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SUMMARY

Despite well-recognized heterogeneity in malaria transmission, key parameters such as the force
of infection (FOI) are generally estimated ignoring the intrinsic variability in individual infection
risks. Given the potential impact of heterogeneity on the estimation of the FOI, we estimate this
quantity accounting for both observed and unobserved heterogeneity. We used cohort data of
children aged 0·5–10 years evaluated for the presence of malaria parasites at three sites in
Uganda. Assuming a Susceptible–Infected–Susceptible model, we show how the FOI relates to
the point prevalence, enabling the estimation of the FOI by modelling the prevalence using a
generalized linear mixed model. We derive bounds for varying parasite clearance distributions.
The resulting FOI varies significantly with age and is estimated to be highest among children
aged 5–10 years in areas of high and medium malaria transmission and highest in children aged
below 1 year in a low transmission setting. Heterogeneity is greater between than within
households and it increases with decreasing risk of malaria infection. This suggests that next to
the individual’s age, heterogeneity in malaria FOI may be attributed to household conditions.
When estimating the FOI, accounting for both observed and unobserved heterogeneity in malaria
acquisition is important for refining malaria spread models.

Key words: Clearance rate distribution, generalized linear mixed model, point prevalence, SIS
compartmental model.

INTRODUCTION

Estimating the burden of malaria and evaluating the
impact of control strategies, requires reliable estimates
of transmission intensities [1]. Measures of malaria
transmission intensity include the entomological
inoculation rate (EIR), parasite prevalence and force

of infection (FOI) [1–6]. The EIR is defined as the
number of infectious bites per person per unit time
[2, 7], whereas the FOI is defined as the number of
infections per person per unit time [4] or the per capita
rate at which a susceptible individual acquires infec-
tion [8, 9]. The malaria FOI counts all incident (i.e.,
new) human malaria infections in a specified time
interval regardless of clinical symptoms and recurrent
infections [4]. The EIR and FOI are related but differ;
the EIR considers the number of infective bites deliv-
ered by the mosquito vector, whereas the FOI focuses
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on the infections acquired by the human host. In the-
ory, there should be close relationship between the
EIR and the FOI, especially in children with less
developed immunity. In practice, however, there is a
discrepancy between the two because not every infec-
tious bite results in an infection due to various factors
[10]. The efficiency of transmission can be estimated
by taking the ratio of the two measures, i.e., the
ratio of the EIR to the FOI, the number of infectious
bites required to cause an infection [10]. A smaller
ratio of the EIR to the FOI implies higher transmis-
sion efficiency. Most studies have shown that malaria
transmission is highly inefficient [4]; whereas more
recently malaria FOI has been estimated from sero-
logical data [1, 11] by detecting past exposure to mal-
aria infection, here we focus on estimating malaria
FOI from parasitaemia data [12–14].

Despite well-recognized heterogeneity in malaria
transmission [15, 16], the FOI is often estimated ignor-
ing intrinsic variability in the individual risk of mal-
aria infection. Heterogeneity in malaria infection
arises due to variability in risk factors, including envir-
onmental, vector and host-related factors [17]. Taking
these sources of heterogeneity into account [15, 17] in
population-based epidemiological studies has been
shown to be important [8].

Ronald Ross first published a mathematical model
for malaria transmission in 1908 [16, 18]. This
model was only firmly established in 1950 by the
work of George Macdonald who used Ross’s idea
[16]. The ‘Ross–Macdonald’ model describes a sim-
plified set of concepts that serves as a basis for study-
ing mosquito-borne pathogen transmission [16]. Using
this concept, mathematical methods to estimate the
FOI in relation to the EIR have been proposed by,
e.g., Smith et al. [3, 4], Keeling and Rohani [19] and
Aguas et al. [20]. Some of the parameters involved
in these models are often unknown and should be esti-
mated from data [21]. A solution proposed by Ross in
1916 is to iterate between two modelling frameworks,
that is, mathematical and statistical models [21, 22].
The major difference in these two is that the mathem-
atical models (priori) are based on differential equa-
tions describing the biological mechanism and causal
pathway of transmission, whereas the statistical mod-
els (posteriori) start by the statistical analysis of obser-
vations and work backwards to the underlying cause
[21]. These two frameworks complement each other
and, here, we provide an explicit link between them.

In this paper, we use the well-known generalized
linear mixed model (GLMM) framework (see, e.g.,

[19]) to estimate the point prevalence accounting for
both observed and unobserved heterogeneity and
show how the FOI can be obtained from the point
prevalence based on a mathematical Susceptible–
Infected–Susceptible (SIS) model. We derive an
expression and easy-to-calculate bounds of the FOI
for varying parasite clearance distributions. Our
results can be used to refine mathematical malaria
transmission models.

METHODS

Source of data

The results in this paper are based on cohort data
from children aged 0·5–10 years in three regions in
Uganda: Nagongera sub-county, Tororo district;
Kihihi sub-county, Kanungu district; and Walukuba
sub-county, Jinja district. The data were collected as
part of the Program for Resistance, Immunology,
Surveillance and Modelling of malaria (PRISM)
study. The study regions are characterized by distinct
transmission intensities. The EIR was previously esti-
mated to be 310, 32 and 2·8 infectious bites per unit
year, respectively, for Nagongera, Kihihi and
Walukuba [6]. The study participants were recruited
from 300 randomly selected households (100 per
region) located within the catchment areas. Data
were routinely collected every 3 months (routine visits)
and for non-routine clinical (symptomatic) visits.
Individuals were tested for the presence of
Plasmodium parasites using microscopy from August
2011 to August 2014 (3 years). All symptomatic mal-
aria infections were treated with artemether–lumefan-
trine (AL) anti-malarial medications. More detailed
information regarding the study design can be found
in Kamya et al. [6]. Given that for clinical visits the
sampling process is outcome dependent (see the
‘Discussion’ section), the analysis here is restricted to
the planned routine visits yielding unbiased estimates
(simulation study, not shown).

The SIS model, point prevalence and FOI

A simplified version of malaria transmission can be
described using the so-called SIS compartmental
transmission model. This mathematical model clas-
sifies the population into two compartments, i.e., the
susceptible (S) and the infected (I) class, which can
be graphically depicted as shown in Figure 1.
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Here, the rate λ(t) at which individuals leave the
susceptible state S at time t and flow to the infected
state I, as they are infected with malaria parasites, is
referred to as the FOI. Furthermore, γ represents the
time-invariant clearance rate at which individuals
regain susceptibility after clearing malaria parasites
from their blood. Let s(t) denote the proportion of sus-
ceptible individuals in the population and i(t) the pro-
portion of infected individuals at calendar time t, i.e.,
the (point) prevalence, then the following set of ODEs
(ordinary differential equations) describes transitions
in the compartmental SIS model:

s′(t) = −λ(t)s(t) + γi(t),
i′(t) = λ(t)s(t) − γi(t).

{
(1)

As individuals are either susceptible to infection or
malaria infected (at least in the aforementioned
simplified SIS model), we have s(t) = 1− i(t).
Substituting this expression for s(t) into (1) yields:

λ(t) = i(t)γ + i′(t)
1 − i(t) , (2)

where i′(t) is the derivative of the point prevalence
with respect to t. The FOI λ(t) can thus be estimated
using an estimate for the prevalence i(t) and the clear-
ance rate γ.

Relaxing the assumption of an exponentially dis-
tributed parasite clearance distribution in the SIS
model can be done by dividing the I compartment
into J sub-compartments, such that infected indivi-
duals move from the first sub-compartment I1 to the
second I2, and later to the Jth sub-compartment IJ dur-
ing the different phases of clearing malaria parasites.
Using identical rates γ for the transitions between
these sub-compartments and for moving from IJ
back to the S compartment results in an Erlang distri-
bution with shape parameter J and rate γ for the time
spent in all of the sub-compartments [23]. It is easily
shown that equation (2) yields an upper bound for
the FOI when compared with the aforementioned
Erlang clearance distribution (see the Appendix). A
lower bound is readily obtained by taking γ= 0 in

equation (2) (SI model – see the Appendix). The
FOI is thus bounded by [λL(t), λU(t)] = [i′(t)/(1− i(t)),
((i′t) + γi(t))/(1− i(t)))].

Estimates for both the exponential assumption
(upper bound) as well as the lower bound are presented
in this paper. In order to estimate the prevalence π(t)≡
i(t), we use a GLMM to account for individual- and
household-specific clustering. This will enable us to
explicitly model the observed and unobserved hetero-
geneity in the acquisition of malaria infection.

Generalized linear mixed model

GLMMs extend the well-known generalized linear
models by explicitly taking into account (multiple
levels of) clustering of observations [24].

Let Yijk denote the binary response variable indicat-
ing parasitaemia in the blood (1 if parasites are pre-
sent – malaria infected; and 0 if not – malaria
uninfected) for the ith individual nested in the Jth

household at the kth visit. Similarly, let Xijk be a
(p+ 1) × 1 vector containing covariate information
on p independent variables, and Zijk be a q× 1 vector
of information associated with q random effects.
Given the subject-specific random effects bij and the
covariate information Xijk, the random variables
Yijk|Xijk are assumed to be conditionally independent
with conditional mean π(Xijk|bij) = E(Yijk|Xijk, bij) = P
(Yijk = 1|Xijk, bij). The GLMM relates the conditional
mean to the covariates Xijk and Zijk as follows:

g π(Xijk|bij)
[ ] = g P(Yijk = 1|Xijk, bij)

[ ]
= XT

ijkβ + ZT
ijkbij . (3)

Here, g is a monotonic link function (e.g., logit, clo-
glog and log); η(Xijk | bij) = XT

ijkβ + ZT
ijkbij is the linear

predictor with β a vector of unknown regression para-
meters for the fixed effects; bij � N(0,D) a vector of
subject-specific random effects for subject i in house-
hold j for which elements are assumed to be mutually
independent; and D a q × q variance–covariance
matrix [25].

Using equations (2) and (3), the FOI can be
obtained using different link functions. Table 1 pre-
sents the prevalence and FOI when selecting either
the logit, cloglog or log-link function in the GLMM.

Flexible parametric modelling

In a parametric framework such as the GLMM, frac-
tional polynomials provide a very flexible modelling

Fig. 1. A schematic diagram of the SIS compartmental
model illustrating the simplified dynamics for malaria
transmission.
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tool for the linear predictor η(Xijk | bij) [21, 26, 27]. In
this paper, a GLMM using a fractional polynomial of
degree one with regard to age, with power p selected
from a grid (−3, −2, −1, −0·5, 0, 0·5, 1, 2, 3) using
Akaike’s information criterion (AIC), is used [28].
More precisely, we use

η(Xijk | bij) = η(aijk , lij|bij)
= β0 + β1 age

p
ijk + β2lij + b0i j( )

+ b1i( j)age
p
ijk, (4)

where b0i(j) is the nested random intercept and b1i(j) is
the nested random slope for age. Nesting is done to
explicitly acknowledge that individuals make up
households. Furthermore, shifted year of birth: lij,
defined as the child’s birth year minus the birth year
of the oldest child in the cohort (i.e., baseline year
2001), is used in the model to account for the (calen-
dar) time effect since [calendar time] = [birth year] +
[age]. The linear predictor (4) can be further extended
to include additional covariates.

Age-time-dependent FOI

In equation (3), the conditional mean π(Xijk|bij) is the
point prevalence conditional on the random and fixed
effects. In this paper, we use the logit-link function,
which enables easy calculation of the ICC (intra-
cluster correlation coefficient) through an approxima-
tion indicating how much the elements within a cluster
are correlated [24, 29, 30].

The age-time-dependent FOI, conditional on ran-
dom effects, is estimated by plugging in the parameter
estimates obtained from the final fit in equation (2).
More specifically, using a logit-link, the conditional
age-time-dependent FOI is estimated as follows:

λ̂lij (aijk|bij) = γ̂eη̂(aijk, lij |bij )

+ η̂′(aijk, lij|bij)π̂lij (aijk, lij|bij) (5)

where γ̂ is an estimate for the clearance rate and
π̂lij (aijk, lij|bij) is the estimated age- and time-
dependent conditional prevalence. For the lower
boundary of FOI, γ̂eη̂(aijk , lij |bij ) is omitted in equation
(5). In the above expression, an estimate for the clear-
ance rate γ is required. Previously, Bekessy et al. [12]
estimated annual clearance rates of 1·643, 0·584 and
0·986 years−1 for children aged <1, 1–4 and 5–8
years, respectively. Later, Singer et al. [14] estimated
these rates as 1·917, 1·425 and 2·364 years−1 for ages
<1, 1–4 and 5–8 years, respectively. Sama et al. [13]
estimated a constant annual clearance rate of 1·825
years−1 by assuming an exponential distribution for
infection duration or parasite clearance. Most
recently, Bretscher et al. [31] studied the parametric
distributions of the infection durations using
Ghanaian data, and concluded based on AIC that a
Weibull distribution gave a better fit to the data fol-
lowed by a gamma distribution, while an exponential
one was performing worst. In this paper, we use both
exponential and Erlang clearance distributions to
derive estimates for the malaria FOI obtained based
on the aforementioned clearance rates as distribu-
tional parameters.

Often, an investigator may wish to observe popula-
tion averaged estimates. Under the random effects
framework, this can be achieved by taking the expect-
ation of the conditional estimates (e.g., the FOI in (5))
resulting into unconditional or marginal estimates.
Using the logit-link function, the unconditional
(population) FOI is given by

λlij (aijk) = E(λlij (aijk|bij))
= E(γeη(aijk,lij |bij )

+ η′(aijk, lij|bij)∗πlij (aijk, lij|bij)). (6)

Calculation of the marginalized FOI in (6), requires
integrating out the random effects, bij, over their fitted
distribution. This can be done using numerical inte-
gration techniques or based on numerical averaging
[24].

Model selection

Model building was done using both AIC [32] and a
likelihood ratio test for the random effects based on
the appropriate mixture of chi-square distributions
[33]. Backward model building was performed starting
with the random effects and then the fixed effects. The
covariates considered in the model-building process
included study site, age, time since enrolment, shifted

Table 1. General structures for the FOI according to
different link functions in a GLMM framework

Link function (g) Prevalence (π) FOI (λ)

Logit
eη

1+ eη
γeη + η′

eη

1+ eη
Cloglog 1− e−eη γ(eeη − 1) + η′eη

Log 1− e−η γ(eη− 1) + η′

η refers to the linear predictor η(Xijk | bij) and η′ represents
the derivative of the linear predictor with respect to the pre-
dictor of interest.
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birth year (i.e., shifted birth year = birth year–birth
year of the oldest child), previous use of AL treatment
and the infectious status at the previous visit. The cov-
ariates, ‘time since enrolment’ and ‘shifted birth year’
were generated to represent the calendar time, albeit
we preferred the latter one since participants were
not enrolled at the same time point.

RESULTS

Of 989 children, recruited between August 2011
and August 2014, 334 (33·8%), 355 (35·9%) and
300 (30·3%) were from Nagongera, Kihihi and
Walukuba, respectively. The baseline parasite preva-
lence among children aged below 5 years was 38·2%,
12·8% and 9·5% for Nagongera, Kihihi and
Walukuba, respectively. The monthly parasite preva-
lence was higher in Nagongera (range: 26·7–68·4%)
followed by Kihihi (range: 7·0–68·0%) and lastly by
Walukuba (range: 0–42·9%). Other summary statistics
are presented in Table 2. In general, the prevalence
was higher among older children (5–10 years).

The parasite prevalence increases with age particu-
larly for children <3 years of age and after 7 years of
age a decrease is observed (Fig. 2, panel A). The
prevalence increases with calendar time in Kihihi
with increasing variability, while it decreases in
Walukuba, and slightly increases in Nagongera
(Fig. 2, panel B). These observations suggest a differ-
ence in malaria infection risk between the three study
sites. Also, the infection risk seems to vary with age
and calendar time and it tends to take different trends
between sites indicating a possibility for a site-time
interaction effect. The relationship with age seems to
be non-linear. These observed effects were taken into
consideration when building the GLMM.

The mean structure in our model consists of a frac-
tional polynomial of age with power −1 (selected
based on AIC) and the following covariates (based
on significance testing at 5% significance level): shifted
year of birth; infection status at previous visit and AL
use; and study site. Goodness-of-fit of the final model
was assessed using the ratio of the generalized
Chi-square statistic to its degrees of freedom. A
value of 0·74 was obtained, which is fairly close to
1, indicating that the variability in these data seems
to be adequately modelled and little residual overdis-
persion remains present [34].

The parameter estimates, standard errors, and cor-
responding test results of the final GLMM fit are
shown in Table 3. More details about the candidate

models can be found in the Appendix (Tables A1
and A2) together with the fitted conditional and mar-
ginal prevalences for the different AL use categories
(Fig. A2). The results in Table 3 show an overall sign-
ificant effect of age and shifted year of birth; the effect
of age and shifted year of birth is non-significant and
borderline significant, respectively, for Walukuba,
whereas the effect of age is significant for Kihihi and
Nagongera. Shifted year of birth is significant for
Kihihi and non-significant for Nangongera. There is
significant heterogeneity in the rate of acquiring mal-
aria infection between households (Walukuba: vari-
ance = 2·80; Kihihi: variance = 1·16; Nagongera:
variance = 0·21) and between household members
(variance = 0·24). The intra-household correlation
coefficients are 0·44, 0·25 and 0·06 for Walukuba,
Kihihi and Nagongera, indicating moderate, low
and very low correlation within households, respect-
ively. The intra-individual correlation coefficients are
0·04, 0·05 and 0·06 for Walukuba, Kihihi and
Nagongera, respectively, indicating very low correl-
ation in all sites.

Based on the final model fit and using equations (5)
and (6) both the conditional (given the random
effects) and marginal (population averaged) FOIs
can be calculated provided that γ can be estimated.
However, estimating γ from the same data is not pos-
sible due to an identifiability problem: two or more
distinct values of γ give rise to the same (log)likelihood
(see Fig. A1 in the Appendix). Therefore, we use γ
equal to the annual clearance rates given by Bekessy
et al. [12] as 1·643, 0·584 and 0·986 years−1 for chil-
dren aged <1, 1–4 and 5–10 years, respectively, to cal-
culate the conditional and marginal FOIs. We further
conduct a sensitivity analysis by considering different
clearance rates ranging from 0 to 3 motivated by the
ranges estimated by Bekessy et al. [12], Singer et al.
[14], Sama et al. [13] and Bretscher et al. [31] (see
Fig. 5, top row). As discussed before, we also provide
lower bounds for the FOI.

Figure 3 shows estimates for the marginal FOI
together with the corresponding lower bound esti-
mates. We focused on children who were born in the
baseline year for graphical reasons. Similar plots
were obtained (not shown) for other birth years.
Estimates for the lower boundary of the FOI were
higher in Nagongera followed by Kihihi and
Walukuba. For Nagongera and Walukuba, the lower
bound for the FOI was highest for children aged
below 1 year and least in those aged 5–10 years, yet.
In Kihihi, it is highest among those aged 1–4 years.
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Figure 3 further shows that in Nagongera and
Kihihi, the estimates for the marginal FOI were high-
est among children aged 5–10 years; yet in Walukuba
it was highest among those aged below 1 year. The
values for the marginal FOI obtained using the
upper boundary estimator, stratified by site, age
group and the previous infection status and use of
AL are given in Table A3 in the Appendix. At the
extreme, the previously symptomatic children acquire
up to four infections per year in Nagongera, and eight
infections per year both in Kihihi and Walukuba.
Overall, the FOI is highest among the asymptomatic
children and smallest among previously symptomatic
children across all age groups and sites (Fig. 3 and
Table 3A). Although Figure 3 clearly shows the
impact of different distributional assumptions with
regard to the clearance time, the lower and upper

bound estimates do not fully capture uncertainty
around the point estimates. In Table A4 of the
Appendix, we show the 95% confidence bounds for
the age- and time-dependent FOI.

Figure 4 (top row) shows the predicted conditional
FOIs for 50 randomly selected individual profiles at
each of the three sites based on the lower boundary
estimator for the FOI. For graphical purposes, we
focused on subjects who were symptomatic at the pre-
vious visit and who were born in the baseline year.
However, similar plots are obtained for other levels
of the infection status at the previous visit and for dif-
ferent birth years. Figure 4 (bottom row) shows the
predicted marginal FOIs again based on the lower
boundary estimator, by age (continuous scale) and
infection status at the previous visit and past AL
use. In general, the lower boundary estimator

Table 2. Recruited number of children, baseline and monthly parasite prevalence, by study site and age group

Nagongera Kihihi Walukuba

<5 years Number 186 188 190
Baseline prevalencea (%) 38·2 12·8 9·5
Monthly prevalencea (%), range 27·4–54·7 7·0–64·7 0–32·0

5–10 years Number 148 167 110
Baseline prevalencea (%) 58·8 18·0 10·9
Monthly prevalencea (%), range 26·7–68·4 8·3–68·0 0–42·9

Total Number 334 355 300
Baseline prevalencea (%) 47·3 15·2 10·0
Monthly prevalencea (%), range 26·7–68·4 7·0–68·0 0–42·9

aParasite prevalence.

Fig. 2. Proportion of children infected with malaria parasites (parasitaemia) in a cohort followed for 3 years, by study site
(Nagongera, Kihihi and Walukuba) in Uganda based on data from August 2011 to August 2014 with the size of the dots
proportional to the number of observations. (A) Observed parasitaemia varying with age; (B) observed parasitaemia
varying with calendar time.
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indicates that younger children have the greatest FOI.
In all sites, individuals that were asymptomatic at the
previous visit have the highest FOI, regardless of age.
The depicted conditional FOI curves show that indivi-
duals have different profiles, indicating substantial
unobserved heterogeneity. The increasing trend in
the FOI from 6 months of age is likely attributed to
loss of maternal immunity in infants [35].

Figure 5 (top row) shows the marginal FOIs for dif-
ferent clearance rates ranging from 0 up to 3 years−1

(y-axis). For graphical purposes, and without loss of
generality, we again focused on subjects who were
symptomatic at the previous visit and who were
born in the baseline year. The colour gradient from
green (dark) to brown (light) in Figure 5 (top row) cor-
responds to an increasing FOI. The figure indicates
that in Nagongera and Kihihi, children who are
below 1 year of age have a lower FOI (green colour)
regardless of the presumed clearance rate. Also, in
Nagongera and Kihihi, the risk for malaria infection
increases with increasing clearance rate, except for
the younger children <1–2 years. In Walukuba, the
FOI increases with increasing clearance rate regardless
of age.

Figure 5 (bottom row) shows how the FOI varied
with age groups (A ≤ 1 year, B = 1–4 years, C = 5–
10 years) and calendar time among subjects assumed

to be symptomatic at the previous visit. In Kihihi,
the risk of acquiring a new malaria infection is slightly
higher for children born in 2010 compared with those
born in earlier years across age groups but not for
Nagongera and Walukuba. This would be expected
since children born at a later year are younger than
those born at an earlier year, and hence are at a higher
risk of infection.

DISCUSSION

In this paper, we use data from a cohort study to esti-
mate the malaria FOI among Ugandan children while
accounting for observed and unobserved heterogene-
ities. The results clearly demonstrate the existence of
heterogeneity in the acquisition of malaria infections,
which is greater between households than between
household members. These observations emphasize
the claim by White et al. [17] that heterogeneity in
malaria infection can arise due to several unobserved
factors, including environmental, vector and
host-related factors. This implies that estimating the
malaria transmission parameters assuming homogen-
eity in the acquisition of infection may yield mislead-
ing results.

The findings were based on the use of a readily
available statistical method, the GLMM, which

Table 3. Estimates of the fitted GLMM using a fractional polynomial of degree 1 for age and a logit-link function

Effect Parameter
log OR
(S.E.) t-value P OR

Intercept β0 −3·04 (0·38) −8·09 <0·001
Study site (Reference =Walukuba) Kihihi β1 0·86 (0·43) 2·01 0·045 2·36 (1·02–5·49)

Nagongera β2 2·19 (0·40) 5·45 <0·001 8·94 (4·08–19·57)
Infection status at the previous visit (Ref =
Negative and No AL treatment in past)

Negative +
AL

β3 −0·01 (0·10) −0·05 0·956 0·99 (0·82–1·21)

Symptomatic β4 −0·24 (0·10) −2·30 0·022 0·78 (0·64–0·97)
Asymptomatic β5 1·23 (0·12) 9·94 <0·001 3·43 (2·69–4·37)

Age−1 Walukuba β6 −0·05 (0·83) −0·06 0·948 0·95 (0·19–4·82)b

Kihihi β7 −4·01 (0·87) −4·62 <0·001 0·02 (0·003–0·10)b

Nagongera β8 −1·75 (0·45) −3·89 0·001 0·17 (0·07–0·42)b

Shifted year of birtha Walukuba β9 −0·13 (0·06) −2·00 0·045 0·88 (0·78 –1·00)
Kihihi β10 0·11 (0·04) 2·58 0·010 1·12 (1·13–1·22)
Nagongera β11 0·04 (0·03) 1·33 0·184 1·04 (0·98–1·10)

Variance components Variance z-value
Variance for random intercepts for subjects d11 0·24 (0·07) 3·32 <0·001
Variance for random intercepts for households Walukuba d22 2·80 (0·88) 3·20 0·001

Kihihi d33 1·16 (0·28) 4·21 <0·001
Nagongera d44 0·21 (0·08) 2·48 0·007

a Birth year – min (birth year).
b Note that the OR here should be interpreted at the Age−1 level.
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takes into account heterogeneity between individuals
and households in the acquisition of malaria infection.
In particular, a fractional polynomial of age of degree
1 and power −1, adjusted for the calendar time, by
means of the so-called ‘shifted birth year’ (i.e., shifted
birth year = birth year–birth year of the oldest child),
and other covariates, was considered. The fractional
polynomial was chosen because it provides a very
flexible modelling tool while retaining the strength of
a parametric function. The random slope effects for
the fractional polynomial function of age resulted in
negative estimates for the FOI, which are biologically
implausible and therefore the random slopes were
dropped. This could be perceived as a drawback of
using the GLMM in combination with fractional
polynomials and a more mechanistic approach in
which heterogeneity is taken into account at different
levels could prove valuable here (further research).

When allowing for serial correlation in the model
through the specification of an AR(1) correlation
structure, the model failed to converge, indicating
that too little information was available in the
PRISM data to accommodate serial correlation, at
least when assuming that the AR(1) assumption is
appropriate. An in-depth investigation thereof is an
interesting topic for further research.

Based on the SIS model, we derived an expression
relating the FOI to the prevalence for infectious dis-
eases such as malaria where we cannot assume lifelong
immunity. This expression is an extension of the one
proposed by Hens et al. [21] for a so-called SIR
model assuming lifelong immunity after recovery, an
assumption, which is untenable for malaria. A com-
partmental model, which can account for temporally
recovery due to prior use of treatment (induced
immunity) or due to previous exposure to infection

Fig. 3. The lower bound (green) for the marginal annual FOI and the difference between upper and lower bound (yellow)
with full bar showing the upper bound for the FOI, by study site, age group (A, <1 year; B, 1–4 years; and C, 5–10 years)
and the infection status at the previous visit and past use of AL (negative and no AL in the past (left column), negative
and AL in the past (second left column), symptomatic (second right column) and asymptomatic (right column)) for
children assumed to be born in the baseline year (2001). Top row, Nagongera; middle row, Kihihi; bottom row,
Walukuba.
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Fig. 4. Top row: Individual-specific evolutions for the conditional annual FOI obtained using the lower boundary
estimator, by study site for children assumed to be symptomatic at the previous visit and who were born in the baseline
year (2001). Bottom row: The marginal annual FOI, obtained using the lower boundary estimator, by study site and the
infection status at the previous visit and past use of AL (negative and no AL in the past (solid lines), negative and AL in
the past (dotted lines), symptomatic (dash-dotted lines) and asymptomatic (long-dashed lines)). Left column, Nagongera;
middle column, Kihihi; right column, Walukuba.

Fig. 5. Top row: The marginal annual FOI (contour lines) considering different values for the clearance rate ranging from
0 to 3 years−1 by study site for individuals assumed to be symptomatic at the previous visit and were born in the baseline
year. Bottom row: The marginal annual FOI, obtained using the upper boundary estimator, for individuals assumed to be
symptomatic at the previous visit, by study site, birth year (2001, 2004, 2007 and 2010) and by age group (A: <1 year, B:
1–4 years, and C: 5–10 years). Left panel, Nagongera; middle panel, Kihihi; right panel, Walukuba.
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(acquired immunity), that is, Susceptible–Infected–
Recovered(Treatment)–Susceptible (SIR(T)S), would
potentially offer a better alternative compared with
the more restrictive SIS model. However, an
SIR(T)S model does not yield a closed-form expres-
sion for the point prevalence, and hence, for the
FOI. Nevertheless, the derivations are approximately
valid for an SIR(T)S model with short recovery dur-
ation (derivations not included here). Consequently,
we focused on the SIS model, albeit that we adjusted
for the previous infection status and treatment in
our model. The standard SIS compartmental model
assumes that the clearance rate is exponentially dis-
tributed. We derived two estimators for the FOI,
which provide a lower and upper boundary for the
FOI based on different Erlang distributions for the
clearance rate. The lower boundary approximately
holds for a scenario in which the clearance rate is
small compared with the FOI. Although mathemat-
ical models encompassing more complicated and
more realistic transmission dynamics for malaria
could be considered, we defer their treatment to future
research in which we will combine Nonlinear Mixed
Model (NLMM) methodology and numerical
approaches for the estimation of the model para-
meters in the presence of unobserved heterogeneity.

The temporal inhomogeneity observed in the data is
not in contradiction with the SIS model we used.
Heterogeneity, age and temporal aspects are
addressed in the GLMM, through the specification
of random effects as well as age- and calendar time
variables; whereas derivations from the SIS model
under endemic equilibrium enable the estimation of
the age- and time-dependent FOI from the estimated
age- and time-dependent parasite prevalence.
Furthermore, estimation of the reproduction number
can be done when focusing on the underlying mechan-
istic modelling of the FOI. However, we deem this to
be beyond the scope of this specific manuscript.
Seasonality is not explicitly modelled here; however,
inclusion of a covariate describing the amount of rain-
fall, due to the absence of a clear distinction between
the different seasons, and based on additional infor-
mation (not part of the PRISM data) would be an
interesting topic for further research.

When the clearance rate is considered negligible,
the rate at which children get infected is highest
among those between 1 and 2 years. When the clear-
ance rate is non-negligible, the infection rate is higher
among children older than 5 years in areas with high
and medium transmission (e.g., Nagongera and

Kihihi) and higher in children below 1 year in areas
with low transmission (e.g., Walukuba). In Kihihi,
the FOI was least for children aged <1 year and it is
observed to increase as children grow up from 6
months to 1 year. This could be explained by the
fact that children lose maternal immunity in their
first year of life [35], which puts them at an increased
risk of malaria infection. The higher FOI among chil-
dren aged 5 years and older could be explained by the
fact that these children are often asymptomatic mal-
aria cases and are rarely treated, which makes them
reservoirs for infections. This finding conquers with
the work by Walldorf et al. [36] who reported that
children aged 6–15 years were at higher risk of
(asymptomatic) infection compared with the younger
ones. They concluded that older children represent
an underappreciated reservoir of malaria infection
and have less exposure to antimalarial interventions.

A higher risk was seen among children in
Nagongera compared with those in Kihihi and
Walukuba with no significant difference between the
latter two sites. This could be explained by the fact
that Nagongera is a predominantly rural area with
many semi-structured houses and many mosquitoes
compared with Walukuba or Kihihi as was noted by
Kilama et al. [5]. Our results also demonstrated the
importance of prior treatment in lowering infection
risk due to the post-treatment prophylactic effect of
longer acting anti-malarials, such as AL. For
example, children who were previously treated with
AL (the symptomatic malaria cases) had a lower
risk of getting re-infected compared with those who
were asymptomatic or negative at the previous visit.

This study has two major limitations. First, the ana-
lysis was based on results of parasite prevalence deter-
mined by microscopy, which is less sensitive than
molecular methods such as PCR (polymerase chain
reaction) or LAMP (loop-mediated isothermal
amplification method) [37, 38]. Thus, sub-microscopic
infections would not have been detected. This could
have resulted into lower estimates of the FOI. In add-
ition, genotyping was not performed to distinguish
new and recurrent infections. As a result, the FOI
among individuals who were asymptomatic at the pre-
vious visit could have been overestimated. Secondly,
the unscheduled clinical visits by the symptomatic
individuals were triggered by the study outcome (i.e.,
parasitaemia). This creates a dependency between
the observation-time and outcome processes. This
dependence, if not accounted for, has a potential to
introduce bias in the model estimates and hence in
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the estimation of the FOI. This bias was avoided by
dropping clinical visits and by using only routine
data, although the infection status and use of treat-
ment during clinical visits was accounted for in the
model. This implies that the analysis used less data
than was actually available. The latter limitation will
be dealt with in future research by modelling both
the outcome and the observation-time processes con-
currently using a joint model [39, 40].

To conclude, we have used longitudinal data from a
cohort of Ugandan children to estimate the malaria
FOI accounting for both observed and unobserved
heterogeneity. First, we show how the FOI relates to
parasite prevalence assuming an SIS compartmental
model and giving both lower and upper boundaries
thereof by relaxing the exponential assumption with
regard to the parasite clearance distribution. We esti-
mated the parasite prevalence using a GLMM,
whose estimates were used to obtain an estimate for
the FOI. The malaria FOI was highest among chil-
dren aged 1–2 years based on the lower boundary esti-
mator, and it was higher among children older than 5
years in areas of high and medium transmission based
on the upper boundary estimator. In a low transmis-
sion setting, the FOI was highest in children aged
below 1 year regardless of the boundary estimator
for the FOI. The FOI varied between study sites
highest in Nagongera and least in Walukuba.
Heterogeneity increases with decreasing FOI and is
greater between households than household members.
We recommend that estimating the malaria FOI
should be done accounting for both observed and
unobserved heterogeneity to enable refining existing
mathematical models in which the FOI may be
unknown.
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APPENDIX

Though, fractional polynomials are very flexible, they
can result into negative estimates for the FOI when-
ever the estimated probability to be infected before
age a is a non-monotone function [21, 27]. A solution
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to this is to define a non-negative FOI, λl(aijk|bi)5 0
for all a and to estimate πl(aijk|bi) under these con-
straints [27]. From Table 1, for a logit link function,
the condition η′(aijk|bi)5−γ/(1− πl(aijk|bi)) should be
satisfied as to estimate a positive FOI. One option is
to fit a constrained FP to ensure the above condition
holds by applying a constraint on parameter estimates
depending on the functional relationship with age.
However, this approach becomes challenging espe-
cially if it involves constraining random effects. An

alternative option is to find a probability of estimating
a negative FOI using the model results. If this prob-
ability is considerably small, say less than 0·01, then
one can consider the first option unnecessary. In this
paper, the second option was applied. Indeed, all site-
specific coefficients for age effect were negative (see
Table 3), meaning that the site-specific derivatives
for the linear predictors, η′(aijk|bi) = (−(β̂6)a−2

ijk

−(β̂7)a−2
ijk , −(β̂8)a−2

ijk ) . 0. This implies that the
above condition always holds in our case since a−2

ijk ,

Table A1. Overview of the fractional polynomial model selection

Power −3 −2 −1 −0·5 0 0·5 1 2 3
AIC 7202·3 7178·6 7150·0 7152·9 7154·4 7160·9 7171·2 7190·6 7204·9

Table A2. Overview of model building (number of observations in each case equal to 8645)

Model Log-likelihood AIC BIC

a−1 × S+ l × S+ S+PT+PT× S + b1ij+ b2j × S −3199·09 6442·17 6525·75
a−1 × S+ l × S+ S+PT+PT× S + b2j × S −3208·24 6458·48 6538·26
a−1 × S+ l × S+ S+PT+PT× S + b1ij+ b2j −3213·90 6467·80 6543·78
a−1 × S+ l × S+ S+PT+ b1ij+ b2j × S −3204·93 6441·86 6502·64
a−1 + l× S + S+ PT+ b1ij+ b2j× S −3210·56 6449·12 6502·31
a−1 × S+ l + S+ PT+ b1ij+ b2j× S −3209·73 6447·45 6500·64
a−1 + l+ S +PT+ b1ij+ b2j × S −3211·87 6447·74 6493·32

S, study site; P, infection status at previous visit; T, treatment with AL at previous infection; PT, combination of P and T.
Note that P and T were collinear (sign of T changes whenever P is included with T).

Fig. A1. Plots for log-likelihood versus the clearance rate (left panel) and FOI versus the clearance rate (right panel)
obtained after fitting 1000 models to the data according to π= λ/(λ+ γ)(1− e−(λ+γ)a) as given by Pull and Grab (1974) by
choosing values for the annual clearance rate on a grid of 0·1 to 2·0 with a step size of 0·0019.
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γ and (1− πl(aijk|bi)) are always positive. Therefore,
the probability to estimate a negative FOI was zero.

For example, based on model results in Table 3, the
conditional age-time dependent FOI for a subject
from Walukuba, born in the baseline year (2001,
that is, shifted year of birth = 0) and was symptomatic

at the previous visit can be estimated as follows,

λ̂0(aijk|bi) = γ̂ Exp(β̂0 + β̂6a
−1
ijk + β̂4 + b1ij + b21j)

− (β̂6)a−2
ijk

∗π̂0(aijk|bi) (7)

where β̂0 = −3.04, β̂6 = −0.05, β̂4 = −0.24, and

Fig. A2. Top row: Individual-specific evolutions for the conditional prevalence, by study site for children assumed to be
symptomatic at the previous visit and were born in the baseline year (2001). Bottom row: Average evolutions for
marginalized prevalence, by study site and the infection status at the previous visit and past use of AL (negative and no
AL in the past (solid lines), negative and AL in the past (dotted lines), symptomatic (dash-dotted lines) and asymptomatic
(long-dashed lines)). Left panel: Nagongera, middle panel: Kihihi, right panel: Walukuba.

Table A3; Maximum values for the marginal annual FOI by study site, previous infection status and use of AL, and
by age group

Site Previous infection status and use of AL

Maximum annual FOI

<1 year 1–4 years 5–10 years

Nagongera Negative, no AL 3·99 4·21 8·49
Negative, AL 4·45 4·80 9·69
Symptomatic 2·21 2·07 4·14
Asymptomatic 7·73 9·21 18·70

Kihihi Negative, no AL 5·35 24·95 64·82
Negative, AL 1·46 4·64 11·78
Symptomatic 1·06 3·23 8·11
Asymptomatic 4·62 20·25 52·56

Walukuba Negative, no AL 18·01 6·65 11·28
Negative, AL 20·07 7·41 12·58
Symptomatic 8·02 2·95 5·01
Asymptomatic 98·24 36·34 61·66
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π̂0(aijk|bi) is the corresponding age-time conditional
prevalence given as,

π̂0(aijk|bi) =
Exp(β̂0 + β̂6a

−1
ijk + β̂4 + b1ij + b21j)

1+ Exp(β̂0 + β̂6a
−1
ijk + β̂4 + b1ij + b21j)

(8)
and γ̂ is an estimate for the clearance rate. The condi-
tional FOI for other sites given the infection status at
the previous visit and past use of AL can be estimated
in a similar way.

MARGINALISATION

A sample of M = 1000 of the random affects vector
bi = (b1i, b2sj)

T, s= 1, 2, 3 (sites), was generated from
a multi-variate normal distribution, N(0, L̂ L̂T ),
where for example, for Walukuba, L̂ = (0.49, 1.67)T
whose elements are the square roots of d̂11 and d̂22,

respectively as given in Table 3. A fine grid of age,
a= 0.5 to 11 with interval 0·1 years (the age range in
the data, though extrapolation is possible) was consid-
ered. For example, the marginalized FOI at each age
value in the grid, again considering a subject from
Walukuba, born in the baseline year and was symp-
tomatic at the previous visit is calculated as in (9).

λ̂0(a) = 1
1000

∑1000
i=1

(γ̂ Exp(β̂0 + β̂6a
−1 + β̂4 + b1i

+ b21i)) − (β̂6)a−2∗π̂0(a) (9)

where π̂0(a) is the corresponding marginalized preva-
lence given by

π̂0(a) = 1
1000∑1000

i=1

Exp(β̂0 + β̂6a
−1 + β̂4 + b1i + b21i)

1+ Exp(β̂0 + β̂6a−1 + β̂4 + b1i + b21i)

( )
(10)

Table A4; Marginal FOI and the 95% confidence bounds for the age- and time-dependent marginal annual FOI by
study site, previous infection status and use of AL, and by age group for children born in the baseline year (2001)

Infection status at the previous
visit and past use of AL

Age in
years

Nagongera Kihihi Walukuba
Marginal annual FOI
(95% CI) × 1000

Marginal annual FOI
(95% CI) × 1000

Marginal annual FOI
(95% CI) × 1000

Lower bound
Negative and no AL in the past <1 143·78 (141·16–146·39) 9·27 (8·52–10·01) 10·20 (9·75–10·65)

1–4 53·69 (53·20–54·19) 22·69 (22·34–23·04) 0·95 (0·92–0·97)
5–10 8·57 (8·53–8·62) 7·24 (7·17–7·31) 0·09 (0·09–0·09)

Negative and AL in the past <1 137·35 (134·84–139·87) 7·64 (7·28–8·00) 10·72 (10·27–11·18)
1–4 51·67 (51·19–52·14) 20·09 (19·82–20·35) 0·99 (0·97–1·02)
5–10 8·29 (8·24–8·33) 6·59 (6·52–6·65) 0·10 (0·09–0·10)

Symptomatic <1 105·62 (103·73–107·51) 6·26 (5·98–6·54) 9·58 (9·18–9·98)
1–4 41·4 (41·02–41·79) 16·91 (16·70–17·12) 0·89 (0·87–0·91)
5–10 6·83 (6·79–6·87) 5·70 (5·65–5·75) 0·09 (0·08–0·09)

Asymptomatic <1 426·73 (420·32–433·14) 24·87 (23·68–26·06) 22·88 (22·14–23·63)
1–4 123·3 (122·22–124·39) 55·20 (54·57–55·81) 2·11 (2·07–2·14)
5–10 16·86 (16·78–16·93) 15·69 (15·57–55·83) 0·20 (0·20–0·20)

Upper bound

Negative and no AL in the past <1 234·51 (229·74–239·28) 12·22 (11·16–13·28) 309·33 (285·17–333·49)
1–4 224·99 (223·32–226·65) 61·66 (60·13–63·20) 112·84 (109·37–116·31)
5–10 445·73 (442·83–448·62) 161·20 (157·32–165·08) 191·40 (186·57–196·22)

Negative and AL in the past <1 223·74 (219·15–216·36) 10·03 (9·54–10·53) 322·88 (298·09–347·66)
1–4 214·75 (213·15–216·36) 51·65 (50·91–52·39) 117·76 (114·2–121·31)
5–10 424·49 (421·70–427·29) 131·29 (129·73–132·85) 199·73 (194·78–204·67)

Symptomatic <1 170·65 (167·29–174·0) 8·22 (7·84–8·60) 246·55 (231·99–261·10)
1–4 164·17 (163·02–165·32) 42·74 (42·17–43·30) 89·53 (87·46–91·61)
5–10 320·14 (318·21–322·07) 107·71 (106·53–108·89) 151·64 (148·75–154·52)

Asymptomatic <1 741·36 (728·10–754·61) 32·81 (31·15–34·46) 1134·5 (1034·6–1234·4)
1–4 717·36 (712·29–722·31) 159·84 (157·55–162·14) 417·93 (403·49–432·36)
5–10 1532·75 (1523·4–1542·1) 429·11 (423·66–434·55) 711·13 (691·0–731·26)
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Extensions to estimate the marginal averages at dif-
ferent birth years, for different study sites and for dif-
ferent infection statuses at the previous visit, are
straightforward. The SAS macro performing the
numerical averaging for a case of γ̂ = 1 · 643 is
attached in the Appendix.

A GENERAL S(I)J(R)S SYSTEM

Let s, i and r represent the proportion susceptible,
infected and recovered, respectively. Also, let μ
represent the natural birth rate assumed to be equal
to the natural death rate, β the transmission rate, γ
the clearance rate and σ the recovery rate.

System:

ds
dt

= μ− βsi + σr− μs

di1
dt

= βsi − γi1 − μi1,
di2
dt

= γi1 − γi2 − μi2,
.

.

.
diJ
dt

= γiJ−1 − γiJ − μiJ,

dr
dt

= γiJ − σr− μr

(11)

where i = ∑J
j=1 ij

Rewriting the system collapsing the infectious
classes into i:

ds
dt

= μ− βsi + σr− μs,

di
dt

= βsi − γiJ − μi,

dr
dt

= γiJ − σr− μr,

(12)

Simplifying the model to an S(I)JS system:

ds
dt

= μ− βsi + γiJ − μs,

di
dt

= βsi − γiJ − μi,
(13)

yields (replacing di/dt by i′, λ = βi and s= 1− i)

i′ = λ(1− i) − γiJ − μi (14)
and thus

λ = i′ + γiJ + μi
1− i

≈ i′ + γiJ
1− i

, (15)

expressing time dependency,

λ(t) = i′(t) + γiJ(t) + μi(t)
1− i(t) ≈ i′(t) + γiJ (t)

1− i(t) , (16)

since μi(t)≪ γiJ(t). Let’s look at the factor γiJ(t). In
case J= 1, γiJ(t) = γi(t). In case J >1, γiJ(t) <γi(t).
This gives us a lower and upper boundary for our
FOI.

λL(t), λU (t)[ ] = i′(t)
1− i(t) ,

i′(t) + γi(t)
1− i(t)

[ ]
(17)

These formulas readily extend to the age-
heterogeneous case since we do not explicitly model
the underlying transmission mechanism.

***** SAS MACRO *****

*GLIMMIX code
proc glimmix data=Cohortfulldata2 method=laplace NOCLPRINT;

class hhid id siteid(ref=“1”) pinfectstatusandAL(ref=“0”);
model parasitemia = fpcohortage*siteid yearshift*siteid siteid pinfectstatus

andAL/ dist=bin oddsratio link=logit solution;
random intercept/ subject = hhid group=siteid solution;
random intercept / subject = id(hhid) solution;
COVTEST/ WALD;

run;
**Numerical averaging
**Considering children born between 2001 to 2014 as they appear in the data;
al. (1976) are

data numaveragingprevfoinc;
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do site =1 to 3 by 1; *study sites 1(walukuba),2(kihihi),3(nagongera);
do pinfect =1 to 4 by 1; *infection status 1(negative+no AL), 2(negative+AL), 3(symptomatic), 4

(asymptomatic);
do subject=1 to 1000 by 1; *generate 1000 samples;
bi1=rannor(123); bi2=rannor(123); bi3=rannor(123); bi4=rannor(123); *used seed=123 to generate from

standard normal;
d11=0.24;d22=2.80;d33=1.16;d44=0.21;*variances from the final fit, elements in D;
rd11=d11**0.5;rd22=d22**0.5;rd33=d33**0.5;rd44=d44**0.5; *sqrt(S2) to be used in Cholesky

decomposition;
r1=rd11*bi1; r2=rd22*bi2; r3=rd33*bi3; r4=rd44*bi4; *using U+sqrt(S2)*rannor

(seed): Note elements in here are sqrt of elements in D;
do a=0.5 to 11 by 0.1; *generate 1000 samples at each age point in the grid;
do L=0 to 13 by 1; *Repeat the above process for each value of birth year shift (L=year of birth - 2001);

*Parameter estimates;
B0=-3.04;B1=0.86;B2=2.19;B3=−0.01;B4=−0.24;B5=1.23;B6=−0.05;B7=−4.01;B8=−1.75;B9=−0.13;

B10=0.11;B11=0.04; ap=1/a; *Power of age, age-1;
*Linear Predictors;

lp11=B0+B6*ap+B9*L+r1+r2; lp12=B0+B6*ap+B9*L+B3+r1+r2;
lp13=B0+B6*ap+B9*L+B4+r1+r2;lp14=B0+B6*ap+B9*L+B5+r1+r2;
lp21=B0+B7*ap+B10*L+B1+r1+r3; lp22=B0+B7*ap+B10*L+B1+B3+r1+r3;
lp23=B0+B7*ap+B10*L+B1+B4+r1+r3;lp24=B0+B7*ap+B10*L+B1+B5+r1+r3;
lp31=B0+B8*ap+B11*L+B2+r1+r4; lp32=B0+B8*ap+B11*L+B2+B3+r1+r4;
lp33=B0+B8*ap+B11*L+B2+B4+r1+r4;lp34=B0+B8*ap+B11*L+B2+B5+r1+r4;
*Derivative of linear predictor;
lpder1=-(B6)*(ap*ap); lpder2=-(B7)*(ap*ap); lpder3=-(B8)*(ap*ap);
*Prevalence;

if site=1 and pinfect=1 then pi=exp(lp11)/(1+exp(lp11));
if site=1 and pinfect=2 then pi=exp(lp12)/(1+exp(lp12));
if site=1 and pinfect=3 then pi=exp(lp13)/(1+exp(lp13));
if site=1 and pinfect=4 then pi=exp(lp14)/(1+exp(lp14));
if site=2 and pinfect=1 then pi=exp(lp21)/(1+exp(lp21));
if site=2 and pinfect=2 then pi=exp(lp22)/(1+exp(lp22));
if site=2 and pinfect=3 then pi=exp(lp23)/(1+exp(lp23));
if site=2 and pinfect=4 then pi=exp(lp24)/(1+exp(lp24));
if site=3 and pinfect=1 then pi=exp(lp31)/(1+exp(lp31));
if site=3 and pinfect=2 then pi=exp(lp32)/(1+exp(lp32));
if site=3 and pinfect=3 then pi=exp(lp33)/(1+exp(lp33));
if site=3 and pinfect=4 then pi=exp(lp34)/(1+exp(lp34));
**FOI;
*Clearance rate of 1.643 for children <1 year as given by Bekessy et al. (1976) is demon-

strated, a similar code can easily be adopted for ages 1–4 years and 5–10 years.;
if site=1 and pinfect=1 and a<1 then foi=1.643*exp(lp11)+ lpder1*exp(lp11)/(1+exp(lp11));
if site=1 and pinfect=2 and a<1 then foi=1.643*exp(lp12)+ lpder1*exp(lp12)/(1+exp(lp12));
if site=1 and pinfect=3 and a<1 then foi=1.643*exp(lp13)+ lpder1*exp(lp13)/(1+exp(lp13));
if site=1 and pinfect=4 and a<1 then foi=1.643*exp(lp14)+ lpder1*exp(lp14)/(1+exp(lp14));
if site=2 and pinfect=1 and a<1 then foi=1.643*exp(lp21)+ lpder2*exp(lp21)/(1+exp(lp21));
if site=2 and pinfect=2 and a<1 then foi=1.643*exp(lp22)+ lpder2*exp(lp22)/(1+exp(lp22));
if site=2 and pinfect=3 and a<1 then foi=1.643*exp(lp23)+ lpder2*exp(lp23)/(1+exp(lp23));
if site=2 and pinfect=4 and a<1 then foi=1.643*exp(lp24)+ lpder2*exp(lp24)/(1+exp(lp24));
if site=3 and pinfect=1 and a<1 then foi=1.643*exp(lp31)+ lpder3*exp(lp31)/(1+exp(lp31));
if site=3 and pinfect=2 and a<1 then foi=1.643*exp(lp32)+ lpder3*exp(lp32)/(1+exp(lp32));
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if site=3 and pinfect=3 and a<1 then foi=1.643*exp(lp33)+ lpder3*exp(lp33)/(1+exp(lp33));
if site=3 and pinfect=4 and a<1 then foi=1.643*exp(lp34)+ lpder3*exp(lp34)/(1+exp(lp34));

output;
end;
end;
end;

end;
end;
run;
*sort data;
proc sort data= numaveragingprevfoinc; by a site pinfect L;run;
*Get means;
proc means data= numaveragingprevfoinc; var pi foi; by a site pinfect L; output out=outpifoinc; run;
*Keep data for marginalized means;
data marginalizedprevandfoinc; set outpifoinc; where _stat_=‘MEAN’; run;
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