Table 2.
SVM | RF | DT | KNN | MLP-ANN | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
22 Features | 7 Features | 22 Features | 7 Features | 22 Features | 7 Features | 22 Features | 7 Features | 22 Features | 7 Features | ||
Accuracy Training | Mean10runs (SD) | 0.91 (0.01) | 0.88 (0.01) | 0.89 (0.01) | 0.87 (0.01) | 0.89 (0.02) | 0.85 (0.01) | 0.86 (0.03) | 0.82 (0.02) | 0.87 (0.02) | 0.84 (0.03) |
p (d) | 0.00 (2.48) | 0.00 (1.59) | 0.00 (2.13) | 0.00 (1.59) | 0.03 (1.03) | ||||||
Accuracy Test | Mean10runs (SD) | 0.81 (0.01) | 0.86 (0.02) | 0.79 (0.01) | 0.82 (0.01) | 0.76 (0.02) | 0.79 (0.01) | 0.68 (0.02) | 0.74 (0.02) | 0.74 (0.02) | 0.77 (0.03) |
p (d) | 0.00 (3.17) | 0.00 (2.68) | 0.00 (1.79) | 0.00 (2.99) | 0.01 (1.32) | ||||||
Precision | Mean10runs (SD) | 0.80 (0.01) | 0.85 (0.02) | 0.79 | 0.83 | 0.76 (0.03) | 0.81 (0.02) | 0.68 (0.02) | 0.75 (0.02) | 0.74 (0.03) | 0.78 (0.03) |
p (d) | 0.00 (3.12) | 0.00 (2.94) | 0.00 (1.75) | 0.00 (3.03) | 0.00 (1.19) | ||||||
Recall | Mean10runs (SD) | 0.80 (0.02) | 0.85 (0.03) | 0.78 (0.03) | 0.82 (0.01) | 0.75 (0.03) | 0.79 (0.02) | 0.69 (0.02) | 0.74 (0.03) | 0.74 (0.02) | 0.77 (0.03) |
p (d) | 0.00 (2.42) | 0.01 (1.45) | 0.00 (1.67) | 0.00 (2.08) | 0.00(1.59) | ||||||
F1score | Mean10runs (SD) | 0.80 (0.01) | 0.85 (0.02) | 0.78 (0.03) | 0.82 (0.01) | 0.75 (0.03) | 0.80 (0.02) | 0.68 (0.02) | 0.74 (0.02) | 0.74 (0.03) | 0.78 (0.02) |
p (d) | 0.00 (2.65) | 0.00 (2.01) | 0.00 (1.88) | 0.00 (2.58) | 0.02 (1.54) | ||||||
AUC | Mean10runs (SD) | 0.80 (0.01) | 0.85 (0.02) | 0.78 (0.03) | 0.82 (0.01) | 0.75 (0.03) | 0.79 (0.01) | 0.68 (0.02) | 0.74 (0.02) | 0.73 (0.03) | 0.77 (0.02) |
p (d) | 0.00 (2.75) | 0.00 (1.86) | 0.00 (1.85) | 0.00 (2.43) | 0.00 (1.56) | ||||||
Generalization Error (%) | Mean10runs (SD) | 9.35 (1.31) | 2.95 (1.46) | 9.93 (1.16) | 4.96 (0.92) | 12.44 (1.31) | 5.47 (0.91) | 17.70 (0.69) | 7.84 (2.02) | 12.80 (2.51) | 7.26 (0.92) |
p (d) | 0.00 (4.62) | 0.00 (4.71) | 0.00 (6.17) | 0.00 (6.53) | 0.00 (2.93) |
SVM, support vector machine; RF, random forest; DT, decision tree; KNN, k-nearest neighbor; MLP-ANN, multilayer perceptron artificial neural networks; SD, standard deviation; d, Cohen’s effect size.