dx2 (2)

dnp

dt
= Gn −

np − np0

τn
+ npµn

dE
dx

+ µnE
dnp

dx
+ Dn

d2np

dx2 (3)

where ε = dielectric constant, q = electron charge, G = rate of generation, D = coefficient
of diffusion, ϕ = electrostatic potential, E = electric field, µn = electron mobility, µp = hole
mobility, pn-pn0 = difference of hole density in n-type region, p(x) = allowed concentration
of holes, n(x) = allowed concentration of electrons, pt(x) = captured holes, nt(x) = captured
electrons, Nd− = ionized doping concentration of donor, Na+= Ionized doping concen-
tration of acceptor, x = thickness, τp = life time of hole, τn = life time of electron, and
np-np0 = Difference of electron density in p-type region.

The adopted bulk heterojunction structure is an organic PV cell structure in which the
cell comprises an active layer (PBDB-T:ITIC), hole transport layer (GO), electron transport
layer (PFN:Br), transparent conducting oxide (FTO), and back contact (Au), as shown in
Figure 1a. Furthermore, the illustrations of the HOMO and LUMO band diagrams of the
designed structures of OSC are shown in Figure 1b,c.

2.2. Parameters Used in Simulation for Device

The whole set of simulation parameters for the designed layers was selected from the
literature published in its entirety in [36,37,40,41,50–55]. Numerous material properties
must be addressed before simulation, including the donor and acceptor density (NA, ND),
electron and hole mobility (µn, µp), etc. It is critical to consider the individual properties of
each material together with the active material, HTL, ETL, and the contact configuration.
Each of the critical simulation parameters used in this simulation has been summarized in
Tables 1 and 2.



Nanomaterials 2022, 12, 1767 4 of 14Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. (a) Schematic representation of the device architecture; (b) HOMO and LUMO band dia-
gram for PBDB−T:ITIC−based OSC; and (c) HOMO and LUMO band diagram for 
PTB7:PC71BM−based OSC. 

2.2. Parameters Used in Simulation for Device 
The whole set of simulation parameters for the designed layers was selected from the 

literature published in its entirety in [36,37,40,41,50–55]. Numerous material properties 
must be addressed before simulation, including the donor and acceptor density (NA, ND), 
electron and hole mobility (µn, µp), etc. It is critical to consider the individual properties 
of each material together with the active material, HTL, ETL, and the contact configura-
tion. Each of the critical simulation parameters used in this simulation has been summa-
rized in Tables 1 and 2.  

Table 1. Material parameters set in simulation. 

Parameters PFN:Br ۰۲۰۾ − :܂ :۰ૠ܂۾ ۷۱܂۷  GO ۻ۱ૠ۰۾
Thickness (nm) 5 [36] 100 [36] 100 [36] 50 [36] 
Acceptor Density (cmିଷ) 0  0 0  10ଵ଼ [37] 
Donor Density (cmିଷ) 9 ൈ  10ଵ଼[36] 0 0 0 
Effective Density of States for Va-
lence Band (cm−3) 

1019 [36] 1019 [36,37] 1019 [36,37] 2.2 × 1018 [40,41] 

Effective Density of States for 
Conduction Band (cm−3) 

1019 [36] 1019 [36,37] 1019 [36,37] 1.8 × 1018 [40,41] 

Bandgap (eV) 2.8 [50] 1.2 [37] 1.1 [51] 2.48 [40,41] 
Relative Dielectric Permittivity 5 [36] 3.65 [36,36] 3.9 [52] 10 [40,41] 
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Figure 1. (a) Schematic representation of the device architecture; (b) HOMO and LUMO band diagram
for PBDB−T:ITIC−based OSC; and (c) HOMO and LUMO band diagram for PTB7:PC71BM−based OSC.

Table 1. Material parameters set in simulation.

Parameters PFN:Br PBDB−T:ITIC PTB7:PC71BM GO

Thickness (nm) 5 [36] 100 [36] 100 [36] 50 [36]
Acceptor Density

(
cm−3) 0 0 0 1018 [37]

Donor Density
(
cm−3) 9 × 1018 [36] 0 0 0

Effective Density of States for
Valence Band (cm−3) 1019 [36] 1019 [36,37] 1019 [36,37] 2.2 × 1018 [40,41]

Effective Density of States for
Conduction Band (cm−3) 1019 [36] 1019 [36,37] 1019 [36,37] 1.8 × 1018 [40,41]

Bandgap (eV) 2.8 [50] 1.2 [37] 1.1 [51] 2.48 [40,41]
Relative Dielectric Permittivity 5 [36] 3.65 [36] 3.9 [52] 10 [40,41]
Mobility of Electron (cm2/Vs) 2 × 10−6 [37] 3.1 × 10−4 [36,37] 5 × 10−4 [52] 26 [40,41]
Mobility of Hole (cm2/Vs) 1 × 10−4 [37,50] 3.2 × 10−4 [36,37] 5 × 10−4 [52] 123 [40,41]
Electron Affinity (eV) 4 [36] 4.03 [36,37] 3.7 [52] 2.3 [40,41]
Defect Density

(
cm−3) 109 [37,50] 1012 [36,37] 1012 [36,37] 109 [27]

Table 2. Device parameters set in the simulation.

Interface Defect Density [36]

IL1 (ETL/Active Layer) Defect Density
IL2 (Active Layer/HTL) Defect Density

2 × 109 cm−2

2 × 109 cm−2

Back Metal Contact Properties [54,55]

The electron work function of Au
Surface recombination velocity of electron

Surface recombination velocity of hole

−5.1 eV
105 cm/s
107 cm/s

Front Metal Contact Properties [54,55]

The electron work function of TCO
Surface recombination velocity of electron

Surface recombination velocity of hole

−4.4 eV
107 cm/s
105 cm/s

To facilitate device modeling, absorption coefficient data from several literature
works [56–60] has been added to the absorption interpolation model in SCAPS. This
device model comprises two interface defect layers, denoted by IL1 (GO/Absorber Layer)
and IL2 (Absorber Layer/PFN:Br), to make the device model more realistic. The device
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modeling technique used the AM1.5G spectrum and operated at a temperature of 300 K.
All operational point settings, including parameters, have been reset to their initialization.
The voltage range is set from 0 volts to 1.0 volts for scanning. The above parameters have
been used to perform all of the simulations throughout this study.

3. Results and Discussions
3.1. Comparison between Active Layers

This study used two different absorber materials with donor and acceptor components
associated with graphene oxide (GO) as hole transport layers (HTL) for organic solar cells
(OSC). These materials exhibit more delicate optoelectronic properties due to their high
absorption coefficient, charge transfer, and optical conductivity. This research suggests that
PBDB-T:ITIC with GO as HTL outperforms other active layers.

The numerical analysis and comparison were performed on various absorber layers
of OSC, and the results are depicted in Table 3. Figure 2a,b illustrates the current density-
voltage (J-V) and quantum efficiency (QE) curves from their differentiation. That visibly
demonstrates that the Jsc and Voc values for PBDB-T:ITIC are relatively higher than for
other absorber layers. The slight inflection of the J-V curves beyond 0.8 V could be due
to the electrical loss in the light-harvesting, hole transport, and electron transport layers,
which corresponds to the existence of series resistance (Rs). It is measured as the negative
of the inverse slope of the I−V curve near Voc. Rs is primarily caused by contact-related
electrical resistance between the transparent conducting oxide and the metal electrode.
PBDB-T:ITIC offers better optical and transport properties like a high charge transfer rate,
absorption coefficient, and potential dielectric properties [56,61,62]. Therefore, it exhibits
high PCE. The PTB7:PC71BM shows an efficiency (PCE) of 10.07% when utilized as an
absorber layer with graphene oxide HTL. All the other effects that are demonstrated in this
study to see the performance of OSC have been carried out with the PBDB-T:ITIC as an
absorber layer.

Table 3. Device performance with different absorbers and HTM layers.

Absorber Layer Voc (volt) Jsc (mA/cm2) FF (%) PCE (%)

PBDB-T:ITIC 0.9148 25.71 58.45 13.74
PTB7:PC71BM 0.9070 18.12 61.30 10.07

HTM Layer
GO 0.9148 25.71 58.45 13.74

PEDOT:PSS 0.9157 22.63 59.52 12.33
PEDOT:PSS/GO 0.9300 19.07 69.60 12.34

HTM Free 0.8248 18.33 56.90 8.60

3.2. Comparison between Different Hole Extracting Layers

HTM is essential to attain high efficiency and stability in the device. PEDOT:PSS is a
widely used HTM in OSC. However, due to its acidic nature and hygroscopic nature [63–65],
it is sometimes not favored. There are many alternatives to PEDOT:PSS, but graphene
oxide (GO) is utilized as its alternative in this simulation. All simulation parameters for
HTM layers in the structure are carefully chosen from the reported experimental data and
different works available in the literature [35–37,40,41,66,67].

Figure 2c,d represents the J-V and QE curves for OSC with GO, PEDOT:PSS, and
PEDOT:PSS/GO as the HTM. The outcomes of these HTM are listed in Table 3. The
OSC in conjunction with HTM PEDOT:PSS increases productivity (PCE) by up to 12.33%.
Moreover, PEDOT:PSS/GO exhibits a PCE of 12.34%—nearly equal to PEDOT:PSS—but
their current density values differ. PEDOT:PSS/GO has a slightly different J-V curve than
the other HTMs because it has distinct values for charge carrier mobilities, conductivity,
and bandgap [35,67]. Due to this, it may interact differently with the light-harvesting layer.
Additionally, without the HTM device, it gives a PCE of 8.6%. However, GO provides
better performance and a high efficiency of 13.74% among all HTM. It shows a superior
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outcome due to its stronger interaction with the absorber layer and better transportation of
holes. As GO offers better optical and electrical properties, the probability of recombination
losses and diffusion losses is lower at the absorber and HTM interface. The GO can replace
PEDOT:PSS due to its high relative stability, wide bandgap, and high p-type conductivity
and hole mobility [68–70].

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 15 
 

 

Figure 2c,d represents the J-V and QE curves for OSC with GO, PEDOT: PSS, and 
PEDOT: PSS/GO as the HTM. The outcomes of these HTM are listed in Table 3. The OSC 
in conjunction with HTM PEDOT:PSS increases productivity (PCE) by up to 12.33%. 
Moreover, PEDOT: PSS/GO exhibits a PCE of 12.34%—nearly equal to PEDOT: PSS—but 
their current density values differ. PEDOT: PSS/GO has a slightly different J-V curve than 
the other HTMs because it has distinct values for charge carrier mobilities, conductivity, 
and bandgap [35,67]. Due to this, it may interact differently with the light-harvesting 
layer. Additionally, without the HTM device, it gives a PCE of 8.6%. However, GO pro-
vides better performance and a high efficiency of 13.74% among all HTM. It shows a su-
perior outcome due to its stronger interaction with the absorber layer and better transpor-
tation of holes. As GO offers better optical and electrical properties, the probability of re-
combination losses and diffusion losses is lower at the absorber and HTM interface. The 
GO can replace PEDOT:PSS due to its high relative stability, wide bandgap, and high p-
type conductivity and hole mobility [68–70]. 

 
Figure 2. (a) Short-circuit current density comparison of different designed absorber layers; (b) 
quantum efficiency comparison of different designed absorber layers; (c) short-circuit current den-
sity comparison of different designed HTM layers; and (d) quantum efficiency comparison of dif-
ferent designed HTM layers. 

Table 4 summarizes a comparison of bulk heterojunction OSC data obtained from 
simulations and experiments. It has been analyzed that the simulated device outcomes are 

Figure 2. (a) Short-circuit current density comparison of different designed absorber layers;
(b) quantum efficiency comparison of different designed absorber layers; (c) short-circuit current
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different designed HTM layers.

Table 4 summarizes a comparison of bulk heterojunction OSC data obtained from
simulations and experiments. It has been analyzed that the simulated device outcomes are
close to findings reported in simulated and experimental published studies. Therefore, this
work also gives theoretical guidelines for the practical application of OSC via optimizing
its parameters for the next-generation OSC.
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Table 4. A comparison of bulk heterojunction OSC theoretical and experimental data.

Active Materials Voc (V) Jsc (mA/cm2) FF (%) PCE (%) Ref.

Experimental Results

PEDOT:PSS/GO/PCDTBT:PC71BM 0.82 10.44 50 4.28 [67]
PEDOT:PSS/GO/PCDTBT:PC71BM 0.85 10.82 57.0 5.24 [34]

PEDOT:PSS/PTB7:PC71BM 0.736 14.89 74.08 5.92 [53]
PTB4/PC71BM 0.70 14.8 64.60 7.1 [71]

PEDOT:PSS/PTB7-Th:PC61BM 0.78 17.66 52.41 7.24 [72]
PEDOT:PSS/PBDB-T:ITIC-OE 0.9562 16.50 69.75 11 [66]

PEDOT:PSS/PBDB-T:ITIC 1.06 16.2 82.95 14.25 [37]
CuI/PBDB-T:ITIC 0.9773 20.15 79.59 15.68 [36]

PBD:PFBSA/PBDB-T:N2200 0.85 24.23 71 16.2 [73]

Simulation Results

GO/PBDB-T:ITIC 0.9148 25.71 58.45 13.74 This study
GO/PTB7:PC71BM 0.9070 18.12 61.30 10.07 This study

3.3. Impact of Layer Thickness on Cell Performance
3.3.1. Impact of Active Layer Thickness

The active layer of any OSC is critical to the device’s functioning and output. In
this study, the active layer thickness was manipulated between 100 and 300 nm, and the
associated effect on device outcomes was assessed by maintaining all other factors constant
throughout the simulations.

The association between the divergence in device results and the active layer’s thick-
ness is seen in Figures 3a and 4a–d. The output parameters Jsc, Voc, and PCE rise dramat-
ically when the absorber layer thickness increases from 100 nm to 200 nm. That is due
to a rise in the concentration of electron-hole pairs induced by photon absorption in the
absorber layer. Voc and PCE decrease gradually as the device thickness grows from 300 to
500 nm due to increased charge carrier diffusion length and enhanced recombination rate.
When the device was 300 nm thick, the maximum Jsc value was 29.75 mA/cm2. When
layer thickness increases from 100 to 300 nm, the fill factor decreases from 58.45 to 52.06%.
The fill factor indicates its capacity to transmit the total available power to the produced
electrical load. That might be due to the thick active layer, which raises the cell series
resistance.
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3.3.2. Impact of HTM Layer Thickness

The hole transport layer heavily influences the output of the OSC. A good selection of
HTM allows for improved charge transmission and collection at the electrodes. This study
utilizes graphene oxide as an HTL due to its potential optical and electrical properties. Its
thickness was changed from 50 nm to 100 nm to observe the effect on output parameters.
Jsc and PCE improved greatly when the thickness of the HTM layer was increased, owing to
the superior charge transport properties of graphene oxide and better interaction with the
absorber layer. The significant effect on output parameters can be visualized in Figure 4e–h,
wherein negligible effects can be seen on Voc and FF. The optimized thickness value for
HTM can be 100 nm [41], and this value of thickness is very advantageous for making pho-
tovoltaic cells more efficient. It also specifies a feasible way toward the efficient application
of OSC cells by changing parameters that are highly dependent on the performance and
results of OSCs. Figures 3b and 4e–h illustrate the influence on output characteristics.

3.4. Impact of Defect Density on Device Performance
3.4.1. Impact of Active Layer Defect Density

The structure and quality of the active layer have a significant impact on the per-
formance and outcome of OSC. The device defect density is crucial in achieving efficient
results. If the film quality is poor, the trap density and rate of charge carrier recombination
rise, lowering the device performance and outcome.

In this simulation, active layer defects (traps) are varied from 1 × 1011 cm−3 to
1 × 1014 cm−3 to analyze their effects on the device performance. The deviation in output
parameters with variation in the trap density of the absorber layer is shown in Figures 5a
and 6a–d. It is observed that, with the rise in trap density, the output parameters of OSC
fall dramatically. The PCE drops significantly from 14.30 to 5.35%, and Jsc drops from
25.75 to 22.13 mA/cm2. A surge in defect density leads to a decline in a carrier lifetime,
which ultimately reduces the generation rate and promotes recombination.
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3.4.2. Impact of Interface Layer Defect Density

Two interface defect layers, IL1 (GO/PBDB-T:ITIC) and IL2 (PBDB-T:ITIC/PFN:Br),
are included in this simulation to investigate their impact on the cell’s outcome. The defect
densities of the interface layers changed from 2 × 109 cm−3 to 2 × 1013 cm−3, while the
rest of the parameters were kept at their default values.

The J-V curves of interfaces for GO/PBDB-T:ITIC0 and PBDB-T:ITIC/PFN: Br at
various defect (trap) densities are shown in Figure 5b–c. The deviation in organic solar cell
(OSC) result characteristics with varied defect density at interfaces is shown in Figure 6e–l.
It can be visualized that low trap density between interfaces is beneficial in enhancing
cell outcome because there are few traps and a high growth rate in that case. Voc and
Jsc rise when low traps are present, resulting in high PCE and FF. Interfaces with high
defect densities generate more capturing states and enhance recombination, reducing
device performance. The utmost values of PCE, Voc, and Jsc are 14.74%, 0.91 V, and
25.71 mA/cm2, respectively, obtained at the interface defect density value of 2 × 109 cm−3

for both interfaces.



Nanomaterials 2022, 12, 1767 10 of 14Nanomaterials 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. (a,e,i) Voc as a function of active layer, IL1, and IL2 defect density; (b,f,j) Jsc as a function 
of active layer, IL1, and IL2 defect density; (c,g,k) FF as a function of active layer, IL1, and IL2 defect 
density; and (d,h,l) PCE versus active layer, IL1, and IL2 defect density. 

3.4.2. Impact of Interface Layer Defect Density 
Two interface defect layers, IL1 (GO/PBDB-T:ITIC) and IL2 (PBDB-T:ITIC/PFN:Br), 

are included in this simulation to investigate their impact on the cell’s outcome. The defect 
densities of the interface layers changed from 2 × 109 cm−3 to 2 × 1013 cm−3, while the rest of 
the parameters were kept at their default values. 

The J-V curves of interfaces for GO/PBDB-T:ITIC0 and PBDB-T:ITIC/PFN: Br at vari-
ous defect (trap) densities are shown in Figure 5b–c. The deviation in organic solar cell 
(OSC) result characteristics with varied defect density at interfaces is shown in Figure 6e–
l. It can be visualized that low trap density between interfaces is beneficial in enhancing 
cell outcome because there are few traps and a high growth rate in that case. Voc and Jsc 
rise when low traps are present, resulting in high PCE and FF. Interfaces with high defect 
densities generate more capturing states and enhance recombination, reducing device 
performance. The utmost values of PCE, Voc, and Jsc are 14.74%, 0.91 V, and 25.71 
mA/cm2, respectively, obtained at the interface defect density value of 2 × 109 cm−3 for both 
interfaces. 

3.5. Impact of Doping Density on Cell Performance 
The doping density of the absorber and HTM layers plays an imperative role in en-

hancing cell performance. Doping has effects on semiconductor properties as it increases 
the mobile carrier concentration and decreases mobility because of the motion impedance 
of the defects produced by the doping atoms [74]. Therefore, the appropriate value for 
doping density is necessary to yield high outcomes. 

3.5.1. Impact of Active Layer Doping Density 
We changed the absorber layer doping from 1 × 1017 to 1 × 1019 cm−3 in this work to 

see how it affected the device performance, as shown in Figure 7a–d. It is shown that Voc 
and Jsc decrease because doping weakens the effect of the electric field of the absorber 
layer. The Jsc value drops from 25.71 mA/cm2 to 20.01 mA/cm2, and the Voc value drops 
from 0.91 to 0.85 V. On the other hand, FF and PCE exhibit a continuous increase as doping 
density improves, which is attributed to uneven charge carrier mobilities. It is determined 

Figure 6. (a,e,i) Voc as a function of active layer, IL1, and IL2 defect density; (b,f,j) Jsc as a function of
active layer, IL1, and IL2 defect density; (c,g,k) FF as a function of active layer, IL1, and IL2 defect
density; and (d,h,l) PCE versus active layer, IL1, and IL2 defect density.

3.5. Impact of Doping Density on Cell Performance

The doping density of the absorber and HTM layers plays an imperative role in
enhancing cell performance. Doping has effects on semiconductor properties as it increases
the mobile carrier concentration and decreases mobility because of the motion impedance
of the defects produced by the doping atoms [74]. Therefore, the appropriate value for
doping density is necessary to yield high outcomes.

3.5.1. Impact of Active Layer Doping Density

We changed the absorber layer doping from 1 × 1017 to 1 × 1019 cm−3 in this work
to see how it affected the device performance, as shown in Figure 7a–d. It is shown that
Voc and Jsc decrease because doping weakens the effect of the electric field of the absorber
layer. The Jsc value drops from 25.71 mA/cm2 to 20.01 mA/cm2, and the Voc value drops
from 0.91 to 0.85 V. On the other hand, FF and PCE exhibit a continuous increase as doping
density improves, which is attributed to uneven charge carrier mobilities. It is determined
that the appropriate quantity of doping increases cell performance by lowering free charge
carrier recombination.

3.5.2. Impact of HTM Layer Doping Density

This study changed the HTM layer doping density from 1 × 1016 to 1 × 1020 cm−3 to
see how it influenced device performance, as shown in Figure 7e–h. It has been analyzed
that raising the doping concentration of HTM up to 1018 cm−3 improves solar cell output
performance. This is due to the increased cell conductivity, which causes internal power
depletion and series resistance to decrease. The reduction in series resistance increases Jsc,
FF, and PCE values [36,37]. FF and PCE improve as doping concentrations rise further, but
JSC and Voc drop. It might be due to decreased carrier lifetime and increased recombination
rate at the HTM and absorber layer interface. Therefore, the optimized doping density
value for the HTM layer could be 1 × 1017 cm−3.
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3.6. Optimization of Parameters

The performance of OSC has significantly improved after optimization, and we ob-
tained a promising result with a PCE of 17.38%, which demonstrated that the OSC outcome
could be enhanced by appropriately adjusting the parameters. Table 5 summarizes the
optimized device parameters along with other performance results.

Table 5. Optimized numerical parameters and performance results.

Parameters Absorber Layer HTL

Thickness (nm) 200 100
Doping Concentration (cm−3) - 1 × 1017

Defect Density (cm−3) - 1 × 1010

Device Configuration Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

GO/PBDB-T:ITIC 0.9165 34.19 55.49 17.38
GO/PTB7:PC71BM 0.9017 26.80 57.73 13.95

4. Conclusions

In this research, a bulk heterojunction organic solar cell (OSC) device structure has
been simulated as FTO/PFN:Br/PBDB-T:ITIC/GO/Au, using SCAPS-1D software, and
the performance of two groups of absorber layers has been evaluated along with different
HTM layers, in which it is observed that PBDB-T:ITIC performs well because of its superior
optoelectronic properties. The device performance at an absorber layer thickness of 100 nm
is Voc = 0.9148 V, Jsc = 25.71 mA/cm2, FF = 58.45%, and PCE = 13.74%. Furthermore, the
effect of the absorber layer thickness, doping density, and defect density on the device
performance has been examined, wherein reduced defect density, a medium absorber
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layer thickness, and an adjusted amount of doping density are depicted as best suited for
enhanced photovoltaic properties. The impact of multiple HTMs on OSC performance has
also been explored, with GO surpassing the other HTMs. A design of an OSC with a high
efficiency of 17.38% is shown along with the simulated results to demonstrate that OSC
device performance can be improved by adjusting the device parameters in the near future.
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