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abstract

PURPOSE Accurate risk assessment is essential for the success of population screening programs in breast
cancer. Models with high sensitivity and specificity would enable programs to target more elaborate screening
efforts to high-risk populations, while minimizing overtreatment for the rest. Artificial intelligence (AI)-based risk
models have demonstrated a significant advance over risk models used today in clinical practice. However, the
responsible deployment of novel AI requires careful validation across diverse populations. To this end, we
validate our AI-based model, Mirai, across globally diverse screening populations.

METHODS We collected screening mammograms and pathology-confirmed breast cancer outcomes from
Massachusetts General Hospital, USA; Novant, USA; Emory, USA; Maccabi-Assuta, Israel; Karolinska, Sweden;
Chang Gung Memorial Hospital, Taiwan; and Barretos, Brazil. We evaluated Uno’s concordance index for Mirai
in predicting risk of breast cancer at one to five years from the mammogram.

RESULTS A total of 128,793 mammograms from 62,185 patients were collected across the seven sites, of which
3,815 were followed by a cancer diagnosis within 5 years. Mirai obtained concordance indices of 0.75 (95% CI,
0.72 to 0.78), 0.75 (95% CI, 0.70 to 0.80), 0.77 (95% CI, 0.75 to 0.79), 0.77 (95% CI, 0.73 to 0.81), 0.81 (95%
CI, 0.79 to 0.82), 0.79 (95%CI, 0.76 to 0.83), and 0.84 (95%CI, 0.81 to 0.88) atMassachusetts General Hospital,
Novant, Emory, Maccabi-Assuta, Karolinska, Chang Gung Memorial Hospital, and Barretos, respectively.

CONCLUSION Mirai, a mammography-based risk model, maintained its accuracy across globally diverse
test sets from seven hospitals across five countries. This is the broadest validation to date of an AI-
based breast cancer model and suggests that the technology can offer broad and equitable improvements
in care.

J Clin Oncol 40:1732-1740. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Accurate risk assessment is essential for the success
of population screening programs in breast cancer.
American Cancer Society and National Comprehen-
sive Cancer Network (NCCN) guidelines currently le-
verage statistical risk models to determine eligibility for
magnetic resonance imaging (MRI) screening.1,2 Risk
models are also leveraged by NCCN and US Food and
Drug Administration guidelines to recommend che-
moprevention. The Tyrer-Cuzick (TC) model is a widely
adopted risk model used by American Cancer Society
and NCCN guidelines that leverage patient demo-
graphics, detailed family history, and breast density to
predict breast cancer risk.3 However, the TC model
only provides a global risk prediction and has limited
accuracy for individuals and for specific timeframes.
Improved short-term risk prediction (ie, within 5 years)
would enable programs to target more effective
screening and prevention efforts to high-risk pop-
ulations, while minimizing overtreatment for the rest.

Recent work has demonstrated that Mirai, an AI model
to predict 5-year cancer risk from screening mammo-
grams, has shown considerable promise, obtaining area
under the curves (AUCs) of 0.76, 0.81, and 0.79 on
independent test sets from Mass General Hospital,
Karolinska, and Chang Gung Memorial hospital, re-
spectively.4 This performance constitutes significant
advancement over the traditional risk models used in
clinical practice today, such as the TC model, which
obtained a 5-year AUC of 0.62 on the Mass General
Hospital test set. In addition, traditional risk models
have been shown to exhibit bias when applied to mi-
nority populations.5-7 These concerns motivate the in-
troduction of AI-basedmodels for population screening.

To ensure equitable improvements in care, the re-
sponsible deployment of novel AI requires careful
validation across diverse screening populations.
Multiple studies have demonstrated that transferability
of AI tools should not be taken for granted,8-10 espe-
cially when the training population exhibits differences
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from the population to which the models are applied.
Moreover, when AI tools are not carefully designed, they
can capture and propagate bias. The need for equitable AI
models is especially pronounced in breast cancer, where
discrepancies in outcomes have been a long-standing
concern for the field. To this end, we evaluate and com-
pare the performance of Mirai across seven hospital sys-
tems across the United States, Israel, Sweden, Taiwan, and
Brazil and study the impact of Mirai-based risk guidelines
across these globally diverse cohorts.

METHODS

Our retrospective study was approved by the institutional
review board of each clinical institution with a waiver for
written informed consent and was compliant with the Health
Insurance Portability and Accountability Act. We collected
data sets from Massachusetts General Hospital (MGH), USA;
Novant, USA; Emory, USA; Maccabi-Assuta, Israel; Kar-
olinska, Sweden; Chang Gung Memorial Hospital (CGMH),
Taiwan; and Barretos, Brazil. The MGH training set was
previously used to develop Mirai, and AUC analyses on the
MGH, Karolinska, and CGMH test sets were previously
evaluated.4 These three data sets are included for new an-
alyses and for completeness. Across all data sets, we collected
mammograms from a large subset of patients and leveraged
the mammograms to obtain Mirai risk assessments. We did
not use additional risk factors for Mirai risk assessments. Mirai
was trained using Hologic images, and all mammograms
included in this study were taken using a Hologic machine.

Description of Cohorts

To collect the MGH data set, we collected consecutive
screening mammograms from 80,134 patients screened
between January 1, 2009, and December 31, 2016, at
MGH. We obtained outcomes through linkage to a local
five-hospital registry in theMassachusetts General Brigham

healthcare system, alongside pathology findings from
MGH’s mammography electronic medical record. We ex-
cluded patients without at least 1 year of screening follow-
up, who were diagnosed with other cancers (eg, sarcoma)
in the breast or did not have all four views available, to
identify 70,972 patients, following the previous work on the
MGH data set.4 Seven thousand one hundred sixty-six
patients were randomly selected for the test set. We ex-
cluded 161 patients with history of breast cancer from the
test set, leaving 7,005 patients with 25,855 examinations.

To collect the Novant data set, we selected 7,238 patients
randomly from the cohort of all patients age 40-69 years
screened at a Novant Health clinic between January 1, 2012,
and December 31, 2016. We included all mammograms
across this time period and obtained outcomes by querying
both a local cancer registry and theNovant electronicmedical
record.We excluded patient examinations that did not have at
least 1 year of screening follow-up with prior cancer or whose
mammogram did not include all four standard views to
identify 14,157 examinations from 5,887 patients.

To collect the Emory data set, we extracted 8 years of
mammograms from an institutional database of all comers
for screening mammography from 2013 to 2020 and
randomly selected 30% of women from this database,
totaling 75,010 examinations from 28,994 patients. We
collected outcomes from pathology findings from Emory’s
institutional database using Magview software (Fulton,
MD). As with other data sets, we excluded patients’ ex-
aminations that did not have at least 1 year of screening
follow-up, with prior cancer or whose mammogram did not
contain all four standard views to identify 44,008 exami-
nations from 16,495 patients.

To collect the Maccabi-Assuta data set, we selected all
comers for screening mammography at Maccabi-Assuta
during 2015 age 30 years or older, resulting in 9,775

CONTEXT

Key Objective
Improved breast cancer riskmodels would enable screening programs to improve early detection and reduce overtreatment. This

study explored the robustness of an AI breast cancer risk model, Mirai, across globally diverse test sets from Massachusetts
General Hospital, USA; Novant, USA; Emory, USA; Maccabi-Assuta, Israel; Karolinska, Sweden; Chang Gung Memorial
Hospital, Taiwan; and Barretos, Brazil. This constitutes the broadest validation to date of an AI-based breast cancer model.

Knowledge Generated
Mirai maintained its accuracy across the globally diverse test sets. In a retrospective analysis, guidelines based on Mirai

significantly outperformed existing guidelines based on Tyrer-Cuzick lifetime risk for selecting patients for supplemental
screening MRI.

Relevance
Mirai has the potential to replace current risk models used in guidelines for MRI screening, offering broad and equitable

improvements in care. Prospective trials are needed to confirm the benefit of identifying improved high-risk cohorts and
to establish Mirai-based guidelines.

Journal of Clinical Oncology 1733

Validation of a Mammography-Based Breast Cancer Risk Model



examinations from 9,775 women. For each patient, we
obtained dates of first breast cancer diagnosis from the
Maccabi-Assuta electronic medical records and a regional
registry. We excluded examinations from non-Hologic
machines and patients with a history of breast cancer to
identify 6,189 examinations from 6,189 patients.

The Karolinska data set was extracted from the Cohort of
Screen-Aged Women.11 All women age 40-74 years within
the Karolinska University uptake area who had attended
screening and were diagnosed with breast cancer, without
implants and without prior breast cancer, from 2008 to
2016 were included, as well as a random sample of controls
with at least 2 years of follow-up, from the same time period.
The full Karolinska case-control data set included 11,303
women, and 70% of both cases and controls were ran-
domly selected for inclusion in this study, resulting in 19,328
examinations from 7,353 patients.

To collect the CGMH data set, which consisted of 13,356
examinations from 13,356 patients, we selected random
women undergoing screening mammography there be-
tween 2010 and 2011who were age 45-70 years. Following
local guidelines, we also included women age 40-44 years
who had a family history of breast cancer. Cancer outcomes
were obtained from the national cancer registry.

To collect the Barretos test set, we selected all women age 40
to 69 years who received screening mammograms at the
Fernanópolis and Campo Grande units from January 2,
2014, to June 30, 2015, to obtain a cohort of 6,206
mammograms from 6,206 patients. Cancer outcomes were
obtained from patient medical records at Barretos Cancer
Hospital. We excluded mammograms without all four
standard views, with prior cancer, and with insufficient
follow-up to identify 5,900 examinations from5,900 patients.

Across all data sets, we defined a cancer-positive outcome
as a pathology-confirmed diagnosis of either invasive breast
carcinoma or ductal carcinoma in situ. We used screening
follow-up to define when patients were cancer-negative. For
instance, we considered a patient negative for 3 years if they
had screening follow-up for at least 3 years without a cancer
diagnosis. For all data sets, except the CGMH data set, we
excluded patients with prior cancer to enable fair compar-
ison against the TCmodel, which does not assess risk for this
population. We did not perform this exclusion for the CGMH
data set because of difficulties in manual data curation.

Model Evaluation

We evaluated the overall accuracy of Mirai across all tests
using area under the Curve (AUC) for 1- to 5-year out-
comes. For instance, to compute the 3-year AUC, we
considered the outcome as positive if it was followed by a
cancer diagnosis within 3 years and negative if it had at
least 3 years of screening follow-up without a diagnosis. We
also computed Uno’s concordance index (C-index),12

which offers a generalized AUC across time-points. We
computed this analysis on the entirety of all test sets and on

subgroups of the Emory data set, which contained detailed
demographic information and reflects a large representa-
tion of African-American women. Specifically, we studied
the performance of Mirai on White and African-American or
Black Women and on women younger than 50 years,
between 50 and 70 years, and older than 70 years.

To evaluate the clinical significance of Mirai’s performance,
we evaluated its ability to identify high-risk cohorts that may
benefit from supplemental screening. To perform this anal-
ysis, we restricted our attention to patients who were initially
screening negative and had at least 5 years of screening
follow-up.We defined an examination as screening negative if
it was not followed by a cancer diagnosis within 6months. We
defined the sensitivity of a guideline as the percentage of all
patients who would develop cancer within 5 years included
within the high-risk cohort and thus may benefit from sup-
plemental screening. We defined the specificity of the
guidelines as the percentage of all patients who do not de-
velop cancer within 5 years not included in the high-risk
cohort and thus may avoid overtreatment. We compared
three guidelines for identifying high-risk patients: 20% lifetime
risk by TC (TC guideline), Mirai at the specificity of the TC
guideline, and Mirai at the sensitivity of the TC guideline. We
studied Mirai at TC specificity and TC sensitivity to evaluate
the potential of Mirai to improve early detection for a fixed cost
(ie, specificity) and the potential to reduce costs for a fixed
level of early detection (ie, sensitivity), respectively. The Mirai
at TC specificity and Mirai at TC sensitivity guidelines were
chosen to match the specificity and sensitivity of the TC
guideline on the MGH development set. We only evaluated
the TC model on the MGH test set as the necessary risk
factors were not available at the other six institutions. We
performed this analysis on all test sets and subgroups of the
Emory data set by race. To illustrate the full spectrum of
possible operating points for this use case, we also plot re-
ceiver operating curves for Mirai for each institution.

Statistical Analysis

We analyzed the performance of Mirai on the basis of all the
mammograms in the held-out test sets. To address that
patients may have multiple examinations in a test set, we
used the clustered bootstrap with 5,000 samples to cal-
culate CIs. To assess the significance of difference between
two sensitivities or specificities, we used a two-tailed t-test as
implemented in R with a predefinedP, .05 for significance.

RESULTS

Cohort Demographics

The demographics for all test sets are reported in Table 1,
and the data set creation process is illustrated in flowcharts
in Figure 1. The MGH, Novant, Emory, Maccabi-Assuta,
Karolinska, CGMH, and Barretos test sets consisted of
25,855, 14,157, 44,008, 6,189, 19,328, 13,356, and 5,900
examinations from 7,005, 5,887, 16,495, 6,189, 7,353,
13,356, and 5,900 patients of which 588, 235, 1,003, 186,
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1,413, 244, and 146 examinations were followed by cancer
within 5 years, respectively. Detailed demographics of the
MGH, Emory, and Novant test sets, including race, are given
in Appendix Tables A1-A3 (online only), respectively. The
number of patients and examinations used for each AUC
computation is shown Appendix Table A4 (online only).

Model Evaluation

The performance of Mirai across all time-points and across
all test sets is reported in Table 2. Mirai performed similarly
across all test sets, obtaining Uno’s C-indices of 0.75 (95%
CI, 0.70 to 0.80), 0.77 (95% CI, 0.75 to 0.79), 0.77 (95%
CI, 0.73 to 0.81), and 0.84 (95% CI, 0.81 to 0.88) on the
Novant, Emory, Maccabi-Assuta, and Barretos test sets,
respectively. These results are similar to the previously
reported4 C-indices of 0.75 (95% CI, 0.72 to 0.78), 0.81
(95% CI, 0.79 to 0.82), and 0.79 (95% CI, 0.76 to 0.83) on
the MGH, Karolinska, and CGMH test sets. By contrast, TC
obtained a C-index of 0.64 (95% CI, 0.60 to 0.67) on the
MGH data set.4 Mirai obtained 1-year AUCs of 0.84 (95%
CI, 0.80 to 0.87), 0.78 (95% CI, 0.73 to 0.84), 0.83 (95%
CI, 0.81 to 0.86), 0.86 (95% CI, 0.81 to 0.91), 0.90 (95%
CI, 0.89 to 0.92), 0.90 (95% CI, 0.87 to 0.93), and 0.89
(95% CI, 0.86 to 0.93) at MGH, Novant, Emory, Maccabi-
Assuta, Karolinska, CGMH, and Barretos, respectively.
Mirai obtained one higher 1-year AUC at Karolinska (0.90),
CGMH (0.90), and Barretos (0.89), where screening is
biennial, than at MGH (0.84), Novant (0.78), Emory (0.83),
and Maccabi-Assuta (0.86), where screening is annual.
The performance of Mirai when excluding cancers diag-
nosed within 6 months is shown in Appendix Table A5
(online only). Here, Mirai obtained C-indices of 0.69 (95%
CI, 0.66 to 0.73), 0.72 (95% CI, 0.66 to 0.79), 0.69 (95%
CI, 0.66 to 0.72), 0.70 (95% CI, 0.64 to 0.76), 0.71 (95%
CI, 0.69 to 0.74), 0.70 (95% CI, 0.66 to 0.75), and 0.78
(95% CI, 0.74 to 0.83) on the MGH, Novant, Emory,
Maccabi-Assuta, Karolinska, CGMH, and Barretos test sets,

respectively, compared with a C-index of 0.62 (95% CI,
0.58 to 0.67) obtained by TC on the MGH test set.

The performance of Mirai on different subgroups of the
Emory test set is shown in Appendix Table A6 (online only).
Mirai obtained C-indices of 0.75 (95% CI, 0.71 to 0.78) and
0.79 (95% CI, 0.76 to 0.82) for African-American and White
patients at Emory, respectively. The model obtained 1-year
AUCs of 0.82 (95%CI, 0.78 to 0.85) and 0.85 (95%CI, 0.82
to 0.89) and 5-year AUCs of 0.75 (95%CI, 0.71 to 0.78) and
0.78 (95% CI, 0.75 to 0.82) for African-American and White
patients, respectively. It obtained C-indices of 0.78 (95% CI,
0.72 to 0.83), 0.77 (95% CI, 0.74 to 0.80), and 0.74 (95%
CI, 0.70 to 0.79) for patients younger than 50 years, between
50 and 70 years, and older than 70 years, respectively.

In evaluating the ability of Mirai to identify high-risk cohorts,
we excluded positive examinations followed by a cancer
diagnosis within 6 months and negative examinations
without at least 5 years of screening follow-up. This resulted
in cohorts of 9,284, 7,524, 8,640, 1,385, 7,194, 11,167,
and 2,057 examinations from 3,957, 3,617, 5,774, 1,385,
5,707, 11,167, and 2,057 patients of which 441, 140, 632,
107, 869, 139, and 70 were followed by cancer within 5
years from MGH, Novant, Emory, Maccabi-Assuta, Kar-
olinska, CGMH, and Barretos, respectively. The perfor-
mance of Mirai on these different cohorts is shown in
Table 3. On the MGH test set, the Mirai at TC specificity
guideline obtained a sensitivity of 39.7% (95% CI, 32.9 to
46.5) compared with a sensitivity of 22.9% (95%CI, 15.9 to
29.6) obtained by TC, yielding a significant improvement
(P, .001). The Mirai at TC sensitivity obtained a specificity
of 94.2% (95% CI, 93.4 to 94.9) compared with 85.4%
(95%CI, 84.1 to 86.6) obtained by TC, yielding a significant
improvement (P, .001). This performance wasmaintained
across our other institutions. The Mirai at TC specificity
guideline obtained sensitivities of 50.0% (95% CI, 38.5 to
61.4), 36.7% (95% CI, 31.6 to 41.8), 40.2% (95% CI, 30.9
to 49.3), 42.9% (95% CI, 38.5 to 47.0), 45.3% (95% CI,

TABLE 1. Demographics of MGH, Novant, Emory, Maccabi-Assuta, Karolinska, CGMH, and Barretos Test Sets
Patient Groups MGH Novant Emory Maccabi-Assuta Karolinska CGMH Barretos

Unique patients 7,005 (233) 5,887 (123) 16,495 (495) 6,189 (186) 7,353 (799) 13,356 (244) 5,900 (146)

All examinations 25,855 (588) 14,157 (235) 44,008 (1,003) 6,189 (186) 19,328 (1,413) 13,356 (244) 5,900 (146)

Age at examination, years

, 40 724 (7) 0 (0) 410 (11) 23 (1) 0 (0) 0 (0) 0 (0)

40-50 7,025 (95) 3,917 (53) 9,047 (147) 1,589 (47) 7,814 (364) 4,008 (74) 2,810 (41)

50-60 7,829 (188) 5,368 (65) 12,113 (235) 1,232 (23) 5,477 (387) 6,301 (115) 2,114 (59)

60-70 6,708 (182) 4,872 (117) 13,182 (302) 2,232 (57) 5,174 (563) 3,024 (55) 976 (46)

70-80 3,001 (94) 0 (0) 7,638 (285) 1,038 (44) 863 (99) 0 (0) 0 (0)

. 80 568 (22) 0 (0) 1,495 (23) 75 (14) 0 (0) 0 (0) 0 (0)

NOTE. Patient statistics are followed by the number of patients who were diagnosedwith breast cancer within 5 years. Examination level statistics, including
age demographics, are followed by the number of examinations that were followed by a cancer diagnosis within 5 years.
Abbreviations: CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital.
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36.7 to 53.5), and 37.1% (95% CI, 25.6 to 48.1) at Novant,
Emory, Maccabi-Assuta, Karolinska, CGMH, and Barretos,
respectively. The Mirai at TC sensitivity guideline obtained
specificities of 95.4% (95% CI, 94.7 to 96.0), 91.5% (95%
CI, 90.7 to 92.2), 92.5% (95% CI, 91.1 to 94.0), 94.3%
(95% CI, 93.7 to 95.0), 94.8% (95% CI, 94.4 to 95.2), and

91.7% (95%CI, 90.51 to 92.92) at Novant, Emory, Maccabi-
Assuta, Karolinska, CGMH, and Barretos, respectively. The
Mirai receiver operating curves for selecting high-risk cohorts
across all test sets are shown in Figure 2.

As shown in Table 4, we found that Mirai performed
similarly across different race subgroups of the Emory test

Patients (N = 80,134)
2009-2016

Excluded patients with other cancers
in the breast (n = 97)

Patients             (n = 70,972)
Examinations (n = 262,798)

MGH test set
Patients             (n = 7,005)
Examinations (n = 25,855)

Excluded patients who lack at least one
year of screening follow-up (n = 8,956)

MGH train set
Patients             (n = 56,786)
Examinations (n = 210,819)

MGH validation set
Patients             (n = 7,020)
Examinations (n = 25,644)

Excluded patients with
history of cancer

(n = 161)

Excluded patients with fewer than four
images per examination (n = 109)

Patients (N = 7,238)
2012-2016

Excluded patients with fewer than four
images per examination (n = 46)

Excluded patients who lack at least
1 year of screening  follow-up or had

prior cancer (n = 1,305)

Maccabi-Assuta test set
Patients                                 (n = 6,189)
Examinations                       (n = 6,189)

Patients (N = 28,994)
2013 – 2020

Patients (N = 9,775)
2015

Excluded patients with fewer than four
images per examination (n = 214)

Excluded patients who lack at least one
year of screening  follow-up or had prior

cancer (n = 683)

Emory test set
Patients                                 (n = 16,495)
Examinations                       (n = 44,008)

Excluded patients with fewer than four
images per examination (n = 946)

Excluded patients who lack at least
1 year of screening  follow-up or had

prior cancer (n = 12,285)

Excluded patients with missing
information or examinations performed

with non-Hologic devices (n = 1,957)

Karolinska test set
Patients                                    (n = 7,353)
Examinations                       (n = 19,328)

Excluded patients with fewer than four
images per examination (n = 80)

Select 70% of patients randomly from the
full case-control set

Patients (N = 11,303)
2008-2016

Excluded patients who lack at least
1 year of screening follow-up (n = 1,290)

CGMH test set
Patients                                    (n = 13,356)
Examinations                         (n = 13,356)

Excluded patients with fewer than four
images per examination (n = 141)

Patients (N = 15,178)
2010-2011

Excluded patients who lack at least
one year of screening follow-up (n = 1,681)

Barretos test set
Patients                                    (n = 5,900)
Examinations                          (n = 5900)

Patients (N = 6,206)
2014-2015

Excluded patients who lack at least one
year of screening  follow-up or had prior

cancer (n = 284)

Excluded patients with fewer than four
images per examination (n = 22)

Novant test set
Patients                                 (n = 5,887)
Examinations                     (n = 14,157)

FIG 1. Data set construction flowcharts. CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital.
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set. TheMirai at TC specificity guideline obtained sensitivities
of 33.9% (95%CI, 26.3 to 41.0) and 40.0% (95%CI, 32.0 to
47.2) for African-American and White patients, respectively.

The Mirai at TC sensitivity guideline obtained specificities of
90.7% (95% CI, 89.6 to 91.9) and 91.9% (95% CI, 90.8 to
93.0) for African-American and White patients, respectively.

TABLE 2. AUCs for Predicting Cancer in 1-5 Years and Uno’s C-Index for Mirai on All Test Sets
Site C-Index 1-Year AUC 2-Year AUC 3-Year AUC 4-Year AUC 5-Year AUC

MGH, USA4 0.75 (0.72 to 0.78) 0.84 (0.80 to 0.87) 0.78 (0.75 to 0.82) 0.77 (0.74 to 0.80) 0.76 (0.73 to 0.79) 0.76 (0.73 to 0.79)

Novant, USA 0.75 (0.70 to 0.80) 0.78 (0.73 to 0.84) 0.76 (0.71 to 0.81) 0.76 (0.71 to 0.81) 0.75 (0.70 to 0.80) 0.75 (0.70 to 0.80)

Emory, USA 0.77 (0.75 to 0.79) 0.83 (0.81 to 0.86) 0.79 (0.77 to 0.82) 0.77 (0.75 to 0.80) 0.77 (0.75 to 0.79) 0.76 (0.74 to 0.79)

Maccabi-Assuta,
Israel

0.77 (0.73 to 0.81) 0.86 (0.81 to 0.91) 0.81 (0.76 to 0.87) 0.79 (0.75 to 0.84) 0.77 (0.73 to 0.81) 0.75 (0.71 to 0.79)

Karolinska,
Sweden4

0.81 (0.79 to 0.82) 0.90 (0.89 to 0.92) 0.86 (0.84 to 0.88) 0.82 (0.80 to 0.84) 0.80 (0.79 to 0.82) 0.78 (0.76 to 0.80)

CGMH, Taiwan4 0.79 (0.76 to 0.83) 0.90 (0.87 to 0.93) 0.86 (0.83 to 0.90) 0.82 (0.78 to 0.85) 0.80 (0.77 to 0.84) 0.79 (0.75 to 0.82)

Barretos, Brazil 0.84 (0.81 to 0.88) 0.89 (0.86 to 0.93) 0.87 (0.84 to 0.91) 0.86 (0.83 to 0.90) 0.85 (0.81 to 0.89) 0.82 (0.78 to 0.86)

NOTE. All metrics are followed by their 95% CI.
Abbreviations: AUC, area under the curve; CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital.

TABLE 3. High-Risk Cohort Analysis for All Test Sets
Method Sensitivity, % (95% CI) Specificity, % (95% CI)

MGH, USA: 9,284 examinations from 3,957 patients, 441 examinations followed by future cancer

TC lifetime risk .20%4 22.9 (15.9 to 29.6) 85.4 (84.1 to 86.6)

Mirai at TC specificity4 39.7 (32.9 to 46.5) 85.2 (84.1 to 86.4)

Mirai at TC sensitivity 20.0 (14.2 to 25.1) 94.2 (93.4 to 94.9)

Novant, USA: 7,524 examinations from 3,617 patients, 140 examinations followed by future cancer

Mirai at TC specificity 50.0 (38.5 to 61.4) 84.6 (83.3 to 85.7)

Mirai at TC sensitivity 23.6 (14.1 to 32.1) 95.4 (94.7 to 96.0)

Emory, USA: 8,640 examinations from 5,774 patients, 632 examinations followed by future cancer

Mirai at TC specificity 36.7 (31.6 to 41.8) 84.9 (84.0 to 85.9)

Mirai at TC sensitivity 22.0 (17.4 to 26.3) 91.5 (90.7 to 92.2)

Maccabi-Assuta, Israel: 1,385 examinations from 1,385 patients, 107 examinations followed by future
cancer

Mirai at TC specificity 40.2 (30.9 to 49.3) 84.8 (82.9 to 86.8)

Mirai at TC sensitivity 22.4 (14.6 to 30.2) 92.5 (91.1 to 94.0)

Karolinska, Sweden: 7,194 examinations from 5,707 patients, 869 examinations followed by future
cancer

Mirai at TC specificity 42.9 (38.5 to 47.0) 85.0 (84.0 to 86.0)

Mirai at TC sensitivity 21.9 (18.4 to 25.2) 94.3 (93.7 to 95.0)

CGMH, Taiwan: 11,167 examinations from 11,167 patients, 139 examinations followed by future
cancer

Mirai at TC specificity 45.3 (36.7 to 53.5) 84.6 (83.9 to 85.2)

Mirai at TC sensitivity 23.0 (15.8 to 29.8) 94.8 (94.4 to 95.2)

Barretos, Brazil: 2,057 examinations from 2,057 patients, 70 examinations followed by future cancer

Mirai at TC specificity 37.1 (25.6 to 48.1) 85.2 (83.6 to 86.8)

Mirai at TC sensitivity 21.4 (11.1 to 30.4) 91.7 (90.51 to 92.92)

NOTE. For each test set, we restricted our analysis to patients who were initially screening negative and had at least 5 years of screening follow-up. We
defined an examination as screening negative if it was not followed by a cancer diagnosis within 6 months. We defined a future cancer as a pathology-
confirmed breast cancer diagnosis within 5 years of the mammogram. Mirai thresholds (ie, at TC sensitivity and at TC specificity) were chosen to match the
performance of the TC model on the development MGH set.
Abbreviations: CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital; TC, Tyrer-Cuzick.

Journal of Clinical Oncology 1737

Validation of a Mammography-Based Breast Cancer Risk Model



DISCUSSION

Our study explored the robustness of an AI breast cancer
risk model, Mirai, across globally diverse populations. We
validated Mirai on test sets from seven hospitals across five
countries. Across all test sets, we found that Mirai obtained
the same C-index as on the MGH test set or higher, ranging
from 0.75 at Novant to 0.84 at Barretos. Themodel obtained

higher performance in hospitals with biennial screening
such as Barretos than hospitals with annual screening such
as MGH, because of differences in screening patterns. We
demonstrated that Mirai can be used to accurately select
high-risk cohorts across all test sets. Moreover, Mirai-based
guidelines performed similarly across both African-American
and White patients in the Emory test set.
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FIG 2. Receiver operating curves for Mirai in selecting high-risk cohorts across all test sets: (A) MGH, (B) Novant, (C) Emory, (D) Maccabi-Assuta, (E)
Barretos, (F) Karolinska, and (G) CGMH. These data sets are restricted to include patients who were screening negative and either had cancer within 5
years or 5 years of negative follow-up. AUC, area under the curve; CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital.
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Accurate short-term risk prediction (ie, within 5 years) is
essential for early detection efforts in breast cancer. Tra-
ditional risk models, such as the TC model, are already
widely implemented and support existing supplemental
screening guidelines by the American Cancer Society, the
American College of Radiology, and the National Compre-
hensive Cancer Network.1,2,13-15 However, these models
only provide a global risk prediction for large groups of
patients, limiting their predictive accuracy for individuals
and for specific time frames. Moreover, current guidelines
for MRI eligibility1,2 leverage lifetime TC risk, which ignores a
patient’s short-term risk of breast cancer and further limits
the model’s predictive utility. Our retrospective analysis
across multiple test sets suggests that Mirai has the potential
to replace current risk models (eg, TC) in guidelines for MRI
screening, improving early detection and reducing over-
treatment. For instance, we found that Mirai could obtain
70% relative improvement in sensitivity over the TC-based
guideline at MGH while maintaining the same specificity.
Moreover, we anticipate that AImodels for breast cancer risk
prediction will continue to improve, as risk models begin to
leverage richer patient information like tomosynthesis. We
expect that these algorithmic improvements will, in turn,
yield further improved risk-based screening guidelines.

Our study had limitations. Our analysis of the benefit of
different screening guidelines was retrospective. Pro-
spective clinical trials are needed to confirm the clinical
benefit of identifying improved high-risk cohorts using Mirai
and to establish Mirai guidelines. Moreover, Mirai was only
developed and tested using Hologic mammograms. Future
work will be needed to test and adapt this technology to
more mammography vendors and to tomosynthesis im-
ages. Moreover, although Mirai provides a risk assessment
for cancer in either breast, it does not provide a risk esti-
mate for each breast.

In conclusion, Mirai, a mammography-based risk model,
maintained its accuracy across globally diverse test sets
from MGH, USA; Novant, USA; Emory, USA; Maccabi-
Assuta, Israel; Karolinska, Sweden; CGMH, Taiwan; and
Barretos, Brazil. Moreover, guidelines based on Mirai
significantly outperformed the existing clinical guidelines
based on the TC model at MGH and maintained their
performance across all test sets. This is the broadest val-
idation to date of an AI-based breast cancer model and
demonstrates that the technology can offer broad and
equitable improvements in care. Prospective clinical trials
of this technology are warranted.
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APPENDIX

TABLE A1. Detailed Demographics of the MGH Test Set

Characteristic

MGH Test Set

All, No. (%) Cancer, No. (%)

All examinations 25,855 (100.0) 588 (100.0)

Age, years

, 40 724 (2.8) 7 (1.19)

40-50 7,025 (27.17) 95 (16.16)

50-60 7,829 (30.28) 188 (31.97)

60-70 6,708 (25.94) 182 (30.95)

70-80 3,001 (11.61) 94 (15.99)

. 80 568 (2.2) 22 (3.74)

Density

Almost entirely fatty 2,474 (9.57) 31 (5.27)

Scattered areas of fibroglandular tissue 12,490 (48.31) 264 (44.9)

Heterogeneously dense 9,751 (37.71) 271 (46.09)

Extremely dense 1,129 (4.37) 22 (3.74)

BI-RADS

0—additional imaging needed 1,785 (6.9) 186 (31.63)

1—negative or 2—benign 24,043 (93.0) 400 (68.03)

Others 4 (0.01) 1 (0.17)

Race

White 21,006 (81.25) 512 (87.07)

African American 1,204 (4.66) 21 (3.57)

Asian or Pacific Islander 1,238 (4.79) 26 (4.42)

Hispanic 225 (0.87) 6 (1.02)

Other race 1,486 (5.75) 15 (2.55)

Device

Lorad Selenia 9,937 (38.43) 241 (40.99)

Selenia Dimensions 15,882 (61.43) 311 (52.89)

Unknown 36 (0.14) 36 (6.12)

Abbreviations: BI-RADS, Breast Imaging-Reporting and Data System; MGH,
Massachusetts General Hospital.

TABLE A2. Detailed Demographics of the Novant Test Set

Characteristic

Novant Data Set

All, No. (%) Cancer, No. (%)

All examinations 14,157 (100.0) 235 (100.0)

Age, years

40-50 3,917 (27.67) 53 (22.55)

50-60 5,368 (37.92) 65 (27.66)

60-70 4,872 (34.41) 117 (49.79)

Race

White 10,555 (74.56) 185 (78.72)

African American 2,687 (18.98) 44 (18.72)

Asian 220 (1.55) 0 (0.0)

Hispanic 391 (2.76) 5 (2.13)

American Indian or Alaskan
Native

28 (0.2) 0 (0.0)

Time to cancer, years

0-1 95 (0.67) 95 (40.43)

1-2 52 (0.37) 52 (22.13)

2-3 48 (0.34) 48 (20.43)

3-4 31 (0.22) 31 (13.19)

4-5 9 (0.06) 9 (3.83)
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TABLE A3. Detailed Demographics of the Emory Test Set

Characteristic

Emory Data Set

All, No. (%) Cancer, No. (%)

All examinations 44,008 (100.0) 1,003 (100.0)

Age, years

, 40 410 (0.93) 11 (1.1)

40-50 9,047 (20.56) 147 (14.66)

50-60 12,113 (27.52) 235 (23.43)

60-70 13,182 (29.95) 302 (30.11)

70-80 7,638 (17.36) 285 (28.41)

. 80 1,495 (3.4) 23 (2.29)

Race

White 19,587 (44.51) 492 (49.05)

African American 19,918 (45.26) 463 (46.16)

Asian 2,251 (5.11) 27 (2.69)

Native Hawaiian or Other Pacific Islander 296 (0.67) 7 (0.7)

American Indian or Alaskan Native 47 (0.11) 0 (0.0)

Multiple 103 (0.23) 0 (0.0)

Time to cancer, years

0-1 410 (0.93) 410 (40.88)

1-2 220 (0.5) 220 (21.93)

2-3 177 (0.4) 177 (17.65)

3-4 113 (0.26) 113 (11.27)

4-5 83 (0.19) 83 (8.28)

TABLE A4. No. of Patients Followed by the No. of Examinations Used to Compute Yearly AUC Values

Site

No. of Patients and
Examinations for

Computing
1-Year AUC

No. of Patients and
Examinations for

Computing
2-Year AUC

No. of Patients and
Examinations for

Computing
3-Year AUC

No. of Patients and
Examinations for

Computing
4-Year AUC

No. of Patients and
Examinations for

Computing
5-Year AUC

MGH, USA4 7,005 (173)
25,855 (173)

6,258 (211)
21,707 (301)

5,442 (225)
17,003 (424)

4,685 (228)
12,949 (520)

4,002 (233)
9,431 (588)

Novant, USA 5,887 (95)
14,157 (95)

5,475 (108)
13,264 (147)

5,018 (118)
12,212 (195)

4,459 (122)
10,529 (226)

3,659 (123)
7,619 (235)

Emory, USA 16,495 (406)
44,008 (410)

13,141 (457)
31,862 (630)

10,532 (482)
22,460 (807)

8,098 (490)
14,864 (920)

5,937 (495)
9,011 (1,003)

Maccabi-
Assuta, Israel

6,189 (79)
6,189 (79)

6,079 (101)
6,079 (101)

5,609 (147)
5,609 (147)

4,551 (165)
4,551 (165)

1,464 (186)
1,464 (186)

Karolinska,
Sweden4

7,353 (517)
19,328 (517)

7,148 (634)
16,665 (681)

6,773 (747)
13,554 (1,040)

6,379 (771)
10,618 (1,181)

5,931 (799)
7,711 (1,413)

CGMH, Taiwan4 13,356 (116)
13,356 (116)

12,895 (141)
12,895 (141)

12,390 (182)
12,390 (182)

11,840 (212)
11,840 (212)

11,272 (244)
11,272 (244)

Barretos, Brazil 5,900 (84)
5,900 (84)

5,394 (100)
5,394 (100)

4,569 (114)
4,569 (114)

3,689 (128)
3,689 (128)

2,133 (146)
2,133 (146)

NOTE. Values in parentheses are the number of patients and examinations developing cancer within that number of years following an examination.
Abbreviations: AUC, area under the curve; CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital.
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TABLE A5. AUCs for Predicting Cancer in 1-5 Years and Uno’s C-Index for Mirai on All Test Sets Excluding Cancers Diagnosed With 6 Months of the
Mammogram
Site C-Index 1-Year AUC 2-Year AUC 3-Year AUC 4-Year AUC 5-Year AUC

MGH, USA4 0.69 (0.66 to 0.73) 0.71 (0.60 to 0.84) 0.71 (0.66 to 0.76) 0.71 (0.67 to 0.75) 0.71 (0.67 to 0.75) 0.71 (0.68 to 0.75)

Novant, USA 0.72 (0.66 to 0.79) NA 0.71 (0.63 to 0.80) 0.73 (0.66 to 0.80) 0.72 (0.65 to 0.79) 0.72 (0.66 to 0.79)

Emory, USA 0.69 (0.66 to 0.72) 0.74 (0.66 to 0.84) 0.71 (0.68 to 0.75) 0.70 (0.67 to 0.73) 0.71 (0.68 to 0.74) 0.71 (0.68 to 0.74)

Maccabi-
Assuta,
Israel

0.70 (0.64 to 0.76) NA 0.67 (0.53 to 0.83) 0.72 (0.66 to 0.79) 0.70 (0.63 to 0.76) 0.68 (0.62 to 0.74)

Karolinska,
Sweden4

0.71 (0.69 to 0.74) NA 0.72 (0.67 to 0.77) 0.73 (0.71 to 0.76) 0.73 (0.70 to 0.75) 0.71 (0.69 to 0.73)

CGMH,
Taiwan4

0.70 (0.66 to 0.75) 0.84 (0.72 to 0.99) 0.76 (0.68 to 0.84) 0.71 (0.64 to 0.77) 0.71 (0.66 to 0.76) 0.70 (0.66 to 0.75)

Barretos,
Brazil

0.78 (0.74 to 0.83) 0.87 (0.80 to 0.94) 0.82 (0.76 to 0.89) 0.81 (0.76 to 0.87) 0.79 (0.74 to 0.84) 0.75 (0.70 to 0.80)

NOTE. All metrics are followed by their 95% CI.
Abbreviations: AUC, area under the curve; C-index, concordance index; CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital;

NA, not available.

TABLE A6. ROC AUCs and Uno’s C-Index for Mirai for Subgroups of the Emory Test Set by Race and Age
Subgroup C-Index 1-Year AUC 2-Year AUC 3-Year AUC 4-Year AUC 5-Year AUC

Race

African
American

0.75 (0.71 to 0.78) 0.82 (0.78 to 0.85) 0.77 (0.74 to 0.81) 0.74 (0.71 to 0.78) 0.75 (0.71 to 0.78) 0.75 (0.71 to 0.78)

White 0.79 (0.76 to 0.82) 0.85 (0.82 to 0.89) 0.81 (0.78 to 0.84) 0.80 (0.77 to 0.83) 0.79 (0.76 to 0.82) 0.78 (0.75 to 0.82)

Age, years

, 50 0.78 (0.72 to 0.83) 0.85 (0.79 to 0.91) 0.80 (0.74 to 0.87) 0.78 (0.72 to 0.85) 0.76 (0.70 to 0.82) 0.75 (0.69 to 0.81)

50-70 0.77 (0.74 to 0.80) 0.82 (0.79 to 0.86) 0.79 (0.76 to 0.82) 0.77 (0.74 to 0.80) 0.77 (0.74 to 0.80) 0.77 (0.74 to 0.80)

. 70 0.74 (0.70 to 0.79) 0.83 (0.79 to 0.87) 0.76 (0.72 to 0.81) 0.74 (0.70 to 0.79) 0.73 (0.68 to 0.78) 0.73 (0.68 to 0.78)

Abbreviations: AUC, area under the curve; C-index, concordance index.
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