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SUMMARY

Metastatic progression is the main cause of death in cancer patients, whereas the underlying 

genomic mechanisms driving metastasis remain largely unknown. Here, we assembled MSK-
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MET, a pan-cancer cohort of over 25,000 patients with metastatic diseases. By analyzing 

genomic and clinical data from this cohort, we identified associations between genomic alterations 

and patterns of metastatic dissemination across 50 tumor types. We found that chromosomal 

instability is strongly correlated with metastatic burden in some tumor types, including prostate 

adenocarcinoma, lung adenocarcinoma and HR+/HER2+ breast ductal carcinoma, but not in 

others, including colorectal cancer and high grade serous ovarian cancer, where copy-number 

alteration patterns may be established early in tumor development. We also identified somatic 

alterations associated with metastatic burden and specific target organs. Our data offer a valuable 

resource for the investigation of the biological basis for metastatic spread and highlight the 

complex role of chromosomal instability in cancer progression.

IN BRIEF

Clinico-genomic analysis of MSK-MET, a cohort of over 25,000 patients with metastasis 

across 50 cancer types, identifies somatic alterations associated with organ-specific metastasis 

and highlights that chromosomal instability correlates with metastatic burden in a cancer type-

dependent manner.

Graphical Abstract

INTRODUCTION

Although most cancer deaths are due to metastatic spread, little is known about the genomic 

determinants of cancer metastasis. Once metastatic cancer cells have detached from the 

primary tumor site, they can invade all parts of the body (Lambert et al., 2017; Massagué 

and Obenauf, 2016). However, the distribution of metastatic sites for a given primary tumor 

is not random and is dictated by factors such as anatomical location, cell of origin and 

molecular subtype, among others (Gao et al., 2019; Nguyen et al., 2009). Furthermore, 
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tumor cell-extrinsic factors such as treatment, target organ microenvironment and other 

systemic factors such as circulating chemokines and cytokines can also influence the 

pattern of metastatic progression (Massagué and Ganesh, 2021). The classical seed-and-soil 

hypothesis, according to which disseminated cancer cells preferentially colonize organs that 

enable and are compatible with their own growth, has been explored for more than a century 

(1889). Yet much remains unknown about the interplay between tumor genomic features and 

metastatic potential, as well as organ-specific patterns of metastasis.

Molecular profiling of tumors coupled with clinical annotation of metastatic events could 

help provide insight into this question. However, large-scale cancer sequencing efforts have 

so far focused on primary, untreated tumors (e.g., The Cancer Genome Atlas (Sanchez-Vega 

et al., 2018)), or they have characterized the overall genomic landscape of metastatic disease 

without explicitly interrogating specific metastatic organotropism (Priestley et al., 2019; 

Robinson et al., 2017; Zehir et al., 2017). Other studies have investigated the genomic 

complexity of cancer metastasis by reconstructing tumor evolution across different organs at 

varying levels of resolution, but they have been limited by small sample sizes (Brastianos et 

al., 2015; Brown et al., 2017; Eckert et al., 2016; Hu et al., 2020; Jiménez-Sánchez et al., 

2017; Makohon-Moore et al., 2017; Naxerova et al., 2017; Noorani et al., 2020; Reiter et 

al., 2020; Shih et al., 2020). Identifying associations between genomic features and specific 

patterns of metastatic spread is an active area of research and several landmark studies 

on this topic have been published during the past few years (Birkbak and McGranahan, 

2020). In particular, richly annotated datasets combining genomic features and detailed 

clinical history of metastases for individual patients have been recently made available 

through large collaborative efforts such as METABRIC in breast cancer (Rueda et al., 

2019) and TRACERx in clear-cell renal cell carcinoma (Turajlic et al., 2018). However, a 

study involving thousands of participants across multiple tumor types in which clinical and 

genomic data has been homogeneously processed through a unified computational pipeline 

is still lacking.

We assembled a pan-cancer cohort of >25,000 patients with tumor genomic profiling and 

clinical information on metastatic events and outcomes, which we designate MSK-MET 

(Memorial Sloan Kettering - Metastatic Events and Tropisms). All samples were profiled 

using the MSK-IMPACT targeted sequencing platform (Cheng et al., 2015), which identifies 

somatic mutations, rearrangements and copy-number alterations in 341–468 cancer genes, 

as well as tumor mutational burden (TMB), chromosomal instability and microsatellite 

instability. Metastatic events were extracted from the electronic health records (EHR) and 

mapped to a reference set of 21 anatomic locations. We analyzed genomic differences 

between primary and metastatic samples and between primary tumors from metastatic 

and non-metastatic patients, stratified by tumor type and molecular subtypes. Our analysis 

identified associations between metastatic burden (defined as the number of distinct organs 

affected by metastases throughout a patient’s clinical course) and specific genomic features, 

including TMB, chromosomal instability, and somatic alterations in individual cancer genes. 

We also identified associations between genomic alterations and organ-specific patterns of 

metastatic dissemination and progression. The clinical and genomic data used in our study 

have been made publicly available and constitute a valuable resource that will help further 

our understanding of metastatic disease.
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RESULTS

Overview of the MSK-MET cohort

A total of 25,775 patients were included in the present study, consisting of 15,632 (61%) 

primary and 10,143 (39%) metastatic specimens spanning 50 different tumor types (Figure 

S1A–D; Table S1A). To ensure that samples are independent of each other, a unique 

representative sample was selected for the analysis of patients with multiple available 

sequenced samples (see Methods). The median interval between sample acquisition and 

sequencing was 62 days (interquartile range (IQR) = 0–287 days). The median sequencing 

coverage was 653x (IQR = 525–790x) and the median tumor purity assessed by pathologists 

was 40% (IQR = 20–50%) (Figure S1B). The majority of sequenced samples obtained from 

metastatic sites were from lymph nodes (n=2305, 23%), liver (n=2289, 23%), lung (n=982, 

10%), or bone (n=726, 7%). Among primary tumors, 11,741 (75%) were from patients 

with metastatic disease at the time of sequencing or at a later time (Figure S1D). Overall, 

metastatic samples were more pre-treated than primary samples (39% vs 15%) with some 

cancer types showing a larger difference (prostate cancer, 72% vs 10%) than others (lung 

adenocarcinoma, 32% vs 24%) (Figure S1E, Table S1B). Over the entire course of the 

disease, a total of 99,419 metastatic events from 21,546 metastatic patients were retrieved 

from the EHR and mapped to 21 organ sites. The most common target organ sites were 

lung, liver and bone (Figure S1F). The frequencies of organ-specific metastasis of individual 

tumor types were similar to previous reports (Budczies et al., 2015; Gao et al., 2019) (Figure 

S1G). Internal validation using 4,859 (22.5%) patients included in previous studies with 

available metastatic events extracted through manual chart review (Abida et al., 2017; Jones 

et al., 2021; Razavi et al., 2018; Shoushtari et al., 2021; Yaeger et al., 2018) revealed a high 

concordance and sensitivity with metastatic events extracted from the EHR (Figure S1H–I). 

We used this data to map patterns of metastatic dissemination from 50 tumor types to 21 

metastatic organ sites (Figure 1).

For the whole cohort, the median age at sequencing was 64y, ranging from a median 

of 33y for patients with testicular non-seminoma to a median of 70y for patients with 

cutaneous squamous cell carcinoma. Overall, the median follow-up time was 30 months 

and the five-year survival rate was 40%, ranging from 90% in testicular seminoma to 

10% in pancreatic adenocarcinoma. There was a median of four metastatic events per 

patient, ranging from one in hypermutated colorectal cancer to eight in high-grade serous 

ovarian carcinoma. Metastatic patterns differed by tumor types and histological subtypes. 

For example, compared to lung adenocarcinoma, lung neuroendocrine cancer had a higher 

prevalence of liver metastasis (42% vs. 22%) but a lower prevalence of CNS/Brain 

metastasis (19% vs. 34%). Similarly, compared to ductal breast cancer, lobular breast cancer 

had a lower prevalence of lung metastasis (10% vs. 30%) but a higher prevalence of 

ovary(15% vs. 4%) and peritoneum metastasis (30% vs. 10%), as reported before (Borst 

and Ingold, 1993). Differences in metastatic patterns were also observed across molecular 

subtypes of the same tumor type. For example, and in line with a previous study (Kennecke 

et al., 2010), HR−/HER2+ ductal breast cancer had a higher prevalence of CNS/Brain 

metastasis than the HR+/HER2− subtype (38% vs. 20%), while the latter had a higher 

prevalence of bone metastasis (67% vs. 49%).
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Detailed time stamps for each metastatic event in 21,058 metastatic patients with available 

annotations were extracted from the EHR and are provided in Table S1B. While the order 

of metastatic colonization for individual organs varies widely across cancer types, we 

found that ovary and liver metastases were generally detected early, whereas CNS/Brain 

and peripheral nervous system metastasis tend to be detected later (Figure S1J). Similarly, 

when we used a Bradley-Terry model to derive a temporal ordering of target organs for 

each specific tumor type we observed that the order of metastatic colonization is not 

consistent across cancer types, likely influenced by a combination of anatomical, genomic 

and clinicopathological factors (Figure S1K).

Genomic differences between primary and metastatic tumors

To determine sample type specific genomic differences across 50 tumor types, we compared 

the genomic features of primary (n=15,632) and metastatic tumors (n=10,143) (independent 

of the metastatic status of the patients). The number of sequenced primaries was higher 

than the number of sequenced metastases for most tumor types, with some exceptions, such 

as cutaneous melanoma, high-grade serous ovarian cancer and adenoid cystic carcinoma. 

In 16 tumor types, metastases were significantly more chromosomally unstable, as inferred 

by a higher fraction of genome altered (FGA), compared to primary tumors, consistent 

with previous findings (Bakhoum et al., 2018; Ben-David and Amon, 2020; Hieronymus 

et al., 2018; Shukla et al., 2020; Stopsack et al., 2019; Watkins et al., 2020) (Figure 2A–

B; Table S2A). The difference in tumor purity- and ploidy-adjusted FGA (adjusted FGA) 

was confirmed in 11 tumor types using a subset of samples with available FACETS data 

(n=17,224) (Table S2A). FACETS allowed us to estimate the frequency of whole-genome 

duplication (WGD) and assess the clonality of individual variants. As previously reported, 

WGD frequencies varied across tumor types (Bielski et al., 2018). In seven tumor types, 

we observed a significantly higher frequency of WGD in metastases compared to primary 

tumors (Figure 2A–B; Table S2A). The higher chromosomal instability (0% vs. 14%) and 

higher frequency of WGD (4% vs. 16%) were particularly marked in uterine endometrioid, 

which can be explained by differences in the distribution of genomic subtypes within these 

two groups (Cancer Genome Atlas Research Network et al., 2013). Tumor mutational 

burden (TMB) was significantly higher in metastases from 10 tumor types, while TMB 

was lower only in metastases from hypermutated uterine cancer (Figure 2A–B; Table 

S2A). Consistent with the evolutionary bottleneck hypothesis (Birkbak and McGranahan, 

2020), metastases from 12 tumor types were significantly more homogeneous, with a higher 

fraction of clonal mutations compared to primary tumors.

We further explored the clinical significance of TMB by comparing the percentage of 

patients with a high TMB (≥10 mut/Mb) and observed a higher percentage of TMB-high 

tumors in metastases from lung adenocarcinoma (19% vs. 27%, q-value < 0.001), HR+/

HER2− ductal breast cancer (2% vs. 7%, q-value < 0.001) and lobular breast cancer patients 

(5% vs. 19%, q-value < 0.001). In six tumor types, we detected a significantly higher 

proportion of any actionable mutations (OncoKB levels 1 to 3, Methods) in metastases 

compared to primary tumors, but these differences were not significant after adjusting for 

differences in FGA and TMB (Figure 2B; Table S2A). Next, we investigated differences in 

the frequency of arm-level copy number alterations between primary tumors and metastases. 
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Because FGA was generally higher in metastases, we used a multivariable model to 

adjust for FGA and found 26 statistically significant differences (Figure 2B; Table S2A). 

For example, in pancreatic adenocarcinoma, gain of chromosome 12p gain, where the 

oncogene KRAS is located, was more frequent in metastases than in primary tumors 

(17% vs. 4%, q-value = 0.002). In HR+/HER2− ductal and lobular breast cancer, loss of 

chromosome 16q, a feature of low-grade breast cancer (Natrajan et al., 2009), was more 

frequent in primary tumors than in metastases (41% vs. 30%, q-value < 0.001 and 68% 

vs. 56%, q-value = 0.002, respectively). Finally, we investigated the frequency of recurrent 

oncogenic alterations between primary tumors and metastases and identified a total of 67 

statistically significant differences across 17 tumor types. We also investigated the frequency 

of oncogenic pathways and identified 47 statistically significant differences across 11 tumor 

types (Figure 2C; Table S2A). Amongst the statistically significant alterations, 53 were more 

frequent in metastases, while only 14 alterations were more frequent in primary tumors. 

The most commonly observed significant alteration was TP53 mutation, which was more 

frequent in metastases in 7 tumor types (lung adenocarcinoma, prostate adenocarcinoma, 

HR+/HER2− ductal breast, MSS colorectal, lobular breast cancer, pancreatic neuroendocrine 

and uterine endometrioid). A possible explanation is that TP53 mutation is a later event 

in some of these tumor types; in others, it may simply be a hallmark of more aggressive 

disease. The notable exception was head and neck cancer, where TP53 mutations were 

more frequent in primary tumors (62% vs. 45%, q-value = 0.01). Other genomic alterations 

that were most often enriched in metastases included CDKN2A deletion (significant in 5 

tumor types), PTEN mutation and deletion (4 tumor types) and MYC amplification (4 tumor 

types). The most common significantly enriched oncogenic pathways in metastases were 

p53, Cell Cycle and DNA damage repair. The most significant differences were observed 

for alterations known to be associated with resistance to hormonal therapy in hormone-

sensitive tumors. For example, AR amplification and AR mutations were significantly more 

frequent in prostate cancer metastases (1% vs. 30% and 0% vs. 6%, q-value < 0.001), and 

ESR1 mutations were more frequent in HR+/HER2− ductal breast cancer (2% vs. 19%, 

q-value < 0.001), lobular breast cancer (2% vs. 13%, q-value < 0.001), and endometrioid 

uterine cancer metastases (3% vs. 10%, q-value = 0.002). These differences can likely 

be attributed to positive selection due to therapy since most patients with prostate cancer 

and ER+ breast cancer receive hormone therapy. TERT mutations were more frequent 

in metastases from papillary thyroid cancer and cutaneous melanoma patients (46% vs. 

69%, q-value = 0.001 and 70% vs. 81%, q-value = 0.02), but higher in primary tumors 

from head and neck squamous cell carcinoma patients (41% vs. 25%, q-value = 0.02). 

ALK fusions, a predictive biomarker for the use of ALK inhibitors, were slightly more 

frequent in lung adenocarcinoma metastases (3% vs. 6%, q-value < 0.001). KRAS mutations 

were more frequent in metastases from pancreatic neuroendocrine patients (1% vs. 10%, 

q-value = 0.03) as was the overall frequency of RTK/RAS pathway alteration in this tumor 

type (7% vs. 21%, q-value = 0.03). While KRAS mutation is a hallmark of pancreatic 

adenocarcinoma, this could suggest the existence of a transdifferentiation mechanism from 

neuroendocrine to an adenocarcinoma phenotype during metastatic progression. The results 

from our comparison of primaries vs. metastatic samples were largely replicated using an 

independent cohort of 9,215 patients sequenced with MSK-IMPACT since the data freeze 

date (Figure S2, Table S2B). Collectively, these data indicate that metastases have higher 
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chromosomal instability across many tumor types and that mutations in a multitude of driver 

alterations occur at different frequencies in primary and metastatic tumors.

Genomic differences between primary samples from metastatic and non-metastatic 
patients

Many of the primary tumors included in the previous analysis were from patients with 

metastatic disease. To identify genomic determinants of metastatic disease present in 

primary tumors we compared the genomic features of primary tumors from metastatic 

patients (n=11,942) to primary tumors from non-metastatic patients (n=3,690). The median 

follow-up time for these two groups was 33 months and 27 months, respectively. In 10 

tumor types, FGA was significantly higher in primary tumors from metastatic patients 

as compared to primary tumors from patients without metastases. Compared to non-

metastatic patients, TMB was significantly higher in 7 tumor types but lower in head 

and neck squamous cell carcinoma (Figure S3A–B; Table S2C). When interrogating 

the frequencies of recurrent oncogenic alterations, we identified statistically significant 

frequency differences in 32 genes across 12 tumor types and 21 oncogenic pathways 

across 9 tumor types (Figure S3C; Table S2C), with the majority of events observed at 

higher frequencies in primary tumors from metastatic patients. Compared to non-metastatic 

patients, TP53 mutations were significantly more frequent in metastatic patients with 

lung adenocarcinoma (28% vs. 45%, q-value < 0.001), HR+/HER2− ductal breast cancer 

(17% vs. 29%, q-value < 0.001), urothelial bladder cancer (31% vs. 53%, q-value < 

0.001), prostate adenocarcinoma (16% vs. 23%, q-value < 0.001), and endometrioid uterine 

cancer (9% vs. 20%, q-value = 0.01). TERT promoter mutations were more frequent in 

metastatic patients with papillary thyroid cancer (20% vs. 56%, q-value = 0.004). The 

frequency of MYC amplification was significantly higher in metastatic patients with prostate 

adenocarcinoma (1% vs. 4%, q-value = 0.03), microsatellite stable (MSS) colorectal cancer 

(1% vs. 4%, q-value = 0.03), and TN ductal breast cancer (3% vs. 17%, q-value = 0.03). 

On the other hand, SPOP mutations were less frequent in primary tumors from metastatic 

prostate adenocarcinoma patients (18% vs. 12%, q-value = 0.03), PIK3CA mutations 

were less frequent in the primary tumors of HR+/HER2− ductal breast cancer metastatic 

patients (49% vs. 38%, q-value = 0.003), and CDKN2A mutations were less frequent in 

the primary tumors of pancreatic cancer metastatic patients (17% vs. 7%, q-value = 0.02). 

These findings support the hypothesis that a higher chromosomal instability is associated 

with metastatic progression in multiple tumor types and that several individual driver 

mutations might inform metastatic risk. Only a few of these, such as SPOP mutations 

in prostate cancer, which has been previously reported to be more frequent in primary 

tumors (Armenia et al., 2018), are associated with decreased metastatic potential. The 

comparative analysis of genomic features differing between primary tumors vs metastases 

(“P vs M”) and genomic features differing between primary tumors from non-metastatic 

patients vs metastatic patients (“P-noM vs P-M”) can help to identify alterations that occur 

earlier or later in metastasis (Figure S3D–E). However, a detailed analysis of the timing 

of somatic events involved in metastatic progression will require additional data sources 

(such as comprehensive characterization of multiple lines of treatment, including surgical 

interventions) and is beyond the scope of our study.
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Genomic features associated with metastatic burden

To explore the genomic determinants of metastatic burden, we analyzed the relationship 

between genomic alterations and the number of metastatic sites per patient (n=21,546). Not 

surprisingly, a higher metastatic burden was significantly associated with shorter overall 

survival in most (39/50, 78%) tumor types (Table S3A). We observed that chromosomal 

instability, as inferred by FGA, was positively correlated with metastatic burden on a 

pan-cancer level and in 11 individual tumor types. TMB, on the other hand, was not 

associated with metastatic burden on a pan-cancer level; it was positively correlated with 

metastatic burden in 3 tumor types, and negatively associated with metastatic burden in 

endometrioid and hypermutated uterine cancer (Figure 3A–B; Table S3B). One of the 

strongest correlations between FGA and metastatic burden was observed in prostate cancer 

(rho = 0.33, q-value = 7.0E-45), which is in line with previous studies (Hieronymus et al., 

2018; Taylor et al., 2010). Conversely, we did not observe such association in many tumor 

types, including MSS colorectal cancer, where chromosomal instability is already high in 

patients with low metastatic burden.

Next, we investigated the association between recurrent oncogenic alterations and metastatic 

burden and identified a total of 24 statistically significant associations across 8 tumor 

types. We also investigated the association with oncogenic pathways and identified 16 

statistically significant differences across 7 tumor types (Figure 3C; Table S3B). Consistent 

with its role as a gatekeeper against chromosomal instability (Bieging et al., 2014), we 

observed a significant positive correlation between TP53 mutations and metastatic burden 

in prostate adenocarcinoma, lung adenocarcinoma and HR+/HER2− ductal breast cancer. 

There was also a significant positive correlation between p53 pathway alterations and 

metastatic burden in endometrioid uterine cancer. In metastatic prostate adenocarcinoma, 

AR amplifications were positively associated with metastatic burden. The frequency of 

ESR1 mutation increased with metastatic burden in HR+/HER2− ductal and lobular breast 

cancer. CDKN2A deletion frequency was positively correlated with metastatic burden 

in bladder urothelial cancer, lung adenocarcinoma and papillary thyroid cancer, while 

MYC amplification frequency was associated with increasing metastatic burden in lung 

adenocarcinoma and prostate adenocarcinoma. Of note, the frequency of four oncogenic 

alterations and one oncogenic pathway were negatively correlated with metastatic burden; 

FOXA1 in prostate adenocarcinoma, CBFB in HR+/HER2− ductal breast cancer, CDH1 
in lobular breast cancer, ERCC2 in urothelial bladder cancer and the epigenetic pathway 

in MSS colorectal cancer (Figure 3C; Table S3B). These results demonstrate that the 

relationship between higher chromosomal instability and increasing metastatic burden is 

tumor lineage dependent and that several driver mutations are associated with metastatic 

burden in both directions.

Genomic differences of metastases according to their organ location

Next, we investigated the genomic characteristics of metastases (n=10,143) according 

to their organ location. As expected, the location of the sequenced metastases differed 

by tumor type (Figure S4A). We found 17 significant associations between FGA and 

the metastatic site in six tumor types, 10 of which were also significant when using 

adjusted FGA (Figure S4B; Table S4A). CNS/Brain metastases from patients with lung 
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adenocarcinoma, MSS colorectal cancer and cutaneous melanoma had a significantly higher 

FGA, while lymph node metastases from patients with lung adenocarcinoma, pancreatic 

adenocarcinoma, bladder urothelial and cutaneous melanoma had a significantly lower 

FGA. There were seven significant associations between TMB and the metastatic site. 

A total of 31 genomic alterations in nine tumor types were significantly associated with 

specific metastatic sites and 25 oncogenic pathways across six tumor types (Figure S3C; 

Table S4A). TP53 mutations were significantly more frequent in CNS/Brain metastasis 

from lung adenocarcinoma (55% vs. 66%, q-value = 0.002) and liver metastasis from 

pancreatic adenocarcinoma (63% vs. 84%, q-value < 0.001), but less frequent in lung 

metastasis from urothelial bladder cancer (57% vs. 29%, q-value = 0.04) and liver metastasis 

from neuroendocrine lung cancer (83% vs. 25%, q-value = 0.005), as well as in intra-

abdominal metastasis from pancreatic adenocarcinoma (X% vs. X%, q-value = ). In HR+/

HER2− ductal breast cancer, ESR1 mutations were significantly more frequent in liver 

metastasis (79% vs. 58%, q-value = 0.003). In lobular breast cancer, RHOA mutations 

were significantly more frequent in ovarian metastasis (3% vs. 36%, q-value = 0.02) and 

FOXA1 mutations were enriched in liver metastasis (3% vs. 33%, q-value = 0.02). In lung 

adenocarcinoma, CDKN2A deletion was more frequent in skin (16% vs. 60%, q-value = 

0.03) and liver metastases (16% vs. 27%, q-value = 0.03) but less frequent in lymph nodes 

(19% vs. 12%, q-value = 0.002). PTEN mutation, as well as PI3K pathway alterations, 

were higher in brain metastases from melanoma (7% vs. 23%, q-value = 0.01 and 19% vs. 

39%, q-value = 0.02, respectively), which is in line with a previous melanoma-specific study 

(Bucheit et al., 2014). Among others, we found that ERG fusions were less frequent in bone 

metastasis of prostate cancer patients (30% vs. 15%, q-value = 0.002), NF1 mutations were 

more frequent in lung metastasis of melanoma patients (20% vs. 38%, q-value = 0.003) and 

that FGFR3 mutations were more frequent in lung metastasis of bladder urothelial patients 

(11% vs. 39%, q-value = 0.005). Taken together, our results show that metastases from 

different organs can have different genomic makeup.

Genomic features associated with metastasis to specific target organs

We analyzed the relationship between genomic features of metastatic patients and their 

organ-specific patterns of metastasis (n=21,546). We found 13 significant associations 

between FGA and organotropisms in 11 tumor types, seven of which were also significant 

when using adjusted FGA (Table S4B). We observed a significant positive association 

between FGA and patients with liver metastasis in four tumor types (HR+/HER2− ductal 

breast, prostate adenocarcinoma, pancreatic adenocarcinoma and head and neck squamous), 

patients with lung metastasis in two tumor types (endometrioid uterine and cutaneous 

melanoma), and bone metastasis in two tumor types (HR+/HER2− ductal breast and prostate 

adenocarcinoma). For TMB, we found eight significant associations between TMB and 

organ-specific patterns of metastasis in six tumor types, including four positive associations 

(lung adenocarcinoma to brain and adrenal gland, pancreatic adenocarcinoma to liver, 

head and neck squamous to head and neck) and four negative associations (prostate 

adenocarcinoma to bone, cutaneous melanoma to intra-abdominal, lung adenocarcinoma 

to pleura and lung neuroendocrine to liver).
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We found 57 significant recurrent oncogenic alterations associated with specific patterns of 

metastasis in 10 tumor types. When interrogating oncogenic pathway alterations, we found 

48 significant associations in 12 tumor types (Figure 4A; Table S4B). Lung adenocarcinoma, 

MSS colorectal cancer, and prostate cancer were associated with the highest number of 

significant associations. These results are summarized in Figure 4B. For example, lung 

adenocarcinoma patients with CNS/Brain metastasis had a higher frequency of TP53 
mutations, TERT amplification, and EGFR mutations, but a lower frequency of RBM10 
mutations. MSS colorectal cancer patients with lung metastasis had a higher frequency of 

KRAS mutations (39% vs. 52%, q-value < 0.001), as previously reported (Cejas et al., 

2009; Pereira et al., 2015; Tie et al., 2011) but a lower frequency of SRC amplification 

(7% vs. 3%, q-value < 0.001). Prostate cancer patients with bone metastasis had a higher 

frequency of AR amplification (5% vs. 21%, q-value < 0.001) and PTEN deletion (9% 

vs. 19%, q-value < 0.001) but a lower frequency of ERG fusions (29% vs. 24%, q-value 

= 0.04); those with liver metastasis had a higher frequency of PTEN loss (11% vs. 30%, 

q-value < 0.001), RB1 loss (3% vs. 10%, q-value < 0.001) and APC mutations (5% vs. 11%, 

q-value = 0.001); those with brain metastasis had a higher frequency of AR amplification 

(14% vs. 34%, q-value < 0.001) and NOTCH pathway alterations (5% vs. 12%, q-value = 

0.02); and those with lung metastasis had a higher frequency of APC mutations (5% vs. 

12%, q-value < 0.001) and CTNNB1 mutations (3% vs. 8%, q-value = 0.007). Experimental 

work has revealed the role of WNT pathway activation in driving prostate cancer metastasis 

(Leibold et al., 2020) and discovered a vulnerability to tankyrase inhibition in WNT 

altered prostate cancer. When interrogating the association between oncogenic pathways 

and organotropisms, we found that 26% of prostate cancer patients with lung metastasis had 

WNT pathway alterations, compared to 13% of patients without lung metastasis (q-value < 

0.001, Figure 4A). As previously reported (Gerratana et al., 2020), ESR1 mutations were 

more frequent in HR+/HER2− ductal breast cancer patients with liver metastasis (5% vs. 

16%, q-value < 0.001). CBFB mutations were less frequent in HR+/HER2− ductal breast 

cancer patients with bone metastasis (5% vs. 1%, q-value = 0.009), which was demonstrated 

in a mouse model (Ran et al., 2020) while alterations in the PI3K pathway were more 

frequent in patients with bone metastasis (44% vs. 56%, q-value = 0.003). HR+/HER2− 

ductal breast cancer patients with brain metastasis had a lower frequency of MAP3K1 

mutation (9% vs. 3%, q-value = 0.02), which was recently shown to be a surrogate for the 

less aggressive luminal A breast cancer subtype (Nixon et al., 2019). In line with a previous 

study (Bucheit et al., 2014), PTEN mutations were more frequent in cutaneous melanoma 

patients with brain metastases (7% vs. 14%, q-value = 0.04), while TP53 mutations were 

less frequent in those patients (28% vs. 17%, q-value = 0.04). Thyroid papillary cancer 

patients with bone metastasis had a lower frequency of BRAF mutations (73% vs. 53%, 

q-value = 0.02), and esophageal cancer patients with lung metastasis had a higher frequency 

of ERBB2 amplification (16% vs. 37%, q-value < 0.001). Our analysis of arm-level events 

also revealed that that chromosome 22q loss was more frequent in thyroid papillary patients 

with bone metastasis (13% vs 40%, q-value = 0.0002), even though broader chromosomal 

instability was not significantly different in those patients (median FGA; 32% vs. 45%, 

q-value = 0.07, Table S4B). In sum, while we did not observe gene or pathway alterations 

associated with specific target organs that were shared consistently across different tumor 
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types at a pan-cancer level (Figure S4), our analysis revealed specific genomic alterations 

linked to specific organotropisms in individual tumor types.

DISCUSSION

We present MSK-MET, a unique, curated cohort of cancer patients with available genomic 

sequencing data and clinical information on metastatic disease and cancer outcome. Our 

study expands a previous pan-cancer dataset (Zehir et al., 2017) by including a larger 

number of patients with longer follow-up and by including a comprehensive description 

of metastatic events at the patient level. We demonstrate that mining of electronic health 

records can be used to extract relevant clinical information, and we present a pan-cancer 

map of metastasis in a contemporary cohort of patients treated at a single tertiary referral 

center.

Our analysis of genomic alterations from unpaired primary and metastatic samples revealed 

that metastases generally had a higher level of chromosomal instability, along with a higher 

frequency of WGD and TP53 mutations. These results are consistent with previous studies 

that have shown an association between chromosomal instability and cancer progression 

(Bakhoum et al., 2018; Ben-David and Amon, 2020; Hieronymus et al., 2018; Shukla 

et al., 2020; Stopsack et al., 2019; Watkins et al., 2020). Our results also suggest that 

metastases generally have a higher fraction of clonal mutations. This lower intra-tumor 

heterogeneity could be attributed to clonal selection and selective pressure from cancer 

therapy (Birkbak and McGranahan, 2020). We also identified several genomic alterations 

and signaling pathways enriched in metastatic samples. As described before (Hu et al., 2020; 

Pareja et al., 2020; Razavi et al., 2018), the most significant enrichments were associated 

with known drug resistance mechanisms (e.g., AR alterations in prostate cancer, and ESR1 
mutations in breast cancer). We also compared primary tumor samples from metastatic 

and non-metastatic patients. In several tumor types, we observed a higher chromosomal 

instability and a higher frequency of TP53 mutations amongst other drivers in primary 

samples from metastatic patients whereas the clonal fraction was generally similar.

In an analysis aimed at identifying genomic alterations associated with metastatic burden, 

we found that higher chromosomal instability was correlated with metastatic burden in 

several tumor types. This association, however, was absent in many other tumor types, 

including colorectal cancer, where copy-number alteration patterns may be established 

early in tumor development. Several mechanisms can explain the pro-metastatic effects 

of chromosomal instability and have been reviewed before (Ben-David and Amon, 2020). 

It is believed that chromosomal instability can promote tumor progression by increasing 

subclonal diversity and tumor evolution (Watkins et al., 2020), but aneuploidy itself is not 

a universal promoter of transformation and recent studies suggest that aneuploidy is cancer-

type-specific (Ben-David and Amon, 2020), which is in line with our observations. Beyond 

global chromosomal instability, we also identified several specific genomic alterations and 

signaling pathways associated with metastatic burden. The majority, including alterations 

associated with drug resistance, were enriched in samples from patients with higher 

metastatic burden. Few were associated with lower metastatic burden, including FOXA1 
mutations in prostate cancer and CBFB mutations in breast cancer.
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Lastly, we investigated associations between genomic alterations and metastatic colonization 

of specific target organs. We compared independent metastatic samples according to their 

organ sites and we observed that the genomic landscape of metastasis differed according to 

their target organs. Previous studies have also interrogated the differences between primary 

tumors and metastatic sites using either independent samples (Armenia et al., 2018; Priestley 

et al., 2019; Robinson et al., 2017; Shih et al., 2020) or paired samples (Brastianos et 

al., 2015; Brown et al., 2017; Eckert et al., 2016; Hu et al., 2020; Jiménez-Sánchez 

et al., 2017; Makohon-Moore et al., 2017; Naxerova et al., 2017; Noorani et al., 2020; 

Reiter et al., 2020). Clinical data extraction from the EHR allowed us to explore the 

genomic alterations of metastatic patients by taking into consideration a greater part of 

the metastatic events occurring in a patient’s clinical course. We have generated a variety 

of hypotheses linking specific genomic alterations to specific organotropisms occurring 

in a cancer-specific manner. Future functional characterization of these alterations could 

result in the identification of novel biomarkers and therapeutic approaches that will have 

the potential to influence the clinical management of patients. Our results highlight the 

importance of chromosomal instability in progression and metastasis, and drugs targeting 

this hallmark could represent an attractive strategy in several tumor types. MSK-MET 

is publicly available via the cBioPortal for Cancer Genomics (https://www.cbioportal.org/

study?id=msk_met_2021) (Cerami et al., 2012; Gao et al., 2013). We hope that it will be a 

valuable resource for the community and will stimulate further research and applications in 

cancer care.

Limitations of the study

Our study has several limitations. Firstly, while the overall cohort is large, sample size varied 

significantly between tumor types, which prevented us from drawing robust conclusions in 

less common tumor types. Therefore, the lack of significant differences in those tumor types 

might be due to a lack of statistical power and should be interpreted with caution. Also, our 

definition of tumor types could be further refined in some cases, to account, for example, 

for different predominant histologic subtypes in lung adenocarcinomas (Caso et al., 2020). 

This might provide additional valuable insights, but would also result in decreased sample 

sizes and lower statistical power for those refined groups. Secondly, the ICD billing codes 

used in our study likely do not fully capture all metastatic events and may be affected 

by inter-physician variability. Future improvements to the clinical data extraction process 

could come from the use of natural-language processing and machine learning approaches, 

which will be required to mine the wealth of data contained in EHR systems at scale. 

Thirdly, because of our use of a targeted sequencing panel, we may be missing biologically 

or clinically relevant signals that could be discovered using alternative approaches such as 

whole-exome or whole-genome sequencing. Finally, all analyses presented here have been 

performed using a single representative sample for each patient. In the future, longitudinal 

sampling of multiple anatomical locations at different time points from the same patient 

will allow us to investigate additional questions about the timing of genomic events and the 

genomic heterogeneity across different organs throughout metastatic progression. Although 

this study represents a first step towards understanding how genomic alterations shape tumor 

progression, metastatic burden and organotropisms, more integrated studies are needed to 

fully investigate the impact of tumor cell-extrinsic effects, such as cancer therapy, target 
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organ microenvironment and systemic factors. These studies will require comprehensive 

clinical timelines with accurate information about all lines of therapy and metastatic events. 

Additionally, single-cell profiling methods may be required to fully understand the cross-talk 

between tumor cells and the metastatic niche.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Nikolaus Schultz (schultzn@mskcc.org).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• The raw sequencing data for the MSK-IMPACT cohort are protected and are 

not broadly available due to privacy laws. Raw data may be requested from 

schultzn@mskcc.org with appropriate institutional approvals.

• Our full dataset including clinical and genomic data is publicly available at 

Zenodo https://doi.org/10.5281/zenodo.5801902 and through the cBioPortal for 

Cancer Genomics https://www.cbioportal.org/study?id=msk_met_2021

• Original code to do the organ site mapping for metastatic cancer is available 

at https://github.com/clinical-data-mining/organ-site-mapping and has been 

deposited at figshare. DOIs is listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects—This study was approved by the Memorial Sloan Kettering Cancer 

Center Institutional review board and all patients provided written informed consent 

for tumor sequencing and review of patient medical records for detailed demographic, 

pathologic, and treatment information (NCT01775072). Characteristics of each subject, 

including age and sex, are available in Table S1B.

METHOD DETAILS

Samples and patients—A total of 43,400 solid tumor samples from 38,933 patients 

sequenced at Memorial Sloan Kettering Cancer Center from 2013–11-18 to 2020–01-06 

(6.1y) and included in the AACR Project Genomics Evidence Neoplasia Information 

Exchange (GENIE) (AACR Project GENIE Consortium 2017) 9.0-public database were 

considered for this study. A total of 9,215 samples sequenced at Memorial Sloan Kettering 

Cancer Center from 2020–01-07 to 2021–08-18 (1.6y) were used for validation. All 

tumors were profiled using the Memorial Sloan Kettering Integrated Molecular Profiling 

of Actionable Cancer Targets (MSK-IMPACT) clinical sequencing assay, a hybridization 

capture-based, next-generation sequencing platform (Cheng et al. 2015). Tumor types were 
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defined using a unique cancer type and one or more cancer type detailed (Table S1A). 

For endometrial and colorectal cancers, we defined a subset of hypermutated (HM) tumors 

as those having an oncogenic POLE mutation or exhibiting more than 25 mutations/Mb 

or having MSIsensor score (Niu et al. 2014) > 10. Exclusion criteria were as follows: 

unavailable matched normal; low sequencing coverage (<100x); low tumor purity as defined 

by the absence of somatic alterations (including silent); pediatric patients (<18y at time 

of sequencing); patients with more than one unique sequenced tumor type; cancer of 

unknown primary; tumor type in which metastasis are rare (e.g. Gliomas); breast cancer 

with unavailable molecular subtype information; tumor types with small sample size (i.e. 

n <80 and either primary n <30 or metastasis n <30). Finally, one sample per patient was 

selected using a set of priority rules as follows: the presence of a FACETS fit that passed 

qc > highest purity > highest sample coverage > most recent gene panel. A total of 25,775 

samples spanning 50 tumor types were used for analysis (Figure S1A–D, Table S1A–B). 

This set included samples that were sequenced with three generations of the MSK-IMPACT 

panel, containing 341 genes (n = 1,801 samples), 410 genes (n = 6,372 samples), and 468 

genes (n = 17,602 samples).

Clinical data extraction procedures for the identification and mapping of 
metastatic events—Clinical data were retrieved from the institutional electronic health 

records (EHR) database on 2020–11-05. Metastatic events were extracted from the 

pathology report of the sequenced samples and patients’ electronic health records. The 

anatomic location of the sequenced samples is described in the sample pathology reports 

as a free-text description by pathologists. The EHR includes International Classification of 

Diseases (ICD) billing codes which classify a comprehensive list of diseases, disorders, 

injuries and other health conditions including metastatic events. Metastatic events from 

the sample pathology report and the ICD billing codes from the EHR were systematically 

mapped to a curated list of 21 organs (Table S1C). Lymph nodes were also classified as 

distant or regional given the anatomic location of the primary tumor (link). Of note, the 

classification of distant vs. regional was not possible for tumor types in which the anatomic 

location of the primary tumor is not well defined (e.i. melanoma cutaneous, cutaneous 

squamous cell, sarcoma lipo and sarcoma UPS/MXF). The organ site mapping for metastatic 

cancer is available at https://github.com/clinical-data-mining/organ-site-mapping. For a user 

providing a table of organ site descriptions or ICD Billing codes, annotations of the 21 organ 

sites will be generated. Furthermore, additional annotations recognizing local extension and 

distant lymph node spread can be created. Metastatic burden was defined as the number 

of distinct organs (excluding regional lymph nodes) affected by metastases throughout a 

patient’s clinical course (ranging from 1 to 15 in the present study). Patients with more than 

six affected organ sites were grouped for analyses of metastatic burden.

Comparison of metastatic sites automatically extracted from electronic health 
records vs. manual chart review—A total of 4,859 patients (22.5%) with metastatic 

sites extracted through manual chart review and previously published were available (Abida 

et al., 2017; Jones et al., 2021; Razavi et al., 2018; Shoushtari et al., 2021; Yaeger et al., 

2018). Ten tumor types were represented including the most frequent (prostate, lung, breast, 

colorectal, and melanoma). There was a strong correlation between the number of metastatic 
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sites retrieved from manual chart review and the number of metastatic sites automatically 

extracted from electronic health records (Figure S1H). For colorectal hyper mutant and MSS 

only the first metastatic events were reported so we restricted the comparison to the first 

metastatic event extracted from EHR. It is also important to note that the manual chart 

review was done before this study. Therefore, the present study has a longer follow-up which 

resulted in a higher number of metastatic sites. We also calculated the sensitivity for each 

metastatic site and each tumor type (Figure S1I). The median sensitivity was 77% across 

tumor types and metastatic sites.

Genomic analysis—Tumor mutational burden (TMB) was calculated for each sample as 

the total number of nonsynonymous mutations, divided by the number of bases sequenced. 

Fraction of genome altered (FGA) was calculated for each sample as the percentage of 

the genome with absolute log2 copy ratios >0.2. Log2 copy-number ratios were derived as 

previously described (Cheng et al., 2015). Chromosome arm-level copy number alterations 

were computed using the ASCETS tool (Spurr et al., 2020) using default parameters. 

Allele-specific analyses of copy number alterations were performed using the FACETS 

tool (Shen and Seshan, 2016), which infers purity- and ploidy-corrected integer DNA copy 

number calls from sequencing data. The quality of FACETS fits was determined using a 

set of criteria as described in facets-preview (https://github.com/taylor-lab/facets-preview). 

To estimate a tumor purity- and ploidy-adjusted version of the FGA, we defined “adjusted 

FGA” as the fraction of the genome different from the major integer copy number (Mcn), 

where Mcn is defined as the integer total copy number spanning the largest portion of 

the genome. Tumor samples were considered to have undergone whole-genome doubling 

(WGD) if more than 50% of their autosomal genome had Mcn >2. The clonality of 

each mutation (clonal or subclonal or indeterminate) was determined as described in 

facets-suite (https://github.com/mskcc/facets-suite). For each tumor sample, the fraction of 

clonal mutations (clonal fraction) was determined by dividing the total number of clonal 

mutations by the sum of clonal and subclonal mutations. MSI-H status was defined by 

an MSIsensor score >10 (Niu et al., 2014). Somatic alterations were annotated using 

OncoKB for oncogenicity and clinical actionability (Chakravarty et al., 2017) (Data version: 

v2.8, released on 2020–09-17). For hypermutated colorectal and hypermutated uterine 

cancer, only genes that were recurrently mutated based on MutSig-CV (q-value<0.1) were 

considered for association analyses. For each tumor type, recurrent oncogenic alterations 

were defined as those considered oncogenic or likely oncogenic by OncoKB and present 

in at least 5% of either primary or metastatic samples (median of 15 per tumor type, Table 

S1A). Canonical oncogenic pathway-level alterations were computed using curated pathway 

templates as previously reported (Ding et al., 2018; Sanchez-Vega et al., 2018). Segmented 

copy-number data were processed using the CNtools package v1.4.

Quantification and statistical analysis—The relative temporal order of target organs 

for each tumor type was assessed using a Bradley-Terry model. For each tumor type, 

we included patients with at least two metastases in different organs. For each patient, 

metastases can be timed relative to one another and these pairwise comparisons were 

aggregated (as implemented by the R package BradleyTerryScalable) to give an overall 

ordering of metastasis per tumor type. Comparisons between groups (primary vs. metastatic 
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tumors, primary samples from metastatic vs. non-metastatic patients, and metastases 

according to their organ location) were performed using the non-parametric Mann-Whitney 

U test for continuous variables or the Fisher’s exact test for categorical variables. 

Differences in the frequency of actionable mutations (Levels 1 to 3, as defined by OncoKB) 

between groups (primary tumors vs. metastases and primary tumors from metastatic vs. 

non-metastatic patients) were further tested using a multivariable logistic regression model 

adjusted for TMB and FGA. Differences in the frequency of arm-level copy number 

alterations between groups (primary vs. metastatic tumors and primary samples from 

metastatic vs. non-metastatic patients) were tested using a multivariable logistic regression 

model adjusted for FGA. A genomic feature was considered to be significantly correlated 

with metastatic burden if (a) the Spearman’s correlation between the two variables was 

statistically significant (q-value < 0.05) and (b) the coefficient associated with the genomic 

feature as a predictive variable in a multivariable linear regression model adjusted for sample 

type (metastatic vs. primary tumor) was statistically significant (p-value < 0.05). The second 

condition was required because the ratio of metastatic samples to primary samples was 

associated with metastatic burden and could otherwise act as a confounding factor. We 

assessed genomic features associated with the presence or absence of metastasis in a target 

organ using only target organs present in at least 5% of the patients. A genomic feature 

was considered to be significantly associated with metastasis to specific target organs if (a) 

the Mann-Whitney U test for continuous variables or the Fisher’s exact test for categorical 

variables was statistically significant (q-value < 0.05) and (b) the coefficient associated with 

the genomic feature as a predictive variable in a multivariable logistic regression model 

adjusted for sample type (metastatic vs. primary tumor, categorical) and metastatic burden 

(1 to ≥6, numerical) was statistically significant (p-value < 0.05). The second condition 

was required because the ratio of metastatic samples to primary samples and metastatic 

burden were associated with metastasis to specific target organs and could otherwise act as 

a confounding factor. When TMB and FGA were used in a generalized linear model (linear 

and logistic model), their distributions were harmonized using a normal transformation 

as described before (Vokes et al., 2019) then scaled from 0 to 1 by subtracting the 

minimum and dividing by the maximum. Logistic regression was performed using Firth’s 

bias-reduction method as implemented in the R package brglm (Kosmidis and Firth, 2020). 

Overall survival (OS) was measured from the time of sequencing to death and was censored 

at the last time the patient was known to be alive. If a patient had more than one sequenced 

sample, the first time of sequencing was used. Median follow-up time was calculated 

using the reverse Kaplan-Meier method. Median overall survival and five-year survival rate 

were calculated by the Kaplan-Meier method. The association between metastatic burden 

and overall survival was assessed using univariable Cox proportional hazards regression 

models. All reported p-values are two-tailed. Multiple testing correction was applied within 

each tumor type using the false discovery rate (q-value) method and q-value < 0.05 was 

considered significant. All analyses were performed using R v3.5.2 (www.R-project.org) and 

Bioconductor v3.4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• A large clinico-genomic database to study metastatic patterns across 50 tumor 

types

• Oncogenic alteration frequency and chromosomal instability are increased in 

metastases

• Correlations between chromosomal instability and metastatic burden depend 

on cancer type

• Genomic features associated with metastasis are identified for specific target 

organs
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Figure 1. Overview of the MSK-MET cohort.
Metastatic patterns of 50 tumor types. For each tumor type, the following attributes are 

shown from left to right: tumor type abbreviation, number of patients, distribution of age 

at sequencing (red vertical line indicates the median), overall survival in years from time 

of sequencing (red vertical line indicates the median OS), sex ratio (female = gold, male 

= grey), distribution of metastatic burden across all patients (ranging from 0 to ≥6 distinct 

metastatic sites), and a heatmap with the percentage of metastatic patients with metastases at 

specific metastatic sites (the entire clinical course was taken into consideration). The number 

in each cell indicates the frequency of patients having at least one reported metastasis at 

that given site. For each tumor type, the distribution of all metastasis events by 21 organ 

sites is shown as a stacked bar chart to the right of the heatmap. For each metastatic site, 

the distribution of all 50 tumor types is shown as a stacked bar chart below the heatmap. 

For each metastatic site, the number of patients with at least one metastasis is indicated 

in parentheses. Frequencies for sex-specific target organs (female genital, ovary and male 

genital) were calculated using patients of the corresponding sex.

See also Table S1A–C and Figure S1.
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Figure 2. Genomic differences between primary tumors and metastases.
Comparisons of the median fraction genome altered (FGA), median whole-genome 

duplication (WGD) frequency, median tumor mutation burden (TMB), and median clonal 

fraction for each tumor type in metastatic vs. primary tumors. Tumor types with statistically 

significant differences are labeled. For TMB both axes were limited to 10mut/Mb.

(A) The following clinical and genomic features are shown side-by-side for primary (top 

row within each cancer type) and metastatic (bottom row) sequenced samples using a 

combination of bar charts and violin plots; from left to right: sample counts, FGA, fraction 

of samples with WGD, TMB, clonality, fraction of samples with high TMB, and distribution 

of the highest actionable alteration levels. The black vertical line in each violin plots 
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represents the median. The heatmap shows the frequency of individual arm level alterations 

in primary tumors and metastases (only the frequency of the more frequent event, gain 

or loss, is shown). Tumor types are ordered from top to bottom by decreasing FGA in 

metastasis and grouped by organ systems. * indicates q-value < 0.05. WGD and clonality 

were available for a subset of 17,224 samples with FACETS data.

(B) Statistically significant differences in the frequency of oncogenic alterations and 

pathways between primary tumors and metastases in individual tumor types. Triangles 

summarize oncogenic alteration frequencies in primary tumors vs. metastases and are 

colored according to alteration type. Gene names in italics refer to specific genes, those 

in regular font refer to pathways.

See also Table S2A–C and Figure S2 and S3.

Nguyen et al. Page 25

Cell. Author manuscript; available in PMC 2023 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Genomic features associated with metastatic burden.
(A) Spearman’s correlation coefficient between FGA (circle) and TMB (diamond) with 

metastatic burden. Associations without a significant trend are shown in grey, and the lines 

indicate 95% CI.

(B) Correlation between FGA and TMB with metastatic burden in the entire data set, 

prostate adenocarcinoma, hypermutated uterine cancer, and MSS colorectal cancer. Boxplots 

display median point, IQR boxes and 1.5 × IQR whiskers for all samples. Split violin plots 
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show the distribution of FGA and TMB in primary tumors (left, not filled) and metastases 

(right, filled).

(C) Statistically significant oncogenic alterations and pathways associated with metastatic 

burden in individual tumor types. Spearman’s correlation coefficient is shown for each 

event, and the lines indicate 95% CI. Gene names in italics refer to specific genes, those in 

regular font refer to pathways.

See also Table S3A–B.
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Figure 4. Genomic features associated with metastasis to specific target organs.
(A) Statistically significant oncogenic alterations and pathways associated with organ-

specific patterns of metastatic spread. Gene names in italics refer to specific genes, those in 

regular font refer to pathways.

(B) Schematic drawing summarizing the main findings from (A).

See also Table S4A–B and Figure S4
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human tumor and matched normal samples 
(blood)

This paper N/A

Deposited Data

Clinical data, including metastatic events at 
the patient level is deposited for visualization, 
and download in the cBioPortal for Cancer 
Genomics.

This paper https://www.cbioportal.org/study?id=msk_met_2021 https://
doi.org/10.5281/zenodo.5801902

Targeted DNA sequencing This paper https://doi.org/10.5281/zenodo.5801902

Software and Algorithms

ASCETS Spurr et al., 2020 https://github.com/beroukhim-lab/ascets

BradleyTerryScalable Kaye and Firt, 2020 https://github.com/EllaKaye/BradleyTerryScalable

brglm Kosmidis and Firth, 2020 https://cran.r-project.org/web/packages/brglm/index.html

cBioPortal Cerami et al., 2012 https://www.cbioportal.org/

CNtools Jianhua Zhang, 2018 https://bioconductor.org/packages/release/bioc/html/
CNTools.html

FACETS Shen and Seshan, 2016 https://github.com/mskcc/facets-suite

MSIsensor Niu et al., 2014 https://github.com/ding-lab/msisensor

MutSigCV Lawrence et al. 2014 https://github.com/genepattern/MutSigCV

OncoKB Chakravarty et al., 2017 https://github.com/oncokb/oncokb

organ-site-mapping This paper https://github.com/clinical-data-mining/organ-site-mapping 
https://doi.org/10.6084/m9.figshare.17118848.v1

R (v3.5.2) R CRAN https://cran.r-project.org/

survival The R Foundation https://cran.r-project.org/web/%20packages/survival/index.html
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