1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
AAPS J. Author manuscript; available in PMC 2022 September 15.

-, HHS Public Access
«

Published in final edited form as:
AAPS J.; 23(5): 106. doi:10.1208/s12248-021-00631-8.

Interaction of Commonly Used Oral Molecular Excipients with
P-glycoprotein

Ruchika Bajaj!, Lisa B Chong?, Ling Zou?, Eleftheria Tsakalozou?, Zhanglin Ni2, Kathleen
M Giacominil, Deanna L Kroetz!

1Department of Bioengineering and Therapeutic Sciences, University of California San Francisco,
San Francisco, CA, USA

2Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of
Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration,
Silver Spring, MD USA

Abstract

P-glycoprotein (P-gp) plays a critical role in drug oral bioavailability and modulation of this
transporter can alter the safety and/or efficacy profile of substrate drugs. Individual oral molecular
excipients that inhibit P-gp function have been considered as a mechanism for improving drug
absorption, but a systematic evaluation of the interaction of excipients with P-gp is critical for
informed selection of optimal formulations of proprietary and generic drug products. A library of
123 oral molecular excipients was screened for their ability to inhibit P-gp in two orthogonal cell-
based assays. p-Cyclodextrin and Light green SF yellowish were identified as modest inhibitors of
P-gp with ICgq values of 168 uM (95% ClI, 118-251 uM) and 204 uM (95% ClI, 5.9-1745 uM),
respectively. The lack of effect of most of the tested excipients on P-gp transport provides a wide
selection of excipients for inclusion in oral formulations with minimal risk of influencing the oral
bioavailability of P-gp substrates.
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Introduction

P-glycoprotein (P-gp, also known as Multidrug Resistance Protein 1 (MDR1) or ATP-
binding cassette transporter B1 (ABCB1)) is an ABC transporter with established roles

in drug disposition, efficacy and drug-drug interactions (DDIs) [1, 2]. Its ability to transport
numerous structurally diverse compounds, including xenobiotics and endogenous substrates,
and its ubiquitous expression in humans in tissues such as the intestine, kidney, liver, and
brain underlie its critical role in pharmacology [3-5]. P-gp is well recognized for its ability
to cause multidrug resistance in cancer through efflux of drugs out of the tumor [6]. In
addition, P-gp plays an important role in intestinal absorption and hepatic and urinary
excretion of drugs and serves as a biochemical barrier to the entry of xenobiotics into the
central nervous system, the placenta and the testis [1, 7]. The contribution of P-gp to the
pharmacokinetics and pharmacodynamics of many drug substrates has led to significant
interest in understanding the regulation of P-gp function by drugs and other xenobiotics [2,
3]

Oral formulations are the most common, convenient and preferred route for drug
administration and may involve drug release at the specific target site of absorption in a
controlled manner [8, 9]. To improve the absorption of a drug molecule with suboptimal
physiochemical properties (e.g., low solubility, limited permeability or high metabolism),
molecular excipients are included in the oral dosage form [10, 11]. Excipients are substances
other than the active pharmaceutical ingredient that are added to the formulation to increase
stability, solubility, swellability, viscosity, biodegradability or buffering capacity. In addition,
excipients can add nutrients, flavor or color, increase absorption, bioavailability or shelf life
of the active ingredient, and add pH dependency or oxidation-reduction potential for its
mechanistic action at a specific site [10, 12, 13]. Different excipients play distinct roles in
oral dosage forms and significantly influence characteristics of the final product [14-16].

Oral molecular excipients are considered safe additives to drugs with the potential to
interact with cellular proteins and alter their function. A recent study using computational
predictions, cell-based assays and /7 vivo rodent studies identified excipients that interact
with numerous target proteins and clinical safety targets [17]. One concern is that
interactions between P-gp and excipients may lead to variability in absorption between drug
formulations. Previous studies have largely focused on the identification of excipients that
inhibit P-gp to increase drug bioavailability. The most widely studied excipients identified
as P-gp inhibitors are polyethylene glycols, polysorbates, Cremophor EL and pluronics
[18-27]. The inhibitory interaction of Vitamin E-PEG with P-gp has been exploited to
increase the oral absorption of paclitaxel [28]. Similarly, the absorption of ganciclovir has
been enhanced using excipients such as Cremophor EL-35, Pluronic block copolymer F68,
PEG-400, Tween-80 and Labrasol, and the bioavailability of ranitidine was significantly
increased with PEG-400 [29-31].

Still, many excipients have not been screened for interactions with P-gp. In the current study,
123 orally administered molecular excipients listed in the FDA Inactive Ingredient Database
(https://www.accessdata.fda.gov/scripts/cder/iig/index.cfm) [32] were screened using two
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orthogonal systems, HEK and MDCK cells overexpressing human P-gp. These findings
expand our understanding of the interaction of oral molecular excipients with P-gp.

Materials and Methods

Materials

Calcein-AM (ENZ-52002) was purchased from Enzo Life Sciences. Poly D-lysine
(P6407), cyclosporine A (C1832), elacridar (SML0486), digoxin (D6003) and hygromycin
B (10843555001) were all purchased from Sigma Aldrich. Verapamil (06-541-G)

was purchased from Fisher Scientific. Dulbecco’s Modified Eagle Medium with

Glucose (DME-H21, CCFAAQ05), fetal bovine serum (FBS, CCFAPQ04), penicillin-
streptomycin (CCFGKO004), trypsin-EDTA (CCFGP001) and phosphate-buffered saline
(PBS, CCFALO001) were all purchased from the UCSF Cell Culture Facility. Dulbecco’s
PBS (DPBS) without calcium chloride and magnesium chloride was from Gibco (14190)
and 3H-labeled digoxin (NET222250UC) was purchased from Perkin Elmer. Purchasing
information for excipients was reported previously [33].

Cell lines and culture

Flp-In™-293 human embryonic kidney cells transfected with pcDNA5/FRT plasmid with
(HEK293-MDR1) or without (HEK293-EV) the ABCB1 cDNA were described previously
[34]. Cells were cultured in T-25 flasks in DMEM medium with 10% FBS, penicillin (100
U/ml), streptomycin (100 pg/ml) and hygromycin B (75 pg/ml) at 37°C in a humidified
incubator with 5% CO,. MDCK-hMDR1-cMDR1-KO cells have endogenous canine MDR1
knocked out and stably express human MDR1 and were kindly provided by Dr. Per
Artursson (Uppsala University) along with the corresponding MDCK-cMDR1-KO cells [35,
36]. MDCK-hMDR1-cMDR1-KO cells were grown in similar conditions as the HEK cells
except that hygromycin B was added at 400 ug/ml. Cells were passaged every 3—4 days
after reaching 80-90% confluency by incubating with 1 ml of 0.25% Trypsin-EDTA at 37°C
without shaking for 5-10 min, resuspending in DMEM medium and transferring to a 15 ml
Falcon tube. The cell suspension was centrifuged at 100g for 5 min, and the resulting cell
pellet was resuspended in 4-5 ml of supplemented DMEM medium as described above, then
diluted at a 1:4 or 1:5 ratio in a final volume of 8 ml and placed into a T-25 flask. Cells were
not used beyond passage 10.

Calcein accumulation assay

A calcein accumulation assay was performed as described previously [37]. In brief, HEK-
MDR1 and HEK-EV cells were seeded onto 96-well plates coated with 50 pug/ml poly-D-
lysine at a density of 8 x 10 cells/0.32 cm?2, 24 hours prior to experiments. Cells were
washed thrice with ice-cold PBS and incubated with calcein-AM (5 uM) in the presence
and absence of the studied excipient or the known P-gp inhibitor verapamil (500 uM)

at 37°C for 1 hr. The calcein accumulation assays were terminated by washing cells

thrice with ice-cold PBS. The amount of accumulated calcein was quantified by measuring
intracellular fluorescence at an excitation/emission of 485 nm/590 nm using a Genios Pro
fluorescence plate reader (Tecan, Switzerland). The inhibitory effect of tested excipients
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on P-gp-mediated specific transport of calcein-AM was expressed as a normalized calcein
accumulation ratio using the following equation:

Poertlfp_gp1
EV+I/EV_I

Normalized Calcein Accumulation Ratio =

where (P-gp + 1) and (P-gp — 1) represent the fluorescence of accumulated calcein in
HEK?293-MDR1 cells in the presence and absence of the excipient or known inhibitor,
respectively and (EV + 1) and (EV - I) represent the fluorescence of accumulated calcein
in the HEK293-EV cells in the presence and absence of the excipient or known inhibitor,
respectively.

assay

For transwell assays, procedures were modified from published reports [36, 38]. Briefly, 2.1
x 10* MDCK-hMDR1-cMDR1-KO cells/well were seeded onto Falcon 24 multiwell inserts
with a microporous polyethylene terephthalate membrane (351181, Corning Life Sciences)
and complementary 24 well plate (353047, Corning Life Sciences). During differentiation,
the volume of medium was 300 pl in the apical chamber and 1000 pl in the basal chamber.
The cells were differentiated for 7-10 days and lucifer yellow permeability assays were
carried out to check the integrity of the cell monolayer before the digoxin flux assays. Cells
were washed twice with Hanks’ balanced salt solution (HBSS) at pH 7.4 with calcium
chloride and magnesium chloride (Gibco 14025). Lucifer yellow (0.1 mg/ml) in HBSS

was added to the apical chamber and the basal chamber was filled with fresh HBSS. The
assembled plate was kept at 37°C for 1 hour and 15 pl aliquots were taken from the basal
chamber for fluorescence measurements. The % permeability was calculated on a per-well
basis as

(Fyp— Fp) x 100
(Fiy~= Fp)

where F,y is the fluorescence of a sample from an individual well, Fy, is the fluorescence

of HBSS and Fyy is the fluorescence of the lucifer yellow solution. Wells with cell
monolayer permeability of >3% were not used for the digoxin flux assay. After lucifer
yellow measurements, cells were washed with HBSS before the addition of fresh medium to
the apical and basal chambers. The cells recovered overnight and were used the next day for
digoxin flux assays.

Digoxin flux from the basal to apical side was measured as described in previous studies
[38]. Cells were washed twice with HBSS before addition to the basal chamber (700 pl)

of an HBSS solution of digoxin (6.35 nM 3H-labeled, final concentration 2.5 pM) in the
presence or absence of the known P-gp inhibitor cyclosporine A (10 pM) or the indicated
concentration of studied excipient. The same concentration of known inhibitor or excipient
and 0.1 mg/ml lucifer yellow were added to the apical chamber in HBSS (225 pl). Plates
were incubated at 37°C with shaking at 300 rpm and 25 pl aliquots were removed from
the apical compartment at 1, 1.5 and 2 hours and replaced with the same volume of apical
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solution. Samples (25 plI) were also taken from the basal chambers before the start and

at the end of each experiment to calculate the dpm/pmole ratio and for mass balance
calculations. Scintillation fluid (2.5 ml, 6013141, Perkin Elmer) was added to all apical and
basal samples and radioactivity was measured by liquid scintillation counting (Beckman
LS6500). Additionally, 15 ul samples were collected from the basal chamber at the end

of the assay for lucifer yellow fluorescence measurements. For data analysis, digoxin dpm
counts from the apical samples were converted to pmoles using the measured radioactivity
in the substrate solution. The rate of basal to apical transport was calculated by linear
regression using the timed samples and the effect of each excipient was expressed as a fold
change in transport rate compared to digoxin alone. Fold change in rate was calculated as

RB-A)+1

Foldchange =
RB-a)-1

where R(g-a) + 1 and R(g.a) - | are the rates of digoxin transport from the basal to apical side
in the presence and absence of known inhibitor or excipient, respectively. The permeability
of the cell monolayer at the end of the digoxin flux assay was calculated using lucifer yellow
as described above.

Excipient screening

An initial pool of 123 excipients for screening was a subset of 136 FDA-approved

excipients that have been described previously [33]. Excipients which are no longer used,
commercially unavailable, poorly soluble or formulated for inhalation were not included

in the screening. The excipients were screened at a concentration of 200 UM except those
with limited solubility (10 pM for Yellow 62 and 50 pM for docusate sodium salt, sodium
lauryl sulfate, cetyl pyridinium chloride, D&C Red No. 6, Qil Orange SS, propylparaben,
glyceryl caprylate and Yellow AB) and sugars (1 mM for sucrose, dextrose, D-tagatose,
mannose, galactose, maltose, fructose and sucralose). The screening of excipients included
three technical replicates for the calcein accumulation assays and two technical replicates for
the digoxin flux assays.

Dose-response analysis

Results

Potential P-gp inhibitors identified in each respective screen were further evaluated over a
range of excipient concentrations using the same assays. I1Csg estimates were obtained by
fitting the dose-response data using the log (inhibitor) vs. response — variable slope (four
parameters) relationship in GraphPad Prism 9.

Screening overview

A total of 123 molecular excipients were screened for their ability to inhibit P-gp transport
function in two different assays, a calcein-AM fluorescence-based accumulation assay and
a digoxin flux assay. The screened excipients represent diverse functional classes and
include flavoring agents (25%), dyes (20%), antimicrobial agents (12%), buffering agents
(8%), nutrient supplements (6%), solubilizing agents (4%), surfactants (4%), antioxidants
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(3%), diluents (3%), coating agents (2%) and plasticizing agents (2%). The overview of

the screening process is outlined in Figure 1. Potential P-gp inhibitors were subsequently
examined in dose-response studies to estimate 1Cs values. Finally, the potency of
excipients confirmed as inhibitors from either assay was compared to estimated intestinal
concentrations of the tested excipients to evaluate the potential for inhibition of human P-gp
in vivo.

Inhibition of calcein accumulation by excipients

Calcein accumulation was ~3-fold higher in the HEK-EV cells compared to the HEK-MDR1
cells and was robustly inhibited in the HEK-MDR1 cells by the known P-gp inhibitor
verapamil (Figure 2A). There was minimal effect of verapamil on calcein accumulation

in the HEK-EV cells (Figure 2A) and the normalized calcein accumulation ratio was 2.2

for verapamil (Figure 2B). Verapamil was included as a positive control in all screening
assays. The distribution of normalized calcein accumulation ratios is shown in Figure 2C
and the accumulation ratios are tabulated for all tested excipients in Table I. A threshold

of 40% increase in normalized accumulation ratios was used to identify the excipients with
the most potent effects on P-gp activity and identified 10 potential inhibitors. Individual
inspection of the +excipient/-excipient calcein ratios in each cell line for these potential
inhibitors differentiated between specific effects on P-gp activity from non-specific effects,
possibly due to cytotoxicity. Only two excipients (D&C Red No. 6 and D&C Brown No.

1) inhibited calcein flux at least 40% in the MDR1-overexpressing cells and had no effect
in the EV cells (Figure 2D). Seven excipients were eliminated as potential inhibitors due

to a non-specific effect resulting in a decrease in calcein ratios (+excipient/-excipient) in
both the control and MDR1-overexpressing cells (lower left quadrant in Figure 2D) that
translated into increased normalized calcein accumulation ratios (benzalkonium chloride,
docusate sodium, D&C Red No. 33, D&C Red No. 27, D&C Red No. 28, D&C Orange No.
4 and D&C Red No. 3). The remaining excipient with a normalized accumulation ratio >1.4
(NaHCO3) was also eliminated since it demonstrated <40% increase in calcein accumulation
in the MDR1-overexpressing cells. Dose-response studies with the two putative inhibitors
failed to validate either of these dyes as an inhibitor of P-gp at concentrations <300 uM
(Supplemental Figure 1), which is more than 100-fold higher than the maximum predicted
intestinal concentration based on the maximum potency per unit dose listed in the FDA
Inactive Ingredient Database [32].

Inhibition of digoxin flux by excipients

Basal to apical flux of digoxin was ~10-fold higher in the MDCK cells expressing

human MDR1 compared to the control cells that do not expresscanine or human MDR1.
Cyclosporine, a known inhibitor of P-gp, reduced digoxin flux in the human MDR1-
overexpressing cells to similar levels as in the control cells, indicating specific transport
of digoxin by P-gp (Figure 3A). Excipients were screened to identify potential inhibitors
of digoxin flux, using a decrease in flux of at least 40% as the cutoff (Figure 3B and

Table I). Four excipients were identified as potential inhibitors, two of which were not
considered further because of their interference with fluorescence measurements of lucifer
yellow (D&C Red No. 28) or increased lucifer yellow permeability (rhodamine B) (Figure
3C). The remaining two potential inhibitors were light green SF yellowish (45% decrease)
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and p-cyclodextrin (B-CD, 75% decrease). Dose-response analyses confirmed both of these
excipients as modest inhibitors of digoxin flux, with ICgq estimates of 168 uM (95% ClI,
118-251 pM, Figure 3D) and 204 uM (95% ClI, 5.9-1745 pM, Figure 3E) for p-CD and
light green SF yellowish, respectively (Figures 3D and 3E). In addition to D&C Red No.

28 and rhodamine B, seven more excipients could not be evaluated as P-gp inhibitors

in this assay due to their effects on cell monolayer permeability (benzalkonium chloride,
docusate sodium salt, sodium lauryl sulfate, cinnamaldehyde and cetyl pyridinium chloride)
or interference with the lucifer yellow assay (D&C Red No. 27, D&C Red No. 3) (Figure 3C
and Table I).

Discussion

Intestinal P-gp plays a critical role in limiting the bioavailability of numerous drugs and

its inhibition or induction can result in clinically significant drug-drug interactions [2—4].
While drug-drug interactions involving P-gp are extensively characterized both during drug
development and post marketing, P-gp interactions with excipients have largely been limited
to a few functional classes [18, 21, 39—-41]. Molecular excipients are commonly used to
optimize oral drug formulations and are generally considered to be inert. This tenet of
excipient inertness was tested in the current study with a panel of 123 oral molecular
excipients evaluated for their ability to modulate P-gp function /n vitro using two orthogonal
methods, an accumulation assay and a flux assay that indirectly and directly measured P-gp
transport, respectively. The tested oral excipients are used as flavoring agents, solubilizing
agents, antimicrobials, buffering agents, dyes and as nutrient supplements; most were inert
with respect to P-gp transport activity. Light green SF yellowish, a dye, and p-CD, a
solubilizing agent, were confirmed inhibitors with modest potency that is not predicted to
influence P-gp function in the human intestine. These findings provide useful information
towards developing an excipient selection strategy for pharmacologically active ingredients
in oral dosage forms.

Excipients can be added at high amounts relative to the active pharmaceutical ingredient
and in some cases are predicted to reach high intestinal concentrations within the limited
volume (~250 ml) of the small intestine [32]. The use of high screening concentrations

in both assays was based on an interest in only the most potent inhibitors with likely
clinical relevance and the expectation of relatively high gut concentrations of the screened
excipients. Despite these high concentrations, very few excipients had any effect on P-
gp-mediated transport of either calcein-AM or the cardiac glycoside digoxin. Only two
excipients with a normalized calcein accumulation ratio >1.4, D&C Red No. 6 and D&C
Brown No. 1, increased intracellular levels of calcein fluorescence 40% or greater in HEK
cells overexpressing human MDR1, without an effect on the control cells. However, dose-
response analyses did not confirm significant inhibition of P-gp-mediated transport using
the calcein accumulation assay and neither of these dyes reached the inhibition threshold
for basal to apical flux of digoxin. It is worth noting that D&C Brown No. 1 inhibited
basal to apical flux of digoxin by 32% and may warrant further evaluation as a potential
P-gp inhibitor. The two excipients identified as possible P-gp inhibitors in the digoxin flux
assay, light green SF yellowish and p-CD, were weak inhibitors with 1Csq values of 204
UM and 168 uM, respectively. Light green SF yellowish increased calcein accumulation 85%

AAPS J. Author manuscript; available in PMC 2022 September 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bajaj et al.

Page 8

and 44% in the HEK-MDR1 and HEK-EV cells, respectively, resulting in a normalized
accumulation ratio (1.28) slightly below the cutoff for inhibitor classification. Considering
that the increase in calcein fluorescence with addition of light green SF yellowish in the
MDR1-overexpressing cells was two-fold higher than in control cells, the results from this
screen also support its classification as a P-gp inhibitor. In contrast, B-CD had no effect on
calcein-AM efflux.

Most of the excipients screened in the present study have not been previously evaluated

for their potential to inhibit P-gp. One exception is the solubilizing agent B-CD, a cyclic
oligosaccharide consisting of (a—1,4)-linked a-D-glucopyranose units forming cages with
hydrophobic cavities and hydrophilic outer surfaces [42]. B-CD has been reported to
enhance the intestinal absorption of berberine hydrochloride, a P-gp substrate, not only

by increasing its dissolution rate, but also by inhibiting substrate-stimulated P-gp ATPase
activity [43]. Related cyclodextrin derivatives have been extensively studied as P-gp
inhibitors. Dimethyl- and methyl-p-CD have been characterized as P-gp inhibitors in cellular
efflux assays and /n7 situ intestinal absorption studies [40, 41, 44—49]. One mechanism for
this inhibition is release of P-gp from the cell membrane [44, 45, 47, 49]. Dimethyl-p-CD
was also shown to improve the bioavailability of tacrolimus in rats [48], supporting the
potential for cyclodextrins to inhibit P-gp and enhance bioavailability in humans. In contrast,
hydroxypropyl-B-CD, an excipient in the oral solution of itraconazole commonly used in
DDl studies, was recently demonstrated to reduce the permeability of fenebrutinib across an
MDCK monolayer and to limit fenebrutinib absorption in dogs [50]. These findings suggest
complicated interactions between drugs and cyclodextrins in humans, including the potential
for unintended DDIs during studies undertaken to inform drug labeling.

A recent screen of the same excipient library against breast cancer resistance protein
(BCRP) indicated little overlap between inhibition of BCRP and P-gp. Only light green SF
yellowish was identified in both studies, with a much higher potency for inhibition of BCRP
in membrane vesicles (ICso = 1.0 pM) compared to inhibition of P-gp-mediated digoxin flux
in the current study [51]. For drugs that are substrates of both P-gp and BCRP, the combined
inhibition of these transporters by light green SF yellowish could enhance bioavailability
through independent effects on the transporters. These findings may warrant caution for oral
drug formulations containing light green SF yellowish.

Although the MDCK transwell flux assay is considered a reasonable model for P-gp-
mediated efflux, the lack of host and microbial metabolizing enzymes, the inability to mimic
the transit of drugs through the intestine, and artificially high levels of P-gp expression limit
the direct extrapolation of these findings to humans. The maximum amount per unit dose of
B-CD and light green SF yellowish in marketed drug formulations is 133 mg and 40 mg,
respectively [32]. Considering an intestinal volume of 250 ml, this translates into a predicted
maximum intestinal concentration (Imax) 0f 470 uM for B-CD and 214 pM for light green
SF yellowish. The FDA regulatory guidance /n Vitro Drug Interaction Studies - Cytochrome
P450 Enzyme- and Transporter-Mediated Drug Interactions classifies transporter inhibitors
of potential clinical significance if the [Ihax] to [ICs] ratio is >10 [52]. [Imax]/[1Cs0] values
of 1.1 and 2.8 for light green SF yellowish and $-CD, respectively, suggest that neither of
these /n vitro P-gp inhibitors is likely to show clinically significant inhibition of P-gp in
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humans (Supplemental Table I). However, the incorporation of increased amounts of p-CD
into new formulations should be carefully evaluated for potential P-gp interactions.

A normalized calcein accumulation ratio was utilized to identify specific effects on P-gp
transport, as applied in earlier studies of P-gp inhibition to reverse drug sensitivity [53].
However, this ratio led to numerous false positives and negatives. It was expected that
there would be no effect on calcein-AM efflux in the HEK-EV cells, which held true

for both D&C Red No. 6 and D&C Brown No. 1. However, closer inspection of the

other potential inhibitors based on the normalized calcein accumulation ratio identified a
number of excipients that reduced fluorescence to a larger extent in HEK-EV cells than

in HEK-MDR1 cells, such that the normalized ratio was >1.4, the cutoff for inhibition.
These false positives could be due to toxicity of the compounds, which was consistent
with permeability measurements of lucifer yellow across the MDCK cell monolayer for
benzalkonium chloride and docusate sodium. Additionaly, since calcein-AM is also a
substrate for other ABC transporters endogenously expressed in HEK293 cells [54-56],
activating effects of these excipients on one or more of these transporters could lead to
increased calcein-AM efflux and a corresponding decrease in fluorescence. Interestingly,
a number of the excipients identified as false positives in the calcein accumulation assay
(D&C Red No. 3, D&C Red No. 27, D&C Red No. 28, D&C Orange No. 4, D&C Red
No. 33 and docusate sodium) led to confounding results in a similar screen against BCRP
[51]. These excipients inhibited BCRP overexpressed in Sf9 membrane vesicles, but not in
HEK?293 cells overexpressing BCRP. While these BCRP results may be explained at least
in part by differences in availability of the excipient in the Sf9 inside-out vesicles compared
to HEK293 cells, this cannot explain the current results with P-gp since both assays used
in this study required the excipients to be membrane permeable for transporter inhibition.
In addition to false positives, the normalized accumulation ratio also leads to potential false
negatives. For example, acid blue 9, naphthol blue black, and butylparaben did not reach
the inhibitor criteria based on the normalized accumulation ratio, although each increased
calcein fluorescence in the MDR1-overexpressing cells by at least 60%. Although these
excipients had no effect on digoxin flux, further investigation is warranted for potential
interactions with P-gp.

Differences in results with the two screening assays have several plausible explanations.
First, two substrates were used which may have different mechanisms of transport via P-gp.
While both calcein-AM and digoxin are highly hydrophobic, structural differences may
result in interactions with distinct residues in P-gp during transport. Similarly, identified
excipient inhibitors may interact with different residues in P-gp, making it reasonable that
the detection of P-gp inhibition is substrate dependent. We have previously shown that
P-gp genetic variants have different sensitivities to cyclosporine inhibition and that P-gp
inhibition is substrate-dependent [34]. A second difference in the assays was the use of
fluorescence versus radioactivity. Several of the dyes that were tested (D&C Red No. 28,
D&C Red No. 27 and D&C Red No. 3) interfered withfluorescence measurements for
calcein accumulation as well as permeability measurements using lucifer yellow. Differences
in sensitivity of transport measurement between the two substrates are also possible,
although the common use of both calcein-AM and digoxin for P-gp assays makes this

less likely [57]. A final difference in the assays is the cell types, a human kidney epithelial
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cell for the calcein-AM assay and a canine kidney epithelial cell that is polarized on a
semipermeable membrane for the digoxin assay. Differences in the permeability of the tested
excipients between the two cell lines cannot be ruled out.

Despite these limitations, consistent results between the current findings and published
studies support the validity of this screen. A recent evaluation of the effect of common

food additives on P-gp function demonstrated minimal effects, including many that showed
no inhibition in the current calcein-AM and digoxin screens (acesulfame K, aspartame,
neohesperidin DC, neotame, sucralose, DL-malic acid, fumaric acid, methylparaben and
ethylparaben) [58]. Additional excipients previously tested against P-gp with similar
negative results as the current study include lactose monohydrate, sorbitol, sucrose
palmitate, sucrose monolaurate and sodium lauryl sulfate [18, 21, 40, 41, 59-61]. However,
excipients such as polyethylene glycols, polysorbates, Cremophor EL and pluronics have
been shown to improve intestinal absorption of P-gp substrates using /7 sifuand animal
models by inhibiting P-gp activity [18-27, 61]. The current data expands the list of
molecular excipients that have been characterized with respect to P-gp interactions, allowing
for more informed decisions with regard to excipient selection for drug formulation.

Conclusion

In conclusion, a large number of oral molecular excipients were shown to not interact with
human P-gp, a critical membrane transporter in the human intestine. These data suggest
that diverse molecular excipients can be used in orally administered drug products with
limited risk of influencing the bioavailability of P-gp substrates. While 3-CD and light
green SF yellowish modestly inhibited human P-gp in vitro and, thus, are not likely to have
significant effects in humans, careful evaluation for their inclusion in new formulations may
be warranted.
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Design of screening for interaction of oral molecular excipients with P-gp.
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Figure2.
Identification of oral molecular excipients as P-gp inhibitors using a calcein-AM assay. [A]

Difference in calcein fluorescence of HEK-empty vector (EV) and HEK-MDR1 (P-gp) cells
after incubation with 5 pM calcein-AM in the absence and presence of the known P-gp
inhibitor verapamil (62.5 pM). The mean of four replicates for the HEK-MDR1 cells was
normalized to 1. Values are shown for each replicate and the lines represent the mean value.
[B] The data in panel A were transformed into normalized calcein accumulation ratios by
taking the ratio of fluorescence in the presence and absence of verapamil in the HEK-MDR1
cells to the ratio of fluorescence in the presence and absence of verapamil in the HEK-EV
cells. Values are shown for each replicate and the line represents the mean value. [C]
Normalized calcein accumulation ratios for 123 oral excipients are shown in decreasing
order. The dashed line at 1.4 represents the cut-off used to assign potential inhibitors. [D] A
scatter plot of the P-gp ratio with the EV ratio for the 123 molecular excipients that were
screened is shown. The dashed line at 1.4 represents the cut off used to assign inhibition of
P-gp. Excipients that inhibit P-gp at least 40% in the HEK-MDR1 cells and have no effect in
the HEK-EV cells are labeled.
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Identification of oral molecular excipients as P-gp inhibitors using a digoxin flux assay.

[A] The rate of basal to apical digoxin flux in canine MDR1 knockout (c(MDR1-KO) and
canine MDR1 knockout overexpressing human MDR1 (hMDR1) MDCK cells is shown in
the absence and presence of the known P-gp inhibitor cyclosporine (10 uM). Digoxin flux
rates are normalized to the average in the absence of inhibitor in the cMDR1-KO cells.
Values are shown for each replicate and the lines represent the mean value. [B] Fold change
in digoxin flux rate for 123 oral molecular excipients in decreasing order. The dashed line
at 0.6 represents the cut-off used to identify putative inhibitors. [C] Scatter plot of fold
change in digoxin flux rate with respect to mean lucifer yellow permeability for the 123

oral excipients that were screened. Excipients that inhibit digoxin flux at least 40% and with
lucifer yellow permeability <3% are labeled. Disruptions in both axes are used for better
visualization of the data. [D and E] Representative excipient dose-response curves for the
two putative P-gp inhibitors identified in the screening. Individual replicates from a single
experiment are plotted. The curve was fit using the log(inhibitor) vs. response — variable
slope (four parameters) relationship in GraphPad Prism 9. ICsq estimates were 168 UM (95%
Cl = 118-251 pM) for B-cyclodextrin and 204 pM (95% CI = 5.9-1745 uM) for light green

SF yellowish.
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