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Abstract

The effective suppression of adaptive immune responses is essential for the success of allogeneic 

cell therapies. In islet transplantation for Type 1 Diabetes, pre-existing autoimmunity provides an 

additional hurdle, as memory autoimmune T cells mediate both an autoantigen-specific attack on 

the donor beta cells and an alloantigen-specific attack on the donor graft cells. Immunosuppressive 

agents used for islet transplantation are generally successful in suppressing alloimmune responses, 

but dramatically hinder the widespread adoption of this therapeutic approach and fail to control 

memory T cell populations, which leaves the graft vulnerable to destruction. In this review, 

we highlight the capacity of biomaterials to provide local and nuanced instruction to suppress 

or alter immune pathways activated in response to an allogeneic islet transplant. Biomaterial 

immunoisolation is a common approach employed to block direct antigen recognition and 

downstream cell-mediated graft destruction; however, immunoisolation alone still permits shed 

donor antigens to escape into the host environment, resulting in indirect antigen recognition, 

immune cell activation, and the creation of a toxic graft site. Designing materials to decrease 

antigen escape, improve cell viability, and increase material compatibility are all approaches that 

can decrease the local release of antigen and danger signals into the implant microenvironment. 

Implant materials can be further enhanced through the local delivery of anti-inflammatory, 

suppressive, chemotactic, and/or tolerogenic agents, which serve to control both the innate and 

adaptive immune responses to the implant with a benefit of reduced systemic effects. Lessons 

learned from understanding how to manipulate allogeneic and autogenic immune responses to 

pancreatic islets can also be applied to other cell therapies to improve their efficacy and duration.
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1. Introduction

1.1. Type 1 Diabetes

Type 1 Diabetes (T1D) is an autoimmune disease caused by aberrant, but targeted, T-cell 

mediated destruction of insulin-producing beta cells in the pancreas [1]. The resulting loss 

of blood glucose regulation is associated with increased risks of vascular and neuropathic 

comorbidities [2]. Despite the fact that T1D is one of the most studied organ-specific 

autoimmune diseases, the various strategies aimed at intervention, prevention, or reversal of 

this disease have failed to match animal model predictions of success [3, 4]. Moreover, the 

global incidence of T1D has increased by 3–4% in the past thirty years, while the factors 

precipitating this rise remain uncertain [2, 5].

The field of biomedical engineering has made great strides in glucose sensor technologies, 

making exogenous insulin therapy easier for patients by creating minimally invasive closed-

loop systems [6]. However, an artificial pancreas approach, comprised of glucose sensors, 

control algorithms, and insulin infusion devices, cannot provide physiologic blood glucose 

control due to delays in glucose sensing from interstitial fluid and insulin action in 

peripheral tissues [7].

1.2. Clinical Islet Transplantation (CIT)

The clinical transplantation of pancreatic islets of Langerhans has the potential to provide a 

curative therapy where full physiological glucose-responsive insulin control is restored [8, 

9]. Clinical islet transplantation involves the procurement of the allogeneic cadaveric donor 

organ, mechanical disruption and enzymatic digestion of the pancreas, short-term culture 

of the resulting islet spheroids, and the infusion of the allogeneic pancreatic islets into the 

portal vein [10]. The donor islets travel within the bloodstream of the recipient’s liver until 

they become lodged in the microcapillaries, resulting in loss of blood perfusion in the liver 

tissue distal to the islet [11]. Based on the most recent clinical trial results, most patients 

(71.6%) receive multiple distinct islet infusions (n ≥ 2), with some receiving up to six 

separate islet preparations. It is also important to note that 12.5% of these infusions were 

procured from multiple pancreatic donors (2–3), meaning islets were pooled from different 

deceased donors in an attempt to deliver a therapeutic cell dose [12].

With the tremendous advances in donor islet procurement, islet culture, and transplantation 

techniques, this approach has resulted in several positive clinical trials, with substantial 

improvements in patient quality of life, restoration of glucose hypo-awareness, and enhanced 

glycemic control [9, 13–15]. However, the long-term outcomes of this cell therapy have been 

less than satisfactory, with a general precipitous decline of cell transplant mass that results 

in the majority of the patients requiring exogenous insulin supplementation after one year 

[16, 17]. The limited duration of this therapy, as well as the limitations in organ procurement 

and high cell demand, typically restrict this clinical procedure to a subset of patients with 

hypoglycemia unawareness and frequent severe hypoglycemic events [18]. Post hoc analysis 

of these extensive CIT trials has identified early innate immune events and potent adaptive 

immune responses as key contributors to the rapid decline in the transplanted cell function 

[19].
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Following the implantation of islets into the portal vein, cells are in direct contact with 

blood. This contact results in the instigation of multiple host responses, including the 

activation of complement and coagulation cascades, collectively termed the non-specific 

instant blood-mediated inflammatory reaction (IBMIR) [20, 21]. These early events lead 

to a significant loss of islet mass (up to ~60%) within two weeks post-implantation [22, 

23]. Systemic approaches used to regulate IBMIR have shown promise in pre-clinical and 

clinical studies; however, their use in standard practice remains challenging due to increased 

risk of bleeding [24]. Downstream of IBMIR, multiple innate and adaptive immune cells 

respond to the infusion of the foreign islet graft (Figure 1). In addition to the expected 

immune pathways activated in response to interactions with the allogenic cell source, 

Type 1 diabetic recipients also experience the re-initiation of autoimmune responses to the 

transplanted beta cells. These aggressive immune cell reactions must be fully characterized 

and potently suppressed to retain the efficacy of the foreign islet graft.

1.3. General Pathways of Allorecognition to Transplanted Cells

Alloimmunity describes the reaction of the host’s immune system to a genetically disparate 

donor graft from the same species. To reject the foreign cellular graft, three main stages of 

immune responses must occur: recognition, clonal expansion and effector cell maturation, 

and graft destruction. The recognition of transplanted donor cells by the adaptive immune 

system occurs through two major pathways: direct and indirect antigen presentation (Figure 

1) [25–28]. For direct allorecognition, host immune cells recognize alloantigens presented 

by major histocompatibility complex (MHC) ligands expressed by the donor allogeneic cells 

[29]. For indirect allorecognition, host immune cells recognize alloantigens processed and 

presented by host antigen presenting cells (APC) [29]. T cells (both CD4+ and CD8+) and B 

cells express the key receptors involved in allorecognition, which are the T cell and B cell 

receptors (TCR and BCR, respectively).

For transplanted organs and tissues, historical dogma has implicated direct antigen 

presentation as the dominant allorecognition pathway in early graft recognition [28, 29]. 

This is due to the route of allorecognition, which is more direct than the requirement of 

antigen processing and presentation in the context of self-MHC by host APCs in indirect 

recognition. However, recent examination of CD4+ and CD8+ T cell allorecognition and 

activation events have revealed challenges in clearly delineating direct from indirect, as there 

is significant interplay [30]. What is known about early adaptive immune cell recognition 

is that the presence of host professional APC (e.g., dendritic cells (DCs)) elevates acute 

rejection, likely by promoting both direct and indirect antigen recognition [31]. In addition, 

host T cell recognition of foreign MHC alloantigens is exceptionally high, with up to 10% 

of the recipient’s T cells recognizing just a single MHC alloantigen [30, 32, 33]. This 

results in high direct T cell recognition rates following cellular transplantation, with this 

frequency elevated with each MHC variant. This high recognition rate further facilitates T 

cell activation, as the co-binding of CD8+ T cells to MHC I and CD4+ T cells to MHC II 

in close proximity results in co-stimulation of their effector pathways [34, 35]. Given the 

key role of direct antigen recognition in islet graft rejection and the high propensity of MHC 

mismatches due to multiple islet infusions, approaches that mask these antigens or suppress 

co-activation processes would prove to be highly beneficial.
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While the indirect pathway may appear arduous and complex, the importance of the indirect 

pathway in acute and chronic graft rejection has been validated in several animal model 

studies [28, 36–39]. For example, a murine TCR transgenic system capable of tracking the 

CD8+ direct, as well as CD4+ direct and indirect pathways, observed a significantly higher 

expansion and effector cell maturation in the CD4+ indirect T cell population following 

allograft implantation, compared to either direct T cell populations [36]. Other murine 

models have also implicated the indirect recognition pathway as a key contributor to islet 

allograft rejection [40]. As indirect antigen recognition can be easily initiated at or distal 

to the graft site, immunomodulatory approaches to mitigate indirect antigen recognition are 

more focused on blocking the co-stimulation of CD4+ T cells.

Although only more recently demonstrated in vivo, the semi-direct pathway also provides 

a possible explanation to some phenomena not easily explained by direct and indirect 

antigen recognition pathways [31, 41]. The semi-direct pathway occurs when cell membrane 

components containing intact allogeneic donor MHC-peptide complexes are transferred to 

host dendritic cells and presented to the host T cells through direct contact with donor cells 

or through the internalization or attachment of donor exosomes [25, 30, 42]. With host 

DCs shown to present the intact MHC-peptide complexes from donor cells, the observed 

phenomenon of epitope linkage between the CD4+ T cells activated in this manner and 

the CD8+ T cells activated in the direct pathway finally has an explanation [43]. With 

this new recognition emerging, additional targets for more effective suppression of immune 

recognition can be identified [44].

Following allorecognition via direct, indirect, and/or semidirect pathways, the key immune 

cell players involved in the direct destruction of the foreign cells are the CD8+ cytotoxic T 

lymphocytes (CTLs), which are provided help by the CD4+ T cells (Figure 1) [30]. Growing 

evidence for the semidirect pathway suggests that this route of antigen presentation extends 

the period during which the direct CD8+ T cells can receive T cell help, allowing direct 

cytotoxic T cells to persist longer [30]. The CD4+ T cells, although typically noncytotoxic 

on their own, also have been shown to mediate the allograft rejection independently, 

conceivably through the Fas pathway, if activated through the direct route [45, 46].

The allograft immune response is believed to be majorly T cell-dependent, as indicated 

by the allograft tolerance in transplant studies in animal models with TCR α or β subunit 

deficiency [44]. However, the involvement of innate immunity should not be overlooked, as 

recent studies have underscored the role of monocytes and macrophages in the recognition 

of non-self in the transplantation setting, as well as the establishment of allospecific innate 

memory [47–49]. Additionally, the cells of the innate immune system contribute to non-

specific graft injury and facilitate the B cell-dependent antibody-mediated graft destruction 

pathway [44, 50]. Animal transplantation studies have shown that antibody production to the 

epitopes of the direct pathway is dependent on the help of T cells activated by host APCs 

[51]. Most importantly, only the indirect pathway results in antibody isotype switching in B 

cells, which is associated with graft antibody-mediated rejection (AMR) [30, 51] (Figure 1). 

As such, efforts focused on preventing graft rejection should expand to the modulation of 

APCs and B cells.
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1.4. Autoimmunity, a Special Concern for Islet Transplantation

In Type 1 diabetes, smoldering autoimmune responses to the newly transplanted allogeneic 

beta cells is an additional facet that contributes to graft recognition and rejection. This is 

due to the presence of memory T cells specific to type 1 diabetes antigens. Memory T cells 

naturally arise following the activation and resolution of an immune response to a cognate 

antigen exposure [52]. Following resolution, a small fraction of T cells persists and converts 

into long-lived memory T cells, which serve to provide future protection in cases of antigen 

re-exposure [52, 53]. Importantly, memory T cells react to the re-exposure to the cognate 

antigen more rapidly and robustly than their naïve counterparts [52].

In most clinical islet transplantation cases, the donor and host are not HLA (human 

leukocyte antigen) matched, however, in the cases of HLA matching, such as identical 

twin and HLA-identical sibling transplants, the host autoreactive T cells restricted to the 

shared MHC molecules can contribute to the rejection of the islet allograft via direct 

recognition pathway [54–56]. In cases with disparate MHC genes, the self-reactive T cells 

can still mediate the allograft rejection through the indirect antigen recognition pathway. For 

example, the implantation of islet allografts into autoimmune diabetic NOD mice resulted 

in the infiltration of autoreactive T cells that exhibited both allo- and auto-reactivity [54]. 

This finding supports the hypothesis of “heterologous alloimmunity”, which postulates that 

memory phenotype T cells specific for one cognate antigen presented by self MHC molecule 

can also facilitate immune reactions against other peptides presented by non-self MHC, 

conceivably resulting from peptide molecular mimicry [57–59].

Additionally, compared to naïve T cells, memory T cells are less susceptible to standard 

immunosuppressive regimens [59–63], indicating that islets infused within T1D patients are 

insufficiently protected. This concept was validated in retrospective analyses of clinical 

pancreas and simultaneous pancreas-kidney (SPK) transplant recipients [64–67], which 

observed the selected destruction of the allogeneic beta cells, but not other allogeneic 

tissues, and the elevation of T1D autoantibodies, in spite of HLA matching and continuous 

immunosuppression [65, 67–69]. These results indicate that suppressing adaptive immune 

responses to allogeneic cellular transplants in patients with pre-existing autoimmunity is 

extremely difficult, as the self-reactive T-cell effector memory populations are, in fact, 

dual-reactive and mediate allograft rejection [70].

2. CIT Immunosuppression

To prevent the prompt rejection of the islet transplants, diabetic recipients must receive 

a continuous and systemic cocktail of immunosuppressive drugs. Most anti-rejection 

regimens for organ transplantation are two-phased: an aggressive depletion of immune 

cells in the induction phase, which significantly reduces the frequency of acute graft 

rejection; and continuation of graft protection in the maintenance phase [71, 72]. The 

use of immunosuppressive drugs for islet transplantation is typically focused on curbing 

alloimmune responses, with the induction therapeutics administered immediately prior 

to transplantation and the maintenance phase immunosuppressive agents administered 

throughout the lifetime of the graft (see Table 1 for summary of drugs used in clinical 

islet transplant regimens).
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Early agents used in the induction phase were interleukin-2 receptor antagonists (IL-2RAs), 

such as basiliximab and daclizumab, as they offered a rapid control of T cell populations 

through inhibition of clonal expansion without T cell depletion [73–75]. These agents have 

mostly been replaced with antibody-based antithymocyte globulin (ATG), teplizumab, and 

alemtuzumab, which induce robust T cell depletion, as this approach is more effective 

in preventing acute rejection [59, 76–80]. Studies have shown, however, that antibody-

mediated T cell depletion spares effector memory lymphocytes, which contribute to allo- 

and auto-reactivity in graft rejection [60, 61]. Thus, recent approaches combining T cell 

depletion with TNFα inhibition via infliximab or etanercept, with or without IL-2 inhibitors, 

have observed improved duration of efficacy with reduced side effects [81, 82].

Agents used in the maintenance phase for islet transplantation differ from standard organ 

transplant approaches due to the sensitivity of islets to steroids [83]. The replacement of 

standard corticosteroids with calcineurin inhibitors (CNIs) and the mechanistic target of 

rapamycin (mTOR) inhibitor, sirolimus, resulted in a dramatic improvement in the efficacy 

of islet grafts [14, 15]. CNIs, cyclosporin A and tacrolimus, are effective in the maintenance 

phase of islet transplantation as they effectively curb both naïve and memory T cell 

populations [59, 62]; however, this attribute comes at the cost of decreased general immunity 

for patients [62]. CNIs have also been associated with beta cell toxicity and post-transplant 

diabetes mellitus (PTDM) in solid-organ transplants [84, 85]. Contrarily, mTOR inhibitors, 

like sirolimus, suppress naïve T cell activation and clonal expansion while promoting 

regulatory T cells, which makes it an attractive agent in the quest to induce graft tolerance 

[86]. Sirolimus, however, has been associated with increased morbidity and islet toxicity 

[87–89]. Thus, recent protocols have broadly replaced sirolimus with mycophenolate mofetil 

(MMF), which inhibits T cell proliferation and downregulates the expression of lymphocyte 

adhesion molecules required for graft infiltration [12, 90]. Another major advantage of 

MMF is its ability to reduce the need and/or dosage of CNIs [9, 81].

In the quest to reduce the use of both CNIs and mTOR, other immunosuppressive targets 

have been developed. Belatacept, a fusion protein with an inhibitory action dependent 

on a T cell’s maturation state, paired with sirolimus, has been shown to prolong islet 

allograft survival in a non-human primate study and allow for the achievement of insulin 

independence in 5 patients for over 500 days post transplantation when additionally 

combined with MMF [91, 92]. As belatacept does not affect memory T cell populations, 

its suppressive effect is limited in comparison to the CNIs, conceivably rendering belatacept 

suboptimal in cell therapy for patients with pre-existing autoimmunity [59, 63]. Other 

approaches have targeted effector memory cells via blocking of adhesion molecules, as these 

become upregulated on T cells as they mature [59, 93]. This approach, although partially 

unverified in clinical islet transplantation, includes the use of MMF in the induction phase, 

as well as blockades of adhesion markers leukocyte function-associated antigen-1 (LFA-1) 

via efalizumab [92, 94, 95], CD2 via alefacept [96–98], very late antigen-4 (VLA-4) 

via natalizumab [99], or lymphocyte Peyer’s patch adhesion molecule-1 (LPAM-1) via 

vedolizumab [100]. Although these therapeutics require further validation of safety and 

long-term efficacy, they lay the foundation for targeting key immune pathways to allogeneic 

islet transplantation within autoimmune patients.
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While pharmacotherapy approaches are potent, they come with the requirement of lifelong 

and stringent medication adherence by the patient and the associated high risk of systemic 

side effects [101–103]. With these elevated risk and compliance needs, islet transplantation 

will remain relegated to a selected T1D cohort experiencing extreme challenges in glycemic 

control. As such, translation of systemic to targeted and localized immunosuppression, as 

well as the incorporation of more immunoregulatory methods, is needed to treat a broader 

population.

3. Effects of biomaterial approaches on immune pathways in islet 

transplantation

3.1. Biomaterial Immunoisolation

With direct antigen recognition as a key pathway that initiates adaptive immune responses, 

approaches that mask the islet cell surface could substantially suppress immune reactivity to 

the implant (Figure 2). Contrary to solid-organ transplantation, islet clusters permit ease in 

the incorporation of biomaterial-based approaches. Cellular encapsulation involves masking 

of the cell surface from the immune system by imparting a physical, semipermeable, 

polymer barrier [104–106]. The barrier must balance blocking non-specific IBMIR, as well 

as allo- and auto- direct recognition and rejection, while also allowing the effective exchange 

of nutrients, oxygen, metabolites, and hormones, such as insulin. To achieve this balance 

of protection and exchange, the pore size of the encapsulating material must be highly 

controlled. The most desirable porosity would be one that allows the efficient permeation 

of glucose (0.18 kDa; 0.4 nm) and insulin (5.8 kDa, 1.35 nm), but prevents immune cell 

(~8–15μm), immunoglobulin G (150 kDa; 5.9 nm), immunoglobulin A (300–400 kDa), 

complement C1q (410 kDa), and immunoglobulin M (950 kDa) infiltration [107, 108]. This 

tight pore range is challenging to impose, except in highly controlled porous membranes 

[109]. Furthermore, based on experimental evidence, molecular weight and Stokes radius are 

not the only aspects governing the diffusion of the molecules into the hydrogel [108].

Hydrogels are widely used in cell encapsulation, as their mechanical properties, along with 

the high hydration degree, mimic soft tissues [110]. They can be synthesized in the micro 

and macro scale, which typically imposes a volume increase that prevents intrahepatic 

infusion [111–113]. To limit cytotoxicity, the process of hydrogel gelation must occur at 

physiological conditions with mild cross-linkers, which lead the field to the frequent use 

of alginate, agarose, and polyethylene glycol (PEG), as well as chitosan, collagen, and 

cellulose in cell encapsulation [110, 114–119].

Alginate is the most extensively used and studied microencapsulation material, reaching 

the stages of non-human primate and clinical trials [111, 114, 120–123]. Although 

the mechanical properties, pore size, and permeability of the alginate microcapsules 

cannot be independently altered, the monomer ratios, molecular weight, and utilization 

of different divalent cations for cross-linking can be utilized to adjust these parameters 

[124, 125]. Furthermore, the permselectivity of the alginate can be modified by coating 

the hydrogel with poly-L-lysine (PLL), PEG, and other polycations, resulting in improved 

immunoisolation in selected animal studies [126–130].
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Agarose macrogels and microbeads have also been explored in animal allograft and 

autoimmune diabetes models, with one study showing protection of islet allografts in 

nonobese diabetic (NOD) mice for 100+ days [131–133]. The advantages of agarose include 

its ease of fabrication, temperature-controlled gelation, inert properties, and enhanced in 
vivo stability, when compared to alginate. The immunoisolatory properties of agarose can 

also be modulated via gel concentration, which allows for some degree of customization 

[134]. However, agarose exhibits some instability over time in the presence of cells, which 

limits it durability in vivo [135].

An alternative to encapsulating hydrogels sourced from natural materials is poly(ethylene 

glycol) (PEG). The synthetic and modular nature of PEG results in a high degree of 

control over permselectivity, cross-linking density, stability, and reactivity [136–138]. Unlike 

alginate, which swells over time under physiological conditions, PEG withstands osmotic 

stress [125, 139]. Its chemical structure also allows for relatively easy functionalization 

with extracellular matrix (ECM) or peptides such as arginylglycylaspartic acid (RGD), 

rendering it a highly versatile polymer for cell encapsulation [140–143]. Macro- and micro-

scale PEG-based hydrogels have been used for islet encapsulation, with promising survival 

and immunoprotection observed in animal models [144, 145]. Leveraging cross-linking 

methods and fluidic technology, conformal coatings, on the scale of tens of microns, 

have also been generated around islet and stem-cell derived beta cell clusters, resulting 

in promising protection in several diabetic murine models [146, 147]. Further studies are 

needed, however, to translate a PEG-based hydrogel to larger animal models and to validate 

the long-term durability of the material.

Another method for masking the cellular surface is via polymer cell grafting, where 

polymers are bound to the cell or spheroid surface to mask cell surface proteins and 

antigens. This approach imparts a negligible increase in cell volume, which allows for 

the preservation of the current clinical transplant site; however, it is challenged by limited 

control over permeability and the need for highly cytocompatible polymers and cell surface 

conjugation methods. Long-chain PEG polymers are the most popular material used in this 

approach, as the terminal ends of the polymer can be easily controlled for selected cell 

surface ligation and the polymeric properties of PEG are inherently anti-fouling [148–150]. 

Islet surface modification using PEG has shown significant promise in both rodent and non-

human primate diabetic models when combined with a reduced immunosuppressive regimen 

[112, 148, 151–154]. It is suspected that polymeric cell surface grafting reduces early 

inflammatory and innate immune responses to the implanted islets through the generation 

of a zone of hydration on the islet surface by the PEG chain [155]. However, the long-term 

immunosuppressive effects of PEG grafting remain unclear as the anti-fouling effects are 

likely short-term and intra-islet host cell infiltration have been observed. In addition to 

long-chain PEG grafting, other ultrathin layer-by-layer approaches have shown promise in 

masking the islet surface within theoretically more durable coatings that still provide the 

benefits of intraportal infusion [156–160].

While highly promising in murine models, the success of biomaterial encapsulation 

approaches in larger animal models and clinical trials have been limited. Of concern is that 

the efficacy of immunoisolation devices relies on the semipermeability of encapsulating 
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materials, which are designed to ideally allow diffusion of nutrients, oxygen, and 

metabolites, while blocking host cells, antibodies, and complement to protect the graft [108, 

114, 121]. Hydrogels with a porosity sufficient to block direct cell contact can effectively 

block the direct antigen recognition pathway [161]. Additionally, such hydrogels can block 

the contact-dependent CD8+ T cell-mediated killing resulting from the indirect pathway, 

which remains unaffected by encapsulation, as the antigens shed by donor cells can still 

escape the material barrier, become processed, and be presented by the host APCs to the host 

T cells [161]. Furthermore, the permeability of the barrier typically supports the diffusion 

of small pro-inflammatory cytokines (e.g., TNF (17–51 kDa), IL-1 (20 kDa), IFNγ (17kDa) 

released by indirectly activated T cells into the capsule [108]), meaning the cellular graft 

could still experience cytokine-mediated cell death (Figure 2) [161].

In addition to T cell activation, humoral immune pathways can also play a role, as 

accelerated graft failure is associated with the presence and elevation of islet autoantibodies 

pre- and post-transplantation of islet allografts into T1D recipients [69, 162, 163]. Therefore, 

the biomaterial permeability should be tailored to block antibody-mediated graft destruction 

[23, 108]. In addition, in vivo animal studies show that biomaterial encapsulation is 

insufficient in preventing the activation of humoral immunity through the indirect pathway, 

resulting in the generation and accumulation of donor-specific antibodies at the graft site, 

albeit with mixed results in terms of infiltration through the material [123, 164–167]. 

While antibodies may be blocked from directly interacting with the cellular graft, the de 
novo generation of alloantibodies has deleterious consequences in supporting other immune 

responses, as well as in patient sensitization [50].

3.2 Reducing encapsulated-cell death and material immunogenicity

Biomaterials initiate a foreign body reaction (FBR) depending on their chemical 

composition, shape, size, and geometry [168, 169]. Directly following implantation, the 

biomaterial surface becomes coated with a range of host proteins, where the biomaterial 

surface properties modulate the type and conformation of the adsorbed proteins [168, 170]. 

This process occurs even before the host immune cells have a chance to interact with the 

biomaterial surface, which means that the innate immune cell adhesion molecules interact 

with these surface-adsorbed proteins and direct the resultant immune response [168, 171, 

172]. Following inflammatory cell infiltration and interaction with the biomaterial surface 

and adsorbed proteins, monocytes differentiate into macrophages and mediate the wound 

healing process at the site of implantation [168]. In most cases, the response to the material 

persists, resulting in a shift toward chronic inflammation, which leads to macrophage fusion, 

the generation of foreign body giant cells (FBGCs), and granulation tissue formation, 

leading to eventual foreign body response (FBR) via fibrous capsule formation around 

the implant [168]. When cells are placed within these biomaterial implants, host responses 

are further exacerbated, as shed antigens and danger signals released by the cells activate 

the adaptive immune arm [123, 164]. Globally, these responses detrimentally impact graft 

efficacy. For example, two recent clinical trials of islet and beta-cell transplants exhibited 

substantial declines in cellular function as the host responses to the implant transitioned 

from acute to chronic inflammation, and the FBR fully encapsulated the graft [173, 174].
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A primary approach to modulate FBR is via the manipulation of the material properties, 

such as chemical structure, material charge, surface topography, mechanical properties, and 

crosslinking features. Improvement of material purity can improve biocompatibility and 

reduce immunogenicity [175, 176]. In addition, incorporating materials with biocompatible 

features, such as PEG or zwitterionic hydrogels, has shown decreased FBR to the implanted 

materials [177–180]. Alternatively, utilizing natural degradation processes of the material 

and/or modulating the material geometry can direct a more “healing” host cell response to 

the implant [181–183]. The careful selection and tailoring of material properties and features 

to minimize foreign body responses to the implant also imparts additional benefits in 

adaptive immune responses. Specifically, minimizing material immunogenicity can skew the 

innate APC population towards a more tolerogenic phenotype, which can reduce activation 

of the adaptive effector cells and potentially improve implant efficacy and/or graft survival 

[179, 184] (Figure 3).

Beyond responses to the material alone, the cellular cargo contained within the implant 

also dramatically contributes to the nature of the host response. Thus, minimizing the stress 

and death of the transplanted cells is crucial for curtailing the immune response to the 

graft. Intracellular factors, such as damage-associated molecular patterns (DAMPs), are 

released during cell necrosis due to tissue injury related to the donor organ procurement 

process [185]. Clinical studies in solid-organ transplants, where living-donor grafts are 

possible, such as kidney or liver, showed lower levels of immune cell infiltration and 

cytokine concentrations compared to cadaveric donor grafts [186, 187]. Studies show that 

both DAMPs and autoantigens, which are released during secondary necrosis, can activate 

APCs and induce an adaptive immune response, promoting chronic inflammation, fibrosis 

formation, and eventual graft rejection [188–190]. Thus, in the selection of the implantation 

site, awareness of vascular accessibility to ensure adequate nutrient delivery should be a 

critical parameter [191, 192]. While inflammation at the implant site can have deleterious 

effects for the transplanted cells, certain pro-inflammatory cytokines and immune cells 

have been shown to be in fact pro-angiogenic [193, 194]. This in turn indicates that low 

levels of inflammation at the implant site might be beneficial to the long-term survival 

of transplanted cells by promoting device vascularization. Alternatively, biomaterial and/or 

cellular approaches that enhance vascular infiltration into the graft site should result in 

improved cell viability and function [195–197] (Figure 3). For encapsulation devices on 

the macroscale, ensuring high cellular viability post-implantation is particularly challenging, 

as their large scale barriers introduce inefficient nutrient delivery [198]. Promoting more 

efficient accessibility of critical nutrients, particularly oxygen, is a challenge that several 

groups [199–202], including our own [203], have aimed to resolve. Enhancement of 

encapsulated beta cell viability has also been pursued through the use of agents acting 

on the encapsulated cells directly and provides an additional route of curtailing the indirect 

pathway, where donor cell death plays a critical role in delivering antigens to the host 

APCs [204–206]. Overall, supporting the viability of encapsulated islets results in two-fold 

benefits: it reduces the release of immunogenic intracellular contents; and preserves the cell 

load required for the achievement of glycemic control.

Samojlik and Stabler Page 10

Acta Biomater. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3 Designing materials for active and local immunomodulation

In addition to the careful selection of material properties and the implantation site, the 

biomaterials used for cell transplantation can be further enhanced by leveraging them for 

controlled drug release. These local drug delivery platforms can act as a sparing factor 

for systemic immunosuppression, resulting in decreased systemic side effects and enhanced 

general immune equilibrium, as well as a means to locally deliver novel agents that may 

not be suitable for systemic delivery. These local agents can target specific or multiple 

immune pathways that are activated following the implantation of either an unencapsulated 

or encapsulated cell platform (Figure 4).

The transplantation procedure, as well as cell death within tissue graft, initiates local tissue 

inflammation, which plays a key instructive role in both innate and adaptive immune 

responses, such as cell maturation and pro-inflammatory cytokine production [207]. This 

is further exacerbated in cases of cadaveric organ transplantation, such as clinical islet 

transplantation, due to a series of inflammatory changes occurring at the time of death of the 

donor that lead to inferior graft outcomes when compared to living donor transplants [187, 

207]. The local delivery of anti-inflammatory agents, cytokines, and antioxidants provide 

an approach for reducing inflammation and downstream immune activation pathways, while 

potentially promoting a “healing” microenvironment at the graft site [208–211] (Figure 4.1). 

However, further studies are required, especially in T1D autoimmune models, to validate the 

potential efficacy of these approaches.

Utilization of the implant material to locally deliver agents is a classic approach of 

controlled drug delivery. Novel approaches incorporating immunosuppressive drugs, such 

as mTOR inhibitors, CNIs, and MMT, for local delivery provide a potential solution to the 

comorbidity problem associated with the systemic use of these agents [212–215] (Figure 

4.2). In a complementary approach, a recent promising study adapted dibenzocyclooctyne 

(DBCO)-azide click chemistry to create re-fillable alginate drug depots capable of 

binding freshly injected intravenous functionalized drugs, allowing for long-term localized 

immunosuppression [212]. A challenge of translating effective systemic agents to local 

approaches, however, is that the delivery method can impart differences in immune cell 

effect or impair implant engraftment/survival. For instance, while systemic delivery of 

fingolimod has been found to reduce islet allograft rejection in animal model studies, its 

local delivery was detrimental to islet viability and function [216].

Local immunomodulation can also be achieved by looking beyond traditional 

immunosuppressive agents and instead harnessing the potential of local chemokine delivery 

to selectively limit the infiltration of effector T cells (Figure 4.3). In addition to impairment 

of recruitment, selective agents can also preserve or even recruit regulatory T cells to the 

implant site. For example, the chemokine CXCL12 has been shown to impart such effects 

on host T cell populations, while delivering survival signals for beta-cells and curbing 

inflammation [217–219]. Linking this chemokine onto the islet surface showed prolonged 

allograft survival but did not translate to the autoimmune diabetes mouse model [220]. 

When CXCL12 was combined with alginate encapsulation, graft efficacy and durability was 

substantially increased in both standard diabetic allograft and NOD models, when compared 

to alginate encapsulation alone [220]. In addition, further tests indicated that CXCL12 plus 

Samojlik and Stabler Page 11

Acta Biomater. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



encapsulation protects grafts from memory T cells. In this study, recipient NOD mice were 

pretreated with skin transplantation from the donor mice strain, which subsequently rejected, 

and then received CXCL12-alginate encapsulated allograft islets [220]. Despite the presence 

of memory T cells created through the allograft skin transplantation and rejection process, 

the transplanted CXCL12-alginate encapsulated allograft islets survived significantly longer 

than alginate alone implants [220]. Given that both the CXCL12 and alginate encapsulation 

approach was needed to impart the desired effect, this approach implicates that the immune 

pathways blocked by encapsulation are distinct to those impaired by CXCL12.

Another approach to control immune responses seeks to mimic natural inhibitory and/or 

tolerogenic immune pathways through the modulation of specific immune cell interactions, 

such as Fas- Fas ligand (FasL) and programmed death ligand (PD-L1) (Figure 4.4). The 

immune checkpoint receptor Fas is a particularly desirable target, as nearly all cells of 

the immune system express this receptor and binding initiates activation-induced cell death 

(AICD), a native pathway crucial for the maintenance of self-tolerance [221]. While the Fas- 

Fas ligand (FasL) apoptotic pathway has long been implicated in the immunopathogenesis 

of autoimmune T1D, it is emerging as a target of interest in islet transplantation to trigger 

apoptosis in target cells after direct cell surface contact [221–224]. Recent approaches had 

used materials to locally present Fas ligand within the transplant site, where a shift in graft 

survival of allogeneic islets was observed when the FasL material was present [222–224]. 

The efficacy of this approach was further elevated when combined with a systemic short 

course of rapamycin, implicating a synergy between the local and systemic agents.

Cytotoxic T lymphocyte populations are more susceptible to FasL than the regulatory T cell 

populations, which adds to the attractiveness of this approach in inducing graft tolerance 

[221]. However, animal studies indicate that primed memory T cells were less susceptible 

to Fas-mediated AICD when compared to their naïve counterparts, potentially implicating 

that this approach might not be suitable for CIT in T1D patients where pre-existing 

autoimmunity results in a large population of memory T cells [54, 70, 225].

Of interest, the matter of delivery and presentation of FasL may be a key modulator 

of the downstream immune response, as FasL exists in two forms leading to duality in 

mediating apoptosis: a pro-apoptotic membrane-bound form expressed on the cell surface; 

and a usually anti-apoptotic soluble form created by proteolysis of the membrane-bound 

form that can become pro-apoptotic if bound to the surrounding matrix proteins [221, 226, 

227]. This polarization of action is important to consider when designing biomaterials 

aimed at local immunomodulation, as presenting this protein in a soluble, rather than 

surface grafted, manner could switch downstream pathways from apoptotic to effector [227]. 

This phenomenon might not be isolated to the function of FasL, thus requiring factoring 

in the manner of delivery and the kinetics of therapeutic dose release in the design of 

immunomodulatory biomaterials.

The local presentation of another immune checkpoint, programmed cell death-ligand 1 

(PD-L1), has also recently showed improved survival of allogeneic islet allografts in 

rodent models, when combined with short-course rapamycin treatment [228, 229]. For 

this approach, two methods were examined: local surface presentation onto the islet itself; 
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and local surface presentation on a microbead co-transplanted within the islet graft. While 

the streptavidin (SA) mediated grafting of PD-L1 directly on islet surface supported 

lasting allograft survival and function in 90% of hosts, the presentation of PD-L1 on 

the surface of PEG-4MAL hydrogel microspheres resulted in the long-term function of 

~58% of allografts [228, 229]. Both approaches yielded increases in local populations 

of regulatory T cells, implicating the benefits of leveraging this checkpoint in promoting 

more regulatory phenotypes. While the direct islet grafting approach resulted in improved 

allograft protection, the off-the-shelf accessibility of the material-only approach may lead to 

ease in clinical translation. Future studies should examine the efficacy of this approach in 

autoimmune models.

Overall, the examination of adaptive immune responses to allogeneic islets indicates the 

need for a combinatory approach that targets multiple activation pathways. For example, 

combining cellular encapsulation, which blocks the direct recognition pathway, with 

localized immunomodulatory agents that target both the indirect pathway and memory T 

cells would result in optimal transplant protection. As local immunomodulation may be 

imperfect, there are other complementary approaches that may provide further benefits, such 

as the integration of agents capable of scavenging diffusible pro-inflammatory cytokines 

before they can impart cellular damage [230]. In addition, a deeper understanding of 

knowledge gaps in the field regarding the role of indirect allorecognition in the autoimmune 

setting, and the resulting potential drug targets is needed to provide more targeted 

immunomodulatory approaches. Recent research in the development of humanized mouse 

models and benchtop diabetes screening platforms generated using human cells can facilitate 

the discovery of these key immune pathways [231, 232].

4 Conclusions and Future Recommendations

Beta cell replacement therapy has tremendous potential in providing durable and 

physiological glycemic control in people with T1D. Restricting its success, however, are the 

aggressive allogeneic and autoimmune responses following cadaveric islet infusion. While 

current immunosuppressive regimens are generally successful in curbing allogeneic immune 

responses, they fail to control the autoreactivity of the host immune system and restrict this 

therapy to the most at-risk T1D cohort.

The careful and targeted utilization of biomaterial-based approaches has the potential to both 

improve immunosuppression and decrease systemic impacts. While cellular encapsulation 

has been an appealing and well investigated approach to block direct antigen recognition 

and cell-mediated effector immune cell attack, it is evident that it is insufficient in blocking 

indirect immune activation and its downstream pathways, particularly in large scale models 

and humans. As such, tailored immunomodulatory biomaterial approaches that provide 

more instructive cues to the responding immune cells are needed, either to suppress their 

activation or convert these cells towards a more regulatory phenotype. The inherent modular 

nature of materials provides a unique platform for customizing immunomodulatory materials 

that inhibit or suppress specific pathways at the graft site. Thus, future work should continue 

to leverage materials for not only classic drug release, but also for scavenging activity and 

delivering instructional cues.
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Finally, in order to efficiently optimize immunomodulatory biomaterial device design for 

cell therapy, more clinically predictive in vitro studies are needed to fill the knowledge 

gaps. Utilizing simplified but robust in vitro platforms for testing of biomaterial approaches 

conceivably allows for reductions in time from bench to bedside, research cost, and use 

of animals in in vivo studies. Lessons learned from understanding how to manipulate the 

allogeneic and autogenic immune responses to pancreatic islets can be applied to other 

diseases where underlying autoimmunity stands in the way of potential cell therapy, such 

as autoimmune thyroiditis (Hashimoto’s disease) and autoimmune adrenalitis (Addison’s 

disease) [233–235]
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Statement of significance

This review explores key immunologic concepts and critical pathways mediating 

graft rejection in Type 1 Diabetes, which can instruct the future purposeful design 

of immunomodulatory biomaterials for cell therapy. A summary of immunological 

pathways initiated following cellular implantation, as well as current systemic 

immunomodulatory agents used, is provided. We then outline the potential of 

biomaterials to modulate these responses. The capacity of polymeric encapsulation to 

block some powerful rejection pathways is covered. We also highlight the role of cellular 

health and biocompatibility in mitigating immune responses. Finally, we review the use 

of bioactive materials to proactively modulate local immune responses, focusing on key 

concepts of anti-inflammatory, suppressive, and tolerogenic agents.
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Figure 1: Summary of immune pathways of recognition and rejection following implantation of 
allogenic pancreatic islets.
(1) Direct antigen presentation: Donor islet antigen presenting cells (APCs) present antigens 

to the host T lymphocytes through MHC Class I for CD8+ T cells and MHC Class II 

for CD4+ T cells. CD4+ T cells become activated and provide help to the CD8+ T cells, 

resulting in their clonal expansion and activation. Auto-antigens can also be recognized in 

this manner, when donor and host MHC match. (2) Donor cell death: Dying transplanted 

cells shed antigen and release danger-associated molecular patterns (DAMPs). (3) Antigen 

uptake and processing: The presence of DAMPs during antigen uptake and processing by 

APCs initiate and perpetuate effector signals in APCs (e.g. elevated MHCII expression). 

(4) Indirect Antigen Presentation: Processed host allo- or autoantigens present to host T 

cells in context of the self-MHC on the host APCs, resulting in T cell clonal expansion and 

activation. (5) Direct Cell-Mediated Killing: Cytotoxic T lymphocytes (CTLs) migrate to the 

implant site and initiate cell-cell interactions with the donor cells, resulting in destruction 

of the donor cell graft. (6) Cytokine-Induced Cell Death: Activated T cells and innate 

immune cells produce pro-inflammatory cytokines, which damage cells within the graft site. 

(7) CD4+ T cell- Mediated B cell Activation: CD4+ T cells, activated through the indirect 

pathway, interact with antigen-specific B cells through CD40-CD40L and provide Signal 

2 for B cell activation, initiating their proliferation and differentiation. (8) Antibody Class 

Switching: CD4+ T cells activated through the indirect pathway allow for class switching 
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of the produced antibodies to isotype IgG, which is associated with antibody-mediated 

rejection (AMR). (9) Release of Donor-Specific Antibodies (DSA): Production of DSAs by 

plasma cells results in acute and chronic (10) Antibody-Mediated Graft Destruction, which 

involves antibody binding to donor cell surface antigens, complement activation, and graft 

destruction.
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Figure 2. Potential impacts of cell encapsulation on immune pathways in pancreatic islet 
transplantation
(1) Direct antigen presentation is blocked through use of immunoisolatory biomaterials. (2) 
Donor cell death persists and can be exacerbated due to deficiency in oxygen availability, 

elevating antigen shedding, which can diffuse through the semipermeable membrane. 

This supports (3) antigen uptake and processing and (4) retention of indirect antigen 

presentation. (5) Direct cell-mediated killing is blocked by the immunoisolatory material, 

which suppresses direct host immune cell infiltration. But, (6) cytokine-induced cell death 

can still occur, as cytokines can permeate the porous biomaterial. (7) CD4+ T cell-mediated 

B cell activation, (8) antibody class switching, and (9) production of donor-specific 

antibodies continues uninterrupted, although, (10) antibody-mediated graft destruction can 

be blocked by some encapsulating materials.
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Figure 3. Potential impacts of reduced material immunogenicity and improved cell implant 
viability on immune pathways in pancreatic islet transplantation
(1) Direct antigen presentation is retained for non-immunoisolatory, vascularized 

scaffolds. Approaches focused on improving donor cell viability post-transplantation, 

through vascularization, optimized 3-D material implants, and/or material-driven oxygen 

supplementation can result in reduced (2) donor cell death or change in the cell death 

pathway, which reduces DAMPs and/or shed antigen. (3) Antigen uptake and processing 

can be modified in the absence of DAMPs, leading to skewing of the phenotype of the 

innate APCs involved in the (4) indirect antigen presentation. APC phenotype shift can 

alter interactions with T lymphocytes and abrogate their activation. (5) Direct cell-mediated 

killing and the (6) cytokine-induced cell death can be mediated through the direct pathway 

only. Due to decreased T cell activation in the indirect pathway, (7) CD4+ T cell-mediated B 

cell activation, (8) antibody class switching, (9) production of donor-specific antibodies, and 

(10) antibody-mediated graft destruction can also be minimized.
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Figure 4. Potential impacts of local immunosuppression and tolerogenic drug delivery on 
immune pathways in pancreatic islet transplantation
(1) Anti-Inflammatory biomaterial approaches can reduce inflammation in the immediate 

graft area, through the use of locally delivered anti-inflammatory drugs or cytokines, such as 

TGF-β1, which results in decreased infiltration of the innate cell populations responsible for 

aggravating adaptive responses to the graft. (2) Suppressive drug approaches utilize the local 

delivery of known systemic immunosuppressants, such as CNIs, mTOR inhibitors, or MMF 

which allow for the achievement of local suppression of the effector T cells, with the added 

benefit of decreased systemic side effects. (3) Chemotactic agents used in local delivery aim 

to stop the infiltration of effector immune cells, resulting in lowered immune response to 
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the graft, without imparting a systemic lowered response to pathogenic infections. Agents 

such as CXCL12 have the additional benefit of increasing regulatory T cell infiltration, 

which aids in promoting graft tolerance. (4) Tolerogenic/Depleting strategies, such as 

local presentation of FasL or PD-L1 on biomaterial surface utilize potent native immune 

checkpoints and activation-induced cell death (AICD) pathways for the depletion of effector 

T cells, and induction of regulatory T cells in the graft environment.
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