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A B S T R A C T

Crisis-induced vaccine supply chain management has recently drawn attention to the importance
of immediate responses to a crisis (e.g., the COVID-19 pandemic). This study develops a queuing
model for a crisis-induced vaccine supply chain to ensure efficient coordination and distribution
of different COVID-19 vaccine types to people with various levels of vulnerability. We define a
utility function for queues to study the changes in arrival rates related to the inventory level
of vaccines, the efficiency of vaccines, and a risk aversion coefficient for vaccinees. A multi-
period queuing model considering congestion in the vaccination process is proposed to minimise
two contradictory objectives: (i) the expected average wait time of vaccinees and (ii) the total
investment in the holding and ordering of vaccines. To develop the bi-objective non-linear
programming model, the goal attainment algorithm and the non-dominated sorting genetic
algorithm (NSGA-II) are employed for small- to large-scale problems. Several solution repairs
are also implemented in the classic NSGA-II algorithm to improve its efficiency. Four standard
performance metrics are used to investigate the algorithm. The non-parametric Friedman and
Wilcoxon signed-rank tests are applied on several numerical examples to ensure the privilege
of the improved algorithm. The NSGA-II algorithm surveys an authentic case study in Australia,
and several scenarios are created to provide insights for an efficient vaccination program.

. Introduction

The COVID-19 pandemic that was first reported in December 2019, has significantly influenced nearly all healthcare systems
orldwide. It has resulted in more than 250 million confirmed cases and more than five million reported deaths across the
orld (World Health Organization, 2021). The socio-economic impacts of the COVID-19 pandemic (e.g., self-isolation, travel bans,

ransportation restrictions, and border shutdowns) have led to economic crisis and recession in advanced economic systems (Nicola
t al., 2020). The new variants of COVID-19 with severe transmissibility have also driven healthcare systems to face intense financial
nd infrastructural challenges in a short time (Pescaroli et al., 2021), exposing healthcare supply chains to the risk of failure.
ccording to Altmann et al. (2020), these challenges have motivated policymakers to speed up the process of mass vaccination. In this
ein, key stakeholders in healthcare systems, like public hospitals and state and federal governments, must apply innovative supply
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chain strategies in the mass vaccination of their citizens to efficiently reduce the risks of infection and death. A vaccine supply chain
consists of complex processes (e.g. vaccine allocation and vaccine distribution) that require coordination between key stakeholders
to help achieve timely delivery and distribution of vaccines (Brown et al., 2014). According to Alam et al. (2021), a vaccine
supply requires a "development phase and a fulfilment phase when it is approved by the healthcare authorities". In other words,
a vaccine must follow a more rigorous procedure than other products (e.g. textile, sport, automotive) to become commercialised
and distributed. While many companies are able to accelerate production and distribution even in difficult situations (e.g. the
supply of personal protective equipment during the COVID-19 pandemic), vaccine production and distribution in emergencies still
requires maintaining sensible R&D activities, coordinating clinical trials, and authorising safe and transparent mechanisms that
impact the entire supply chain network. It is, therefore, imperative for policymakers to understand how current healthcare systems
must be redeveloped or upgraded to the so-called ‘‘crisis-induced supply chain’’ format to respond effectively and efficiently to
the high vaccination demand with limited supply. We consider the crisis-induced supply chain a supply chain that aims to respond
efficiently and effectively to emergencies (e.g., the COVID-19 pandemic). These chains are often organised in a temporary fashion but
adopt similar supply chain strategies (e.g., responsive or efficient approaches) (Dasaklis et al., 2017). The emphasis of these supply
chains is on immediate action and reaction to a crisis. Supply chain coordination in such situations appears to be more challenging
than in typical situations, as the level of uncertainty, is high. Uncertainty in a crisis-induced supply chain is originated from the
unfamiliarity of stakeholders with the crisis-induced scenarios (e.g., the COVID-19 pandemic) and its unexpected consequences
(e.g., blockages across major supply chain networks, shortage in supply and trade wars). In addition, procurement, transportation
and distribution in emergencies require a great deal of international collaboration between public and private sectors to ease the
equality and accessibility in vaccination. In this vein, the COVID-19 vaccine distribution planning may be incompatible with other
vaccine distribution networks in some circumstances (e.g., the lack of inventory accessibility) and the increased price of vaccines due
to the R&D expenditures), necessitating the development of and planning for new resources to improve the supply chain performance.

In addition, the uneven geographic distribution of hospitals and their branches in metropolitan compared to suburban areas
nd the rate of vulnerability to COVID-19 among different age groups have caused serious challenges in terms of ensuring equity
n vaccine distribution (Bettampadi et al., 2021; Lee et al., 2012) as well as managing service costs (e.g., vaccine ordering and
olding costs) (Hovav and Tsadikovich, 2015). For instance, the ratio of Inner Melbourne’s population (∼410,000 citizens) to Inner

Melbourne’s public hospitals (∼𝑡𝑒𝑛 hospitals) is greater than the remaining population of Melbourne (∼4,593,000 citizens) to the
remaining public hospitals (∼41 hospitals) (Australian Bureau of Statistics, 2021). Furthermore, more than 15% of Melbourne’s
population include citizens aged 65 and above (Australian Bureau of Statistics, 2021), who are at the greatest risk of death from
a COVID-19 infection (Daoust, 2020). According to Mallapaty (2020), more than 80% of COVID-19 deaths occur in people aged
65 and above. These statistics reveal the complexity of the COVID-19 vaccine supply. In this vein, an integrated approach must
be developed and implemented with multiple supply scenarios to help adopt a crisis-induced supply chain network in the short
term (Chowdhury et al., 2021; Jahani et al., 2018). On the one hand, when more hospitals have vaccine allocation and distribution,
this increases the pace of vaccination and, eventually, citizen satisfaction. On the other hand, when too many hospitals are equipped
for vaccination, this disperses the targeted population and significantly increases the vaccine supply chain costs (i.e., ordering and
holding costs). In addition, the operational costs rely on the number of open hospitals, their locations, their distances from the main
healthcare network centre, and the targeted population in a specific living area (Li et al., 2021). This situation may become even
more complex when the crisis-induced vaccine supply chains must cope with varying types of vaccines. This is because vaccines
of varying brands have different characteristics, which require different production, transportation, storage, and administration
strategies. For example, while both Pfizer–Biontech (known as Pfizer) and AstraZeneca–Oxford (known as AstraZeneca) are COVID-
19 vaccines with two doses that must be given in different time windows, Johnson & Johnson’s Janssen (known as J&J) vaccine
is comprised of only one dose. The differences in transportation and storage, efficiency, and costs also vary depending on which
vaccine has priority (Abbasi et al., 2020; Tavana et al., 2021). Therefore, it is imperative to develop distribution mechanisms to
respond effectively and efficiently to such challenges and mitigate likely disparities.

Despite all efforts to develop and implement healthcare supply chain strategies for a crisis-induced vaccine supply chain
(e.g. see Abbasi et al., 2020; Chen et al., 2020; Ferranna et al., 2021) in prior studies, these analyses did not fully consider the
multifaceted aspects of vaccine distribution mechanisms to mitigate the risk of failure in crisis-induced vaccine supply chains.
For example, despite some studies have only focused on equity in vaccine distribution, based on variables such as the level of
vulnerability, accessibility and availability Abbasi et al. (2020), Chen et al. (2020), Ferranna et al. (2021), the important of other
constraints such as wait time and product holding and ordering costs are often overlooked due to the complexity of planning systems.
More importantly, vaccines are very sensitive to the temperature change, requiring a high-level coordination across the chain to
prevent vaccine failure. This situation is even more critical in a crisis-induced environment where the production and distribution
processes strongly impact human life. In addition, the crisis-induced vaccine supply chains are more expensive than typical vaccine
supply chains, as crisis-induced environments may create unexpected circumstances (e.g. inequality in distribution, a dramatic
increase in the vaccine price, increased rate of vaccine failure). According to Alam et al. (2021), these unexpected circumstances are
rooted in challenges such as the lack of vaccine monitoring bodies, the difficulty in tracking vaccinated population, inappropriate
coordination with local organisations, the lack of proper storage systems and failure in vaccine marketisation. In this vein, millions
of COVID-19 vaccines are being distributed to hundreds of local public hospitals on a daily or weekly basis, requiring public hospitals
to consider a wide variety of factors in prioritising vaccine demands among distinct groups of citizens (e.g., vulnerable communities)
in different time windows based on the type of vaccine. Therefore, a robust distribution and storage planning model is required to
conceptualise the effective and responsive vaccination process at the operational level. The model should also ensure transparency in
2

vaccine distribution by minimising the waiting lists of vaccine demands and reducing the expenses of vaccine ordering and holding.
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This study aims to highlight the role of queuing theory in managing vaccine supply chains in emerging situations by considering
wo opposing yet interlinked factors in the success of crisis-induced vaccine supply chains: (i) minimising the wait time of
accination, which will increase the effectiveness and responsiveness of such supply chains and (ii) minimising the total ordering and
olding costs of vaccines and vaccination. This study thus develops a mathematical model emphasising the crisis-induced vaccine
upply in healthcare supply chains to ensure effective and efficient vaccine distribution and storage at the operational level. We refer
o the ordering costs as fixed costs (e.g., vaccine price) and variable costs (e.g. transportation) while holding costs are a combination
f fixed and variable costs (e.g., vaccine failure, equipment, repair, and maintenance) that hospitals (or local authorities) must spend
or vaccination. This study focuses on the greater Melbourne area as a case-study. It tests the proposed model based on real data from
ublic hospitals and demographic information of citizens of the greater Melbourne. The findings of this study can be generalised
o all countries affected by the COVID-19 pandemic (and other potential pandemics in the future), as this study makes several
ecommendations on how policymakers and managers in public hospitals must work together to establish a vaccine supply chain in
imes of crisis.

This paper is structured as follows: Section 2 describes the crisis-induced vaccine supply chain concept and later presents
rior studies that adopted mathematical modelling techniques to develop optimised vaccine distribution networks. This section
hen discusses the theoretical framework of this study by highlighting the key role of the queuing theory in developing COVID-19
accine distribution planning using a congested queuing system. Section 3 describes the research problem and defines assumptions,
roperties, and the supply chain optimisation model. We present the solution methodology in Section 4, describing the non-
ominated sorting genetic algorithm (NSGA-II) and solutions to the model. This is followed by Section 5, which tests the proposed
odel in an authentic case study. Section 5 also conducts a sensitivity analysis and performance evaluation to determine how the
odel and the proposed solution approaches perform in different scenarios. Finally, Section 6 concludes the main findings and
rovides recommendations for future policymakers and healthcare managers in the current and potential crisis-induced events,
ollowed by recommendations for future studies.

. Literature review

.1. Crisis-induced vaccine supply chain

A conventional vaccine supply chain includes a complex set of processes, equipment, logistics, and transportation that involves
accine production, procurement and prompt distribution (Brown et al., 2014; Shittu et al., 2016). Traditionally, manufacturers,
holesalers, or distributors supplied vaccines to care service providers (e.g., hospitals, clinics, and pharmacies) in a standardised

hain to minimise vaccination wait time and speed (Li et al., 2018). A good example is the distribution mechanism of the influenza
accine that occurs seasonally and often follows routinised planning for ordering, storage, and distribution. However, crisis-induced
accine supply chains are developed in emergencies and require immediate planning for vaccine distribution; these may be more
ragile to disruptions (e.g., shortages in supply, storage, and access restrictions). Indeed, prior studies often focused on disruptions
n everyday situations (Chen et al., 2020; Lee et al., 2016; MacIntyre et al., 2021), overlooking the importance of disruptions in
mergencies. That is, crisis-induced vaccine supply chains can experience a wide variety of disruptions not only in the development
nd production phases, but also in distribution mechanisms where the vaccination process may be influenced by ambiguity in
accine efficiency, volatility in demand and complexity in pricing (Abbasi et al., 2020; Chaturvedi and Chakravarty, 2021; Chen
t al., 2021). Other studies also emphasised lead-time disruptions in vaccine logistics and transportation networks and called for
urther research to examine these disruptions in crisis-induced scenarios (Lin et al., 2020; Esmizadeh et al., 2021).

In addition, prior studies only adopted two protection tactics against disruptions: reactive and proactive tactics (Sazvar et al.,
021; Sinha et al., 2021). While the former is used to protect supply chains from potential disruptions, the latter reduces post-
isruption losses (Marcello et al., 2014). These studies mentioned above addressed protection tactics in the context of inventory
edging, contingent sourcing, supplier diversification, and demand switching. The inventory hedging tactic is described as excess
nventory carried by the nodes to hedge against network disruptions and supply chain risks. This is often not ideal for perishable
roducts, as its adoption may lead to significant losses under a disruption-free scenario (Marcello et al., 2014; Jahani et al., 2017).
ther contexts may not be ideal to crisis-induced vaccine supply chains for the following reasons (Seib et al., 2012):

• Demand switching (reactive tactic) is not appropriate for crisis-induced vaccine supply chains since it contradicts the policy-
makers’ objectives to ensure COVID-19 herd immunity. Demand switching occurs when customers change their preferences
based on their perception of a product’s characteristics (e.g., its quality), which in turn impacts decisions on the product supply
(e.g., import, inventory, distribution) (Hsieh, 2011). In a crisis with a high-level supply–demand uncertainty, customers prefer
to have access to a wide variety of product choices. In contrast, policymakers prefer to limit or edit the customers’ choices to
manage high-demanding products better and facilitate inventory and distribution (Altmann et al., 2020). Therefore, although
demand switching can increase customer satisfaction in normal situations, paying attention toward mitigating the risk of death
(e.g. through herd immunity) rather than promoting demand switching (e.g. switching from AstraZeneca to Pfizer) may be
preferred.

• Working in co-operation with various suppliers ensures a crisis-induced supply chain strategy through supplier diversification
(proactive tactic), although corresponding to tight supplier-related regulatory requirements may increase the complexity of
the vaccine supply chain and vaccine expenses.

• The contingency sourcing tactic (reactive tactic) that is often suitable for vaccine supply chains may not benefit a crisis-induced
3

vaccine supply chain since it may result in quality assurance difficulties.
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Table 1
A summary of recent studies on vaccine supply chains.

Author(s) Research objectives Features CO
VID-19

Real
case-study

Research methodologies

O
rdering/holding

costs

Transportation
costs

Lead
tim

e
disruption

Priority

Congestion

Production
disruption

M
ulti-product

M
ulti-period

Brandeau et al.
(2003)

To determine the
optimal allocation of
limited resources for
epidemic control among
multiple segments of a
country’s population.

– ✓ ✓ – – – – ✓ – – Mathematical model
(differential equations)

Chick et al.
(2008)

To determine the best
scenario for
distribution.

– – ✓ – – – ✓ – – – Mathematical model
(game theory)

Arora et al.
(2010)

To propose a resource
allocation approach for
optimising regional aid
during public health
emergencies.

– ✓ – ✓ – – – – – USA Mathematical model
(quadratic optimisation)

Lee et al. (2011) To develop a
computational model
for vaccine supply
chains.

– – ✓ – – ✓ ✓ ✓ – Thailand Simulation methods

Abrahams and
Ragsdale (2012)

To propose a decision
support system for
scheduling in travel
vaccine administration.

✓ ✓ – – – – ✓ ✓ – – Binary integer
programming, genetic
algorithm

Lee et al. (2012) To propose an optimal
age-specific vaccination
strategy against
pandemic influenza.

– – ✓ ✓ – – – – – – Simulation model

Seib et al.
(2012)

To examine vaccine
providers’ willingness
to respond.

– – ✓ – – ✓ ✓ ✓ – – Statistical method
(regression)

Brown et al.
(2014)

To explore the impact
of cost on vaccine
availability.

– ✓ – – – – – – – Benin Computational model
(HERMES)

Davila-Payan
et al. (2014)

To examine the impact
of delivery and system
factors in H1N1
vaccination rate.

– – – ✓ – ✓ ✓ ✓ – USA Statistical method
(regression)

Marcello et al.
(2014)

To propose a
distribution of
pandemic influenza
vaccine.

– – – ✓ – – – ✓ – USA Simulation model

Kazaz et al.
(2016)

To develop a model of
supply chain and
investigate the impact
of various
interventions.

– ✓ ✓ – – ✓ – – – – Mathematical and
simulation model

(continued on next page)

Therefore, this study adopts a set of multi-objective optimisation algorithms to acquire optimal solutions and optimise wait
time, holding costs, and ordering costs simultaneously in a crisis-induced vaccine supply chain. To our knowledge, this has not been
investigated in prior literature.

There is currently a vast and well-theorised body of knowledge on vaccine supply chains (See Table 1), most of which were
motivated by cost-effectiveness and efficiency of vaccine procurement, allocation, and distribution to vaccinate a large population.
Many studies applied simulation models to better respond to uncertainties and complexities arising from real-world problems in
4
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Table 1 (continued).
Author(s) Research objectives Features CO

VID-19

Real
case-study

Research methodologies

O
rdering/holding

costs

Transportation
costs

Lead
tim

e
disruption

Priority

Congestion

Production
disruption

M
ulti-product

M
ulti-period

Lee et al. (2016) To redesign the vaccine
supply chain to
improve supply chain
efficiency.

– ✓ – – – – ✓ ✓ – Mozambique Computational model
(HERMES)

Shittu et al.
(2016)

To develop a simulation
model to explore the
effects of supply and
demand on storage
capacity requirements.

– ✓ – – – – – ✓ – Nigeria Simulation model

Li et al. (2018) To examine vaccine
inventory levels in
vaccine distribution
systems .

– ✓ – – – – ✓ ✓ – – Simulation method

Wichapa and
Khokhajaikiat
(2018)

To propose a hybrid
multi-objective location
problem model.

– ✓ – – – – – ✓ – Thailand Goal programming and
genetic algorithm, fuzzy
AHP

Abbasi et al.
(2020)

To optimise vaccine
allocation on the
downstream part of a
COVID-19 vaccine
supply chain.

– ✓ ✓ ✓ – – – – ✓ Australia Mathematical model
(mixed integer
programming)

Chen et al.
(2020)

To propose an
allocation model for
the COVID-19 vaccine
distribution networks.

– – – ✓ – ✓ – ✓ ✓ USA Mathematical model
(game theory)

Govindan et al.
(2020)

To develop a practical
decision support system
for COVID-19
healthcare supply
chain.

– – – ✓ – ✓ – ✓ ✓ WHO Mathematical model
(fuzzy inference
system)

Lin et al. (2020) To develop a
conceptual model for
transportation decisions
in a cold vaccine
supply chain.

– ✓ ✓ – – ✓ – – – China Mathematical model
(game theory)

Buhat et al.
(2021)

To determine an
optimal and equitable
allocation of COVID-19
vaccines while
minimising deaths and
satisfying the priority
groups for immediate
vaccination.

– – – – ✓ – ✓ – ✓ Philippines Mathematical model
(linear programming)

Chen et al.
(2021)

To examine how a
limited number of
vaccine doses can be
strategically distributed
to individuals to reduce
the overall burden of
the pandemic.

– – – – ✓ – ✓ – ✓ – Mathematical model
(SEIR model)

(continued on next page)

accine supply chains (i.e., vaccine production, allocation, and distribution) (Lee et al., 2011, 2012; Seib et al., 2012; Davila-Payan
t al., 2014; Marcello et al., 2014; Kazaz et al., 2016; Shittu et al., 2016). In this vein, Brown et al. (2014) and Lee et al. (2016)
pplied event-driven simulation techniques for resource allocation to investigate how a newly developed vaccine can be incorporated
5
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Table 1 (continued).
Author(s) Research objectives Features CO

VID-19

Real
case-study

Research methodologies

O
rdering/holding

costs

Transportation
costs

Lead
tim

e
disruption

Priority

Congestion

Production
disruption

M
ulti-product

M
ulti-period

Chaturvedi and
Chakravarty
(2021)

To overcome the
epidemic by
considering vaccination
rate effects on the
dynamics of COVID-19
control.

– – – – – – – – ✓ India–Brazil–USA Simulation method
mathematical model
(SIR model)

Foy et al. (2021) To assess age-specific
vaccine allocation
strategies.

– – – – ✓ – – – ✓ India Mathematical models
(age-structured model+
expanded SEIR)

Jahn et al.
(2021)

To provide
evidence-based
guidance to the
authorities to minimise
COVID-19-related
hospitalisations and
deaths.

– – – – ✓ – – – ✓ Austria Simulation method
(agent-based simulation
method)

MacIntyre et al.
(2021)

To respond to limited
supply (age-targeted or
ring vaccination) and
mass vaccination.

– – – – – – – – ✓ Australia Mathematical model
(age-structured model)

Minoza et al.
(2021)

To formulate a
multi-objective linear
programming model to
optimise vaccine
distribution.

– – – – – – ✓ ✓ ✓ Philippines Mathematical model
(multi-objective linear
programming)

Roy et al. (2021) To incorporate
epidemiological factors,
like population density,
susceptible count and
infected ratio, and
transportation costs,
and disseminate
vaccines among zones.

– ✓ – – – – ✓ – ✓ USA Mathematical model
(linear programming)

Sazvar et al.
(2021)

To understand the
application of capacity
planning in terms of
redundancy and design
a supply chain network
that is resilient toward
the demand side.

– – – ✓ – ✓ ✓ ✓ – Iran Mathematical model
(robust fuzzy
optimisation)

Shim (2021) To determine optimal
vaccine allocation for
minimising infections,
deaths, and years of life
lost while accounting
for population factors

– – – – – – – – ✓ South Korea Mathematical model
(age-structured dynamic
model)

(continued on next page)

into an existing vaccine supply chain. However, these two studies relied on the capacity of an existing supply chain, and elements

like disruptions in production and distribution, especially in emergencies, were overlooked. Other techniques of the simulation

were used for various interventions in inventory level, demand, and supply (Lee et al., 2012; Seib et al., 2012; Davila-Payan et al.,

2014; Govindan et al., 2020) or predicting the impact of newly developed vaccines in supply chain performance (Lee et al., 2011;

Davila-Payan et al., 2014; Marcello et al., 2014).
6
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Table 1 (continued).
Author(s) Research objectives Features CO

VID-19

Real
case-study

Research methodologies

O
rdering/holding

costs

Transportation
costs

Lead
tim

e
disruption

Priority

Congestion

Production
disruption

M
ulti-product

M
ulti-period

Sinha et al.
(2021)

To identify conditions
under which a strategic
inventory reserve policy
cannot be practically
implemented to meet
service level targets

✓ ✓ ✓ – – – – ✓ ✓ India Mathematical model
(game theory)

Tavana et al.
(2021)

To develop equitable
COVID-19 vaccine
distribution in
developing countries.

✓ ✓ – – – – – ✓ ✓ India Mathematical model
(mixed-integer linear
programming)

This study To propose a vaccine
distribution model for
the COVID-19
pandemic

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Australia Mathematical model
(non-linear
programming), goal
attainment, NSGA-II

Over the past decade, vaccine supply chains have experienced a growing level of complexity and uncertainty in their production,
istribution, and allocation systems, requiring supply chain practitioners and scholars to develop and implement hybrid vaccine
roduction and distribution methods. For instance, Kazaz et al. (2016) developed a hybrid mathematical and simulation model to
xamine the impact of disruptions in a vaccine supply chain. Wichapa and Khokhajaikiat (2018) proposed a hybrid model of vaccine
istribution using a goal programming technique, combined with the genetic algorithms technique and fuzzy AHP to locate the
est spots for temporary hubs in a vaccine supply chain. Abrahams and Ragsdale (2012) applied a hybrid model of binary integer
rogramming and genetic algorithm to design a decision support system for patient scheduling in travel vaccine administration.
owever, none of these studies tested their models in an authentic case study to deal with real issues in a vaccine supply chain

e.g., holding and ordering costs) for the healthcare ecosystem, especially in emergencies (e.g., the COVID-19 Pandemic).
Recently, many studies have applied mathematical modelling techniques to address the issue of vaccine distribution for

mmediate mass vaccination. MacIntyre et al. (2021) used a deterministic mathematical model of epidemic response with limited
upply in Australia. They concluded that an age-targeted vaccination strategy plays a crucial role in mass vaccination where the
apacity of supply is limited, although their results were concluded based on prior research. Some other scholars focused on
odelling vaccine supply at the country level. Foy et al. (2021) applied a simulated susceptible–exposed–infectious–recovered

SEIR) mathematical model to evaluate various vaccine allocation strategies for different age groups in India. They found that
peeding the vaccination process for aged people can significantly reduce the population’s mortality rate. They also recommended
hat future research consider the types of vaccines as a predominant characteristic of a mass vaccination distribution mechanism.
n this vein, Moghadas et al. (2021) compared Pfizer–Biontech and Moderna vaccines and highlighted the significant and positive
ole of vaccine type in deploying a vaccine distribution mechanism. Using SEIR mathematical modelling, Ferranna et al. (2021)
emonstrated that essential workers (e.g. caregivers, nurses and practitioners) must be prioritised over aged people for COVID-19
accination to help significantly reduce infection-fatality risk in the United States of America (USA). Chaturvedi and Chakravarty
2021) focused on an analytically simulated susceptible–infectious–recovered model to predict the value of each dose of a COVID-
9 vaccine in India, the USA and Brazil, and identified parameters that can contribute to ending the pandemic. They achieved
omparable results for all three countries, but they did not provide any recommendations to help healthcare ecosystems address
roblems associated with the socio-economic status of citizens (e.g., access to care, investment in vaccines).

Some other studies identified the challenges of a vaccine distribution network, implying the importance of queuing mechanism
nd wait time calculation among different age groups. However, many of these studies did not fully or partially consider cost factors
vital characteristic of an efficient vaccine distribution mechanism. For example, studies by Jahn et al. (2021) in Austria and Shim

2021) in South Korea suggested that the efficiency of a vaccine distribution mechanism through a dynamic aged-based population
odel is critical for limited vaccine supply. Neither of these two studies considered the wait time of vaccine delivery and total

nvestment vaccine costs as two essential parameters of vaccine distribution to minimise the rate of hospitalisation and mortality
hile vaccination efforts are in progress. In contrast, Chen et al. (2021), who applied an agent-based modelling approach to vaccine
llocation, found that ‘‘[the] individuals’ degree (number of social contacts) and total social proximity time is significantly more
ffective than the currently used age-based allocation strategy in terms of number of infections, hospitalisations, and deaths’’.
7
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Cost factors were also reported to be a challenging element of COVID-19 vaccine distribution networks. While some studies
elating to COVID-19 vaccine supply management modelled transportation expenses in their analyses (e.g., see Abbasi et al., 2020;
oy et al., 2021; Tavana et al., 2021), Buhat et al. (2021) suggested future studies must consider real scenario-based transportation
osts in their analyses to warrant accuracy in their modelling. Many studies reported that decisions about holding and ordering costs
lay a crucial role in analysing the efficiency of a vaccine supply chain (e.g., see Abrahams and Ragsdale, 2012; Brown et al., 2014;
bbasi et al., 2020; Buhat et al., 2021), as the proposed objective functions are based on controlling or minimising the related costs

n a vaccine supply chain. However, the literature has paid less attention to the mutual effects of these two components in vaccine
upply chains (e.g. see Abrahams and Ragsdale, 2012). One reason is that these two factors (wait time and ordering and holding
osts) are contradictory and cannot be easily rationalised in a crisis-induced vaccine supply chain where vaccinee satisfaction, the
inimisation of total costs, and the pace of vaccination must be considered together.

Our review of the most relevant studies indicates that only a few studies developed and implemented an efficient distribution
etwork of vaccines in an emergency — one that ensured the vaccine would be effectively delivered to the neediest individuals
hile considering both holding and ordering costs. We also found that none of the previous studies considered the congestion

n the vaccine supply chain that stemmed from real-world endogenous and exogenous parameters. Indeed, many studies applied
he mathematical models in real case studies associated with scenarios like influenza and H1N1, and only some of these studies
haracterised multi-objective parameters in examining efficiency in a crisis-induced vaccine supply chain (e.g., see Brandeau et al.,
003; Wichapa and Khokhajaikiat, 2018; Minoza et al., 2021).

To bridge these theoretical gaps, this study develops a conceptual model of a crisis-induced vaccine supply chain deployed
n an authentic case study to ensure efficient coordination and distribution of different COVID-19 vaccine types to people with
arying vulnerability levels to the COVID-19 pandemic. In addition, we theorise a queuing model for handling congestion in vaccine
istribution networks to understand better how to (i) manage the congestion in the process of mass vaccination and (ii) minimise
he expected average wait time and total investment in holding and ordering costs of vaccines simultaneously.

Thus, the following contributions are presented:

• Designing a vaccine distribution mechanism to reduce the total investment vaccine cost and minimise the average expected
wait time of vaccinees in an authentic case study.

• Modelling congestion in a real-world vaccine distribution network and associating the wait times of vaccinees with the
efficiency of vaccines and a risk aversion coefficient.

• Improving the NSGA-II algorithm by adding several solution repair steps to the classic NSGA-II algorithm to ensure the
algorithm’s efficiency through several statistical tests.

• Designing the new chromosome structure to determine the number of servers (i.e. nurses and practitioners) and the number
of orders during a specific time planning horizon.

2.2. Theoretical framework

As explained previously, prior studies considered either wait time or vaccine expenses as constraints in the vaccine supply chain
nd distribution networks. The reason is that prior studies often overlooked the adversarial relationships between wait time and
accine holding and ordering costs. This study thus adopts the queuing theory to address these two constraints simultaneously and
elp policymakers make appropriate decisions in a crisis-induced vaccine supply chain.

The queuing theory is the mathematical modelling of variables and constraints that contribute to waiting lines (Mohammadi
t al., 2014). Based on this theory, a queuing system includes an arrival process of entities that need to be served (Singer and
onoso, 2008). In this regard, if the system only explains the status quo, the queuing system will be a descriptive model. In contrast,
hen it intends to facilitate decision-making about a given situation, the queuing system will be a prescriptive model (Li and Zhang,
015). Like other complex systems, in healthcare ecosystems, prescriptive modelling helps optimise the course of actions that pursue
fficiency in the system (Boulton et al., 2016). Emergency service provision has been a topic of interest for many studies that adopted
he queuing theory (e.g. see Sayarshad et al., 2020; Geroliminis et al., 2009; Smith, 1991). However, the application of this theory
n the vaccine supply chain, especially in a crisis, is not well articulated in prior research. One reason is that prior studies appear
ot to consider a vaccine supply chain an emergency. In other words, prior studies did not fully consider efficiency from the lens
f crisis. It is noteworthy that the wait time of vaccination, type of vaccines, vaccinees’ demographic information, and a vaccine’s
olding and ordering costs are simultaneously critical in emergencies.

Using the queuing theory, this study assumes that distribution networks in a crisis-induced vaccine supply chain perform in a
ueuing system in which the vaccinee’s characteristics, the vaccine’s characteristics, and the distribution network’s characteristics
imultaneously play a vital role in enhancing efficiency in the supply chain. For example, vaccinees of different ages may express
specific interest in a particular vaccine type (e.g., Pfizer vs. AstraZeneca) and expect to receive the vaccination service during
specific time frame. At the same time, a vaccine distribution network (e.g., public hospitals) may have to prioritise vaccinees

nder specific conditions (e.g., vulnerability, accessibility and affordability). These constraints can complicate the supply chain,
ut adopting the queuing theory can help optimise queuing systems and identify the best scenarios even if the constraints play an
8

pposing role in the mathematical model.
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3. Problem description and mathematical model

3.1. Problem definition

In this study, we assume a conceptual multi-period model for the COVID-19 vaccine allocation. We develop four time windows
or COVID-19 vaccination in the greater Melbourne area. We understand that all hospitals are responsible for administrating all
accine types. Vaccinees must receive a specific vaccine type from one hospital. This model considers all hospitals in a queuing
echanism. Based on a queuing mechanism, we assumed that each vaccinee’s demand has a Poisson distribution. Therefore, we

dentify the vaccinee’s demand based on the total of the Poisson distributions. We also consider that each hospital owns an 𝑀∕𝑀∕𝐶
queuing model to serve vaccinees. Our two objective functions (the minimisation of the average of expected wait times and the
minimisation of holding and ordering costs of vaccines) contradict each other; vaccinees intend to reduce wait times, while hospitals
seek lower costs in ordering and holding vaccines. The final, best solution is a trade-off between the two primary needs of hospitals
and vaccinees.

A centralised booking system (CBS) is therefore required to facilitate the administration tasks (i.e., appointments booking and
scheduling) for mass vaccination (Abbasi et al., 2020). This CBS would be responsible for checking the eligibility of vaccinees and
ensuring that all eligible vaccinees can receive a certain type of vaccine in a specific hospital. The system has a self-service-oriented
workflow mechanism with a web-portal interface that enables potential vaccine recipients to enter their personal information
and other relevant details (e.g., age, location, existing health conditions, gender, number of vulnerable family members, and
daily transport mode). The key functions of this web portal are to allocate vaccinees to the most appropriate hospital based on
susceptibility to COVID-19 infection and to identify the most suitable hospital based on its location in relation to the suburbs.
According to the information provided through the CBS, each vaccinee is classified into a specific risk priority group. We propose
a segmentation mechanism based on recommendations provided by the US government and research published on COVID-19 and
influenza vaccine distribution networks (Kazaz et al., 2016; Uscher-Pines et al., 2006; Chen et al., 2020). As COVID-19 vaccines
are limited in an emergency, the CBS enables the initial filtering and prioritising of vaccinees by assigning them to predetermined
risk clusters and then distributing them to the nearest hospitals for vaccination. Fig. 1 exhibits the structure of the aforementioned
vaccine network.

3.2. Assumptions

In this paper, the demand of each hospital is estimated based on the priorities of age groups and their population in each suburb.
The supply of vaccines to different hospitals is based on their operational capacity and vaccine availability. We base the allocation
of each vaccine type in each time window on the estimated demand and supply. Based on the problem definition, the assumptions
of the queuing model are summarised as follows:

• Hospitals provide immobile services, which means each vaccinee moves to a specific hospital for vaccination.
• The queuing system in each hospital follows an independent exponential service time.
• Each vaccinee reaches a hospital at an independent Poisson arrival rate.
• The remaining vaccines in each time window, who did not receive the vaccination, can be allocated to the next time window. In

other words, the vaccines can be stored in hospitals, based on the hospital’s storage capacity and the vaccine’s characteristics,
to be used in the next time window.

• In each hospital, the expected service (vaccination) times of all vaccine types in any time window are equal.

3.3. Nomenclature

The notations employed in the mathematical model of this study are as follows:

Indices
𝑘 Vaccine type, 𝑘 = 1, 2,… , 𝐾.
𝑡 Time window, 𝑡 = 1, 2,… , 𝑇 .
𝑓 hospital, 𝑓 = 1, 2,… , 𝐹 .
𝑗 Priority group, 𝑗 = 1, 2,… , 𝐽 .

Parameters
𝑠𝑘 The number of doses defined for each COVID-19 vaccine 𝑘, 𝑠𝑘 = 1, 2.
𝛿𝑓 Percentage of severs (i.e. nurses, caregivers and practitioners) assigned to undertake vaccination in hospital 𝑓 .
𝑤𝑗𝑓 The weight of priority group 𝑗 in hospital 𝑓 .
𝑛𝑘𝑓 The number of estimated vaccinees interested in receiving vaccine 𝑘 in the CBS developed for hospital 𝑓 .
𝐷𝑘𝑡𝑓 The amount of vaccine 𝑘 that a vaccinee demands in hospital 𝑓 over time window 𝑡.
𝑎𝑘𝑡𝑓 Ordering cost of vaccine 𝑘 for hospital 𝑓 at time window 𝑡.
𝑏𝑘𝑡𝑓 Holding cost of vaccine 𝑘 for hospital 𝑓 at time window 𝑡.
𝜇𝑓 The service rate of hospital 𝑓 ; = 1∕𝐸[Service time].
𝐼𝑚𝑎𝑥𝑘𝑓 Maximum capacity of hospital 𝑓 for holding costs of vaccine 𝑘.

𝑚𝑎𝑥
9

𝑋𝑘𝑡 The maximum amount of vaccine 𝑘 that can be supplied at time window 𝑡.
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Fig. 1. Proposed conceptual vaccine allocation network.

Variables
𝑐𝑡𝑓 The number of parallel servers in hospital 𝑓 over time window 𝑡.
𝑊𝑡𝑓 The expected wait times of vaccinees in hospital 𝑓 at time window 𝑡.
𝑋𝑘𝑡𝑓 The number of vaccine 𝑘 orders in hospital 𝑓 over time window 𝑡.
𝐼𝑘𝑡𝑓 The amount of inventory of vaccine 𝑘 in hospital 𝑓 at the end of time window 𝑡.
𝜆𝑓 The arrival rate of vaccinees to hospital 𝑓 ; = 1∕𝐸[Inter arrival time], where 𝐸[.] is the expectation function.

3.4. M/M/C queuing model

An 𝑀∕𝑀∕𝐶 queuing model is mainly used to analyse service stations in hospitals with more than one server (e.g., a nurse). This
model assumes that vaccinees’ arrival rate follows a Poisson distribution and develops an exponentially distributed service time.
The number of servers and the services provided by each server are independent of each other. It is also assumed that vaccinees
form only one queue for each server and those at the beginning of the queue receive the service (i.e., vaccination) when the servers
are released. As soon as the vaccinee is in the queuing system to receive the service, servers will begin vaccination. In this model,
the rate of vaccinees leaving the system will be different from the service rate. If the number of vaccinees in a hospital, 𝑛, is less
than the number of servers for the hospital, the number of vaccinees leaving the hospital is 𝑛𝜇𝑓 , because the time between two
consecutive departures is the minimum of 𝑛 exponential random variables; i.e., the service time for 𝑛 of the 𝑐𝑡𝑓 (∀𝑡, 𝑓 ) servers who
are working is an exponential random variable with parameter 𝑛𝜇𝑓 . However, when the number of vaccinees in the system is more
than 𝑐𝑡𝑓 (∀𝑡, 𝑓 ), the vaccinee exit rate is equal to 𝑐𝑡𝑓𝜇𝑓 because the time between two consecutive outputs in this case will be the
minimum of 𝑐𝑡𝑓 (∀𝑡, 𝑓 ) exponential random variables. Consequently, the service rate can be written as follows:

𝜇𝑓 ⟵

{

𝑛𝜇𝑓 𝑛 = 1, 2, 3,… , 𝑐𝑡𝑓
𝑐𝑡𝑓𝜇𝑓 𝑛 = 𝑐𝑡𝑓 , 𝑐𝑡𝑓 + 1,…

; ∀𝑡, 𝑓 (1)

The arrival rate of vaccinees to each hospital is not only related to the expected demand and inventory level of vaccines; it is
also related to the efficiency of vaccines and the individual preferences of the vaccinees. The arrival rate of vaccinees is considered
10
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an essential parameter that often significantly affects hospitals’ utilisation or productivity rate. Although quantifying individual
preference might be difficult for each vaccinee, it is essential to contemplate individual preference in the arrival rate of vaccinees.
The utility function is a suitable tool to consider the vaccinee’s preference regarding the decision made under each vaccinee’s
uncertainty. The concept of utility function is adopted in some queuing models. In Mohajeryami et al. (2015), the impact of time-
based demand response programs on calculating incentive payments has been investigated considering the vaccinee’s utility function.
In Ma et al. (2014), vaccinee and utility company viewpoints have been modelled using utility and cost functions to determine
electricity consumption. Cicek and Delic (2015) define the total welfare of the society resulting from electricity consumption in terms
of all vaccinees’ utility functions and power production costs. Our study adopts the utility function to examine changes in arrival
rates related to vaccinees’ perceptions of the vaccine efficacy. Each vaccinee behaves independently based on his/her preference.
The different arrival rates of vaccinees can be modelled as utility function, which measures the arrival rate for each vaccinee as a
function of the efficiency of the selected vaccine.

This study assumes that the utility to a hospital, 𝑈𝑓 (∀𝑓 ), is a function of the vaccine efficacy, 𝐸𝑘(∀𝑘), and a risk aversion
coefficient, 𝑎. The risk aversion coefficient represents different vaccinees’ various risk aversion behaviours (Xie et al., 2021). in
this vein, the utility function is a twice-differentiable function with the following properties (Samadi et al., 2012):

Property 1. Marginal utility is positive which means that as the vaccine efficacy grows, the utility increases which can be written as follows:

𝑑𝑈𝑓
(

𝐸𝑘, 𝑎
)

𝑑𝐸𝑘
≥ 0 ; ∀𝑘, 𝑓 (2)

Property 2. Marginal utility is a non-increasing function which means that the marginal utility for the efficiency of vaccines decreases as
the efficiency increases, expressed as:

𝑑𝑈2
𝑓
(

𝐸𝑘, 𝑎
)

𝑑𝐸2
𝑘

≤ 0 ; ∀𝑘, 𝑓 (3)

Property 3. The marginal utility is zero when there is no efficacy expected from a specific vaccine. This means that the arrival rate should
be calculated disregarding the vaccine characteristics and type, thus:

𝑈𝑓 (0, 𝑎) = 0 ; ∀𝑓 (4)

Property 4. The utility function is non-decreasing with the risk aversion coefficient. This property means that the larger 𝑎 is, the greater the
utility. This can be expressed as:

𝑑𝑈𝑓
(

𝐸𝑘, 𝑎
)

𝑑𝑎
≥ 0 ; ∀𝑘, 𝑓 (5)

Based on the above properties, the utility function is an ascending and concave function that is gradually saturated with the
accine efficacy. While different functions can satisfy the above properties, this study considers only the exponential utility function
o study the arrival rate of vaccinees. The exponential function is a popular utility function used to describe individuals’ risk
references (Niromandfam et al., 2020). The exponential utility function can be expressed as follows:

𝑈 (𝐸, 𝑎) = 1 − 𝑒−𝑎𝐸 ; 𝑎 > 0 (6)

Moreover, it is assumed that the arrival rate of vaccinees is related to the inventory level, as well. When the inventory level of
vaccines increases, the arrival rate will also increase. Similarly, when the inventory level decreases, the arrival rate to hospitals
will be reduced. Therefore, in this study, it is assumed that the arrival rate of vaccinees to the queuing system follows a Poisson
distribution (with parameter 𝜆𝑓 ) and can be calculated as follows:

𝜆𝑓 ∼ Poisson
( 𝐾
∑

𝑘=1
𝑈𝑓

(

𝐸𝑘, 𝑎
) 1
1 + 𝑒−𝐼𝑘𝑡𝑓

)

; ∀𝑓 ∀𝑡 (7)

According to Khodemani-Yazdi et al. (2019) and considering an 𝑀∕𝑀∕𝐶 queuing system with congestion in the vaccination
procedure of each hospital, the expected wait time of vaccinees for each hospital 𝑓 during a specified period 𝑡 is formulated
by Eq. (8). This is considered in the first objective function (12). The first term, 1∕𝜇𝑓 , calculates the average service time related
to the hospital, and the second calculates the average wait in the queue before service. As an essential part of Eq. (8), the idleness
probability (having no vaccinee in the queue) in each hospital 𝜋𝑡𝑓

0 is calculated in Eq. (9).

𝑊𝑡𝑓 = 1
𝜇𝑓

+

(

𝜆𝑓
𝜇𝑓

)𝑐𝑡𝑓
𝜇𝑓𝜋0 𝑡𝑓

(

𝑐𝑡𝑓 − 1
)

!
(

𝑐𝑡𝑓𝜇𝑓 − 𝜆𝑓
)2

; ∀𝑡, 𝑓 (8)

𝜋𝑡𝑓
0 =

⎡

⎢

⎢

⎢

⎢

1 +
𝑐𝑡𝑓−1
∑

𝑛=1

( 𝜆𝑓
𝜇𝑓

)𝑛
1
𝑛!

+
( 𝜆𝑓
𝜇𝑓

)𝑐𝑡𝑓 1

𝑐𝑡𝑓 !
(

1 −
(

𝜆𝑓
))

⎤

⎥

⎥

⎥

⎥

−1

; ∀𝑡, 𝑓 (9)
11

⎣

𝑐𝑡𝑓 𝜇𝑓
⎦



Transportation Research Part E 163 (2022) 102749H. Jahani et al.

q
2
c
a

t
g
t
b
d
o
e
o

Knowing the probability distribution function (PDF) and cumulative distribution function (CDF) for vaccinees’ wait time in each
ueue will allow us to calculate the probability that vaccinees will wait in a queue for more than a specified time (Kumar and Sharma,
018). These functions are formulated in Eqs. (10) and (11). By examining the values of probabilities, the systems (i.e., hospitals)
an alter service strategies like changes in the number of servers (i.e., nurses and practitioners) or service rates to manage and
nalyse the queuing system performance.

𝐺𝑓 (𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝜆𝑓
𝜇𝑓

)𝑐𝑡𝑓 (

1−𝑒−(𝑐𝑡𝑓 𝜇𝑓 −𝜆𝑓 )𝑥
)

(

𝑐𝑡𝑓−1
)

!
(

𝑐𝑡𝑓−
𝜆𝑓
𝜇𝑓

) 𝜋0 𝑡𝑓 + 𝐺𝑓 (0) 𝑥 > 0

1 −
𝑐𝑡𝑓

(

𝜆𝑓
𝜇𝑓

)𝑐𝑡𝑓

𝑐𝑡𝑓 !
(

𝑐𝑡𝑓−
𝜆𝑓
𝜇𝑓

)𝜋𝑡𝑓
0 𝑥 = 0

(10)

𝑔𝑓 (𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

𝜆𝑓
𝜇𝑓

)𝑐𝑡𝑓
𝜇𝑓 𝑒

−(𝑐𝑡𝑓 𝜇𝑓 −𝜆𝑓 )𝑥
(

𝑐𝑡𝑓−1
)

!
𝜋𝑡𝑓
0 𝑥 > 0

1 −
𝑐𝑡𝑓

(

𝜆𝑓
𝜇𝑓

)𝑐𝑓𝑓

𝑐𝑡𝑓 !
(

𝑐𝑡𝑓−
𝜆𝑓
𝜇𝑓

)𝜋𝑡𝑓
0 𝑥 = 0

(11)

3.5. Supply chain optimisation model

Using the definitions and assumptions mentioned above, we formulate our conceptual multi-period vaccine allocation model in
Eqs. (12) and (13), as the objective functions of the optimisation model, subject to Constraints (8), (9), and (14) to (19). Eq. (12)
controls the congestion in the system by minimising the expected average wait times of vaccinees in all hospitals and time windows.
Eq. (13) minimises the aggregate ordering and holding costs of vaccines for all hospitals during each time window. According to Azzi
et al. (2014), ordering costs are usually included in cost pools (e.g., purchase, transportation, contracts with suppliers, and the
expediting orders) related to the number of products (here vaccines) in each time window. The holding costs include the inventory
service costs and storage space costs. We present more details on the calculation of holding and ordering costs in Section 5.

𝑀𝑖𝑛 𝑍1 =
∑

𝑡
∑

𝑓 𝑊𝑡𝑓

𝑇 .𝐹
(12)

𝑀𝑖𝑛 𝑍2 =
∑

𝑘

∑

𝑡

∑

𝑓
𝑎𝑘𝑡𝑓𝑋𝑘𝑡𝑓 + 𝑏𝑘𝑡𝑓 𝐼𝑘𝑡𝑓 (13)

Eq. (14) is the inventory balance constraint defined for each hospital and vaccine type over each time window. Eq. (15) calculates
he total demand of any vaccine type for each hospital in the entire planning time horizon. It considers the weight of priority
roups for each hospital to illuminate the diverse range of vaccinees in the suburbs who are allocated to a particular hospital. The
otal demand is also based on the number of doses defined for each vaccine type. Although the demand in each time window can
e estimated by considering an equal distribution (see 𝐷𝑘𝑡𝑓 = 𝐷𝑘𝑓∕𝑇 ), policymakers and hospital managers can also expect any
istribution given that ∑𝑇

𝑡=1 𝐷𝑘𝑡𝑓 = 𝐷𝑘𝑓 . Constraint (16) sets an upper bound for limiting the inventory level to the storage capacity
f each hospital based on the vaccine type. Constraint (16) represents the maximum number of vaccines that can be supplied during
ach time window. The number of servers in each hospital and each time window is also limited to the maximum storage capacity
f hospitals using Constraint (18). Finally, Constraint (19) indicates the boundary of decision variables.

𝐼𝑘𝑡𝑓 = 𝐼𝑘(𝑡−1)𝑓 +𝑋𝑘𝑡𝑓 −𝐷𝑘𝑡𝑓 ∀𝑘, 𝑡, 𝑓 (14)
𝑇
∑

𝑡=1
𝐷𝑘𝑡𝑓 = 𝐷𝑘𝑓 =

𝐽
∑

𝑗=1
𝑠𝑘𝑛𝑘𝑓𝑤𝑗𝑓 ∀𝑘, 𝑡, 𝑓 (15)

𝑇
∑

𝑡=1
𝐼𝑘𝑡𝑓 ≤ 𝐼𝑚𝑎𝑥𝑘𝑓 ∀𝑘, 𝑓 (16)

𝐹
∑

𝑓=1
𝑋𝑘𝑡𝑓 ≤ 𝑋𝑚𝑎𝑥

𝑘𝑡 ∀𝑘, 𝑡 (17)

𝑐𝑡𝑓 ≤ 𝑐𝑚𝑎𝑥𝑓 ∀𝑡, 𝑓 (18)

𝑋𝑘𝑡𝑓 , 𝐼𝑘𝑡𝑓 , 𝑐𝑡𝑓 ,𝑊𝑡𝑓 ≥ 0; 𝐼𝑘0𝑡 = 0 ∀𝑘, 𝑡, 𝑓 (19)

The total expected wait time expression (i.e., 𝑊𝑡𝑓 calculated in Eq. (8)) leads to the non-linearity of the model in the first
objective function. Thus, the suggested model is based on a bi-objective non-linear programming model.
12
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4. Solution methodology

Solving a non-linear programming optimisation problem is computationally challenging (Gholizadeh et al., 2021). As the two
bjective functions of the model are opposing yet interlinked, the ‘‘non-inferior’’ solutions would help improve both objective
unctions without sacrificing one over the other. This requires adopting a set of Pareto-optimal solutions to help address the multi-
bjective optimisation problem. To achieve this, we assumed the two opposing yet interlinked objective functions as a multi-objective
ptimisation problem and developed algorithms that pursue the optimal values of these objective functions. We first introduced
he goal attainment algorithm as a classical optimisation. According to Kiresuk et al. (2014), the goal attainment algorithm is
ne of the efficient methods for solving bi-objective small- to medium-sized optimisation problems. In relation to our NP-Hard
roblem set and especially with large settings, we expect the goal attainment algorithm to not reach an optimal solution as an exact
ptimisation method. So, we propose the NSGA-II and the modified NSGA-II (here in this study) as meta-heuristic algorithms to
olve the large-scale problems. We chose the NSGA-II as the optimiser algorithm due to its stochastic nature, and high efficiency and
erformance in complex functions. In addition, several other advantages of this optimiser algorithm are listed as follows (Subashini
nd Bhuvaneswari, 2012):

• It uses the non-dominated sorting techniques to provide the solution as close to the Pareto-optimal solution as possible.
• It uses the crowding distance techniques to provide insensibility to the non-convexity of Pareto-optimal front in our problem

set.
• It also uses the elitist techniques to preserve the best solution for the current population in the next generation.

he following subsections explain the techniques and algorithms developed for this study.

.1. Goal attainment algorithm

The goal attainment algorithm is one of the best techniques to address multi-objective problems proposed by Kiresuk et al. (2014).
his technique utilises a group of design goals, 𝐹 ∗ = (𝐹 ∗

1 ,… , 𝐹 ∗
𝑚) linked to a group of objectives, 𝐹 (𝑥) = (𝐹1(𝑥), 𝐹2(𝑥),… , 𝐹𝑚(𝑥)).

The formulation of the problem allows the objectives to be under- or over-achievement, making the goals of the initial design
imprecise (Kargar et al., 2020). The relative degree of goal under- or over-achievement is managed by a weighting coefficient
vector, 𝑤 = (𝑤1, 𝑤2,… , 𝑤𝑚), and is illustrated as a standard optimisation problem by the use of the following formulation:

𝑀𝑖𝑛 𝜌 ; 𝐹𝑖(𝑥) −𝑤𝑖𝜌 ≤ 𝐹 ∗
𝑖 , 𝑖 = 1, 2,… , 𝑚 (20)

Goal attainment minimises a slack variable (𝜌), defined as the maximum over 𝑖 of the expressions in Eq. (20). The term (𝑤𝑖𝜌)
indicates an element of slackness in the problem. The vector of weighting, 𝑤, gives the designer the strength of indicating a measure
for relative trade-offs between the objectives. For example, setting the vector of weighting 𝑤 equal to the initial goals illustrates
that the same percentage of goal under- or over-achievement, 𝐹 ∗, is obtained. We can also limit the design by setting a specific
weighting factor equal to zero (i.e. 𝑤𝑖 = 0). The goal attainment technique makes the intuitive interpretation of the design problem
convenient by converting it to standard optimisation method.

4.2. Non-dominated sorting genetic algorithm (NSGA-II)

Concerning the complicated nature of our multi-objective non-linear model, an evolutionary algorithm is to be more beneficial for
the proposed solution, especially for large-scale problems (e.g., mass vaccination). Asghari et al. (2020) and Karimi-Mamaghan et al.
(2020) revealed that the NSGA-II is an excellent evolutionary algorithm and a powerful yet simple method to solve a bi-objective
problem. The NSGA-II method holds a broad application to resolve theoretical and practical models (Chaleshtori et al., 2019).
Algorithm 1 introduces the steps of the NSGA-II approach in which a population consisting of competing individuals is generated
first. The algorithm then ranks and sorts each individual depending on non-domination levels. Following the implementation of
evolutionary operations, the algorithm produces a novel offspring pool. It then gathers the offspring and parents prior to portioning
the novel pool into fronts, followed by the algorithm that runs the niching technique by determining a crowding distance for each
individual. The NSGA-II uses this distance in selecting operators to keep different fronts by ensuring that the individual maintains
a certain crowding distance apart from others. We followed steps of the NSGA-II algorithm described in Coello et al. (2007). The
steps are presented as follows.

4.2.1. Initialisation
This stage explains how the parameters of NSGA-II (i.e., the maximum number of iterations, population size, crossover rate, and

mutation rate) are initialised. No universal constant parameters for NSGA-II exist, as parameters influence the NSGA-II efficiency.
In general, parameters are required to be tuned into a particular solution. Thus, NSGA-II parameters should be set as if the highest
level of utilisation is obtained. In doing so, NSGA-II must find the best solution in the early steps of its process. To improve the
NSGA-II response, the highest probable selectiveness, a constrained initial population size, and a high crossover and mutation rate are
utilised. In this paper, we apply the Taguchi approach (explained in Section 4.5) to adjust the parameters. Table A.5 summarises the
adjusted parameters of NSGA-II as employed in this study. For the next stage, we use a random generation methodology to produce
13
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Fig. 2. Structure of the chromosome defined in the NSGA-II algorithm.

4.2.2. Encoding and decoding processes
Darmawan et al. (2021) declared that defining the required chromosome is the critical part of an evolutionary algorithm. To

code our problem with the proposed evolutionary algorithm, a type of chromosome is introduced; the first part of the chromosome
is designed to determine the number of vaccine doses to order, and the second part determines the number of servers (i.e., nurses or
practitioners for vaccination) at each hospital within a specific time window. The entire coding process occurs in two phases: coding
and decoding. In relation to the coding phase, the chromosome structure is deliberated as a matrix called 𝑋̂ with a size of 𝐾 ×𝑇 , as
shown in Fig. 2. Each gene in this matrix is a real random number between zero and one. The second part of the chromosome is a
matrix with the size of 𝐹 × 𝑇 . Each element of this matrix is an integer number between one and the maximum number of servers
in each hospital.

In the second phase, the chromosome is decoded. When the definition of the chromosome and its decoding techniques are
carried out, the model’s constraints must be decoded according to Eq. (21). To undertake the decoding phase in the first part of the
chromosome, each element in the row of the matrix 𝑋̂ is transformed into the minimum and the maximum amount of vaccine 𝑘
during each time window, 𝑋𝑚𝑖𝑛

𝑘𝑡 , 𝑋𝑚𝑎𝑥
𝑘𝑡 , respectively. In this study, the minimum amount of available vaccines in each time window

is considered to be zero (𝑋𝑚𝑖𝑛
𝑘𝑡 = 0 ; ∀𝑘, 𝑡). The second part of the proposed chromosome does not require the decoding process and

can determine the number of parallel servers in each hospital.

𝑋𝑘𝑡 = min(𝑋𝑚𝑎𝑥
𝑘𝑡 , [𝑋𝑚𝑖𝑛

𝑘𝑡 + (𝑋𝑚𝑎𝑥
𝑘𝑡 −𝑋𝑚𝑖𝑛

𝑘𝑡 + 1)]) × 𝑟𝑎𝑛𝑑(0, 1) (21)

4.2.3. Cost function evaluation and constraint handling
To meet limitations when dealing with chromosome non-feasibility, the model needs to develop an eminent penalty strategy.

Constraints may hold different scales. To equalise the scale, therefore, all limitations are normalised. Thus, the final quantity of
the violation of limitations can be measured as the total of the normalised violation of limitations. In the proposed problem, the
penalty equals zero once a chromosome is feasible, and it may become a positive value in the resulting solution, even if one of the
limitations is not met. For a general formulation of the limitations (𝑔(𝑥) ≤ 𝑏), the penalty of the chromosome is specifically defined
as:

𝑝(𝑥) = 𝑈 × max{0,
𝑔(𝑥)
𝑏

− 1} (22)

Where 𝑈 , 𝑔(𝑥), and 𝑝(𝑥) demonstrate a large positive number, the constraint, and the assigned penalty for the chromosome x,
respectively. Concerning infeasible chromosomes, the defined penalty is represented by 𝐹 (𝑥) in Eq. (23) to achieve the related cost
function.

𝐹 (𝑥) ⟵
{

𝐹 (𝑥) if 𝑥 ∈ feasible region
𝐹 (𝑥) + 𝑝(𝑥) if 𝑥 ∈ infeasible region (23)

It is noteworthy that the penalty function is applied for all constraints with inequality and not for equal equations. Eq. (14) is
an equilibrium constraint (controlling constraint). It determines the levels of vaccine inventory within the planning time horizon
for hospitals. Indeed, the inventory levels should be adjusted by the number of vaccine orders as endogenous variables during the
optimisation procedure. Moreover, Eq. (15) describes how policymakers and hospital managers can estimate the demand for vaccine
doses during the planning time horizon. The estimated parameter of 𝐷𝑘𝑡𝑓 is therefore applied in Eq. (14) to indicate the amount of
inventory and number of vaccine orders.

4.2.4. The selection operator
Up to this point, no novel solutions exist; only good solutions are repeated in the mating pool, and the bad solutions are removed

from the parent population. Using the Roulette Wheel Selection method, we adopted and applied several techniques to select the
mating pool in this study. As a result, two chromosomes are chosen randomly each time, and more favourable ones would be in the
mating pool.
14
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4.2.5. The crossover operator
After generating the members by the selection operator, the crossover operator is applied to them. The two chromosomes derived

rom the parent population are chosen according to the Roulette Wheel method each time, and the use of this operator creates two
ffspring chromosomes. In this study, the arithmetic crossover operator is utilised. In the arithmetic crossover, a linear combination
f the two chromosomes is defined, on the one hand. On the other hand, the two chromosomes are selected according to the Roulette
heel method for the crossover operator, i.e., (𝑝1, 𝑝2) which produces two offspring chromosomes (𝑐1, 𝑐2). The following formulas

define the proposed crossover operator:

𝑐1 = 𝛼𝑝1 + (1 − 𝛼)𝑝2 (24)

𝑐2 = 𝛼𝑝2 + (1 − 𝛼)𝑝1 (25)

Where 𝛼 is a random number in the range of [0, 1].
For the second part of the chromosome, a single point crossover is applied. In this crossover, one point is randomly selected

from the parent chromosome, and then the offspring is created by relocating the end of the parent chromosome.

4.2.6. The mutation operator
The mutation operator employs offspring created in the previous stage, leading to population diversity. In this study, the Gaussian

mutation operator introduced by Deb and Deb (2014) is applied. The steps of the Gaussian mutation operator are as follows:

• To create a random number from a standard normal distribution (𝑢𝑖)
• To use Eq. (26) to create offspring 𝑥′𝑖 for the parent 𝑥𝑖

𝑥′𝑖 =
{

max
(

0, 𝑥𝑖 + 𝜎𝑢𝑖
)

if 𝑥𝑖 + 𝜎𝑢𝑖 < 0
min

(

1, 𝑥𝑖 + 𝜎𝑢𝑖
)

if 𝑥𝑖 + 𝜎𝑢𝑖 > 1
(26)

Where 𝜎 = 0.1 is a set in this study.
For the second part of the chromosome, a permutation crossover operator (also known as reverse crossover) is applied. In this

crossover, two points are randomly selected, and then the values of the points between the selected points are reversed.

4.2.7. Stopping criteria
The definition of the stop condition is a group of criteria meeting a feasible solution. Different strategies can be used to stop

algorithms. In the current study, the suggested NSGA-II stops when the number of iterations reaches the maximum threshold. In
other words, we assume the maximum iteration (𝑀𝑎𝑥𝐼𝑡) for our proposed NSGA-II algorithm.

4.3. Modified NSGA-II

The classic NSGA-II, described in the previous section, is an efficient multi-objective genetic algorithm for solving multi-objective
optimisation problems. The main goal in multi-objective optimisation problems is to find Pareto-optimal solutions. For this purpose,
NSGA-II utilises the two basic concepts of the non-dominated sorting and crowding distance. To solve the constrained multi-objective
mathematical model, we propose a crucial modification to the solution repairs algorithm. We subsequently prove that the improved
algorithm provides better performance for our proposed model.

4.3.1. Solution repairs
In this method, constraints are tackled so that the obtained solutions are within feasible space and so the algorithm can search

in a direction that will not produce infeasible solutions. In our optimisation model, Constraints (16) and (17) are contemplated
in the initial population generation, crossover, and mutation operations stages in the NSGA-II algorithm to repair the infeasible
solutions. The solutions are repaired to prevent the movement of solutions that do not satisfy these constraints into the next steps of
the algorithm. The three stages of solution repairing, determined by lines with ** in the pseudo-code of Algorithm 1, are conducted
during the search process to prevent the entry of infeasible solutions to the next steps.

In the proposed solution repair mechanism, no repair is made if the answer is feasible due to Constraints (16) and (17).
However, if the answer is infeasible, the repair mechanism is applied to the infeasible solution. This corrective approach prevents
the production of infeasible solutions and thus makes the NSGA-II algorithm seek optimum solutions in the feasible space. More
specifically, if Constraint (16) is violated, the repair mechanism is applied to each row of the first part of the proposed chromosome
(as shown in Fig. 2). If Constraint (17) is violated, the repair mechanism is applied to each column of the first part of the chromosome.
In Eqs. (27) and (28), we introduce a set of feasible responses and allocate them to the rows and columns of the chromosome,
respectively.

𝐼𝑡𝑓 (𝑟𝑜𝑤) ←
𝐼max
𝑘𝑓 𝑥̂(𝑟𝑜𝑤, 𝑡)

∑𝑇
𝑡=1 𝑋̂(𝑟𝑜𝑤, 𝑡)

; ∀𝑟𝑜𝑤 (27)

𝑋𝑘𝑓 (𝑐𝑜𝑙) ←
𝑋max

𝑘𝑡 𝑥̂(𝑘, col)
∑𝐾 ; ∀𝑐𝑜𝑙 (28)
15
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Algorithm 1: Pseudo code of the classic and modified NSGA-II algorithms. Only the modified algorithm includes the lines labelled by **.
Set NSGA-II Parameters
Set parameters: 𝑀𝑎𝑥𝐼𝑡 (maximum number of iterations), 𝑛𝑃𝑜𝑝 (number of population), 𝑃𝑐 (crossover rate), 𝑃𝑚 (permutation rate).
Initialisation
𝑃𝑜𝑝 = empty set
for i = 1 to 𝑛𝑃𝑜𝑝 do

𝑃𝑜𝑝(𝑖) = CreateRandomSolution() ; According to Equation (21)
∗∗ Repair initial population ; According to Equations (16), (17)
Evaluate the objective functions (𝑍1 and 𝑍2)

Non-Dominated sorting
𝑃𝑜𝑝 = NonDominateSort(𝑃𝑜𝑝)
alculate crowding distance
𝑜𝑝 = CalcCrowdingDistance(𝑃𝑜𝑝)
ort population
𝑜𝑝 = SortPopulation(𝑃𝑜𝑝)
ain loop of NSGA-II
or it=1 to 𝑀𝑎𝑥𝐼𝑡 do

for 𝑐 = 1 to 𝑟𝑜𝑢𝑛𝑑(𝑛𝑃𝑜𝑝 ∗ 𝑃𝑐∕2) do
Selection of two individuals as parent of offspring (𝑃𝑐1 and 𝑃𝑐2 )
[𝑃𝑜𝑝1𝑐 , 𝑃 𝑜𝑝2𝑐 ] = Crossover(𝑃𝑐1 ,𝑃𝑐2) ; According to Equations (24) and (25)
∗∗ Repair offspring generated by crossover operator ; According to Equations (16), (17)
Evaluate the objective functions (𝑍1 and 𝑍2)
𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = (𝑃𝑜𝑝1𝑐 )

⋃

(𝑃𝑜𝑝2𝑐 )

for 𝑙 = 1 to 𝑟𝑜𝑢𝑛𝑑(𝑛𝑃𝑜𝑝 ∗ 𝑃𝑚) do
Select randomly and individual(𝑃𝑙)
[𝑃𝑜𝑝𝑚𝑙] = Mutate(𝑃𝑙) ; According to Equation (26)
∗∗ Repair offspring generated by mutation operator ; According to Equations (16), (17)
Evaluate the objective functions (𝑍1 and 𝑍2)
PopMutation = ⋃

𝑃𝑜𝑝𝑚𝑙

𝑃𝑜𝑝𝑖𝑡 = (𝑃𝑜𝑝𝑖𝑡)
⋃

(𝑃𝑜𝑝𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟)
⋃

(𝑃𝑜𝑝𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛)
Non-Dominated sorting
𝑃𝑜𝑝𝑖𝑡 = NonDominateSort(𝑃𝑜𝑝𝑖𝑡)
Sort population
𝑃𝑜𝑝𝑖𝑡 = SortPopulation(𝑃𝑜𝑝𝑖𝑡)
Truncation
𝑃𝑜𝑝𝑖𝑡=𝑃𝑜𝑝𝑖𝑡(1:𝑛𝑃𝑜𝑝)
Non-Dominated sorting
𝑃𝑜𝑝𝑖𝑡 = NonDominateSort(𝑃𝑜𝑝𝑖𝑡)
Calculate crowding distance
𝑃𝑜𝑝𝑖𝑡 = CalcCrowdingDistance(𝑃𝑜𝑝𝑖𝑡)
Non-Dominated sorting
𝑃𝑜𝑝𝑖𝑡 = NonDominateSort(𝑃𝑜𝑝𝑖𝑡)
Store the first Pareto front
𝐹1 = Pop(𝐹1)

Theorem 4.1. The right-hand side terms of Eqs. (27) and (28) provide feasible solutions for Constraints (16) and (17), respectively.

Proof.
𝑇
∑

𝑡=1

𝐼max
𝑘𝑓 𝑥̂(𝑟𝑜𝑤, 𝑡)

∑𝑇
𝑡=1 𝑋̂(𝑟𝑜𝑤, 𝑡)

= 1
∑𝑇

𝑡=1 𝑋̂(𝑟𝑜𝑤, 𝑡)

𝑇
∑

𝑡=1
𝐼max
𝑘𝑓 𝑥̂(𝑟𝑜𝑤, 𝑡) =

𝐼max
𝑘𝑓

∑𝑇
𝑡=1 𝑋̂(𝑟𝑜𝑤, 𝑡)

𝑇
∑

𝑡=1
𝑥̂(𝑟𝑜𝑤, 𝑡)

=
𝐼max
𝑘𝑓

∑𝑇
𝑡=1 𝑋̂(𝑟𝑜𝑤, 𝑡)

𝑇
∑

𝑡=1
𝑋̂(𝑟𝑜𝑤, 𝑡) = 𝐼max

𝑘𝑓 ; ∀𝑟𝑜𝑤

(29)

Considering that each term of the summation is positive, each term is less than or equal 𝐼max
𝑘𝑓 and satisfies Constraint (16).

𝐾
∑

𝑘=1

𝑋max
𝑘𝑓 𝑥̂(𝑘, col )

∑𝑇
𝑡=1 𝑋̂(𝑘, col )

= 1
∑𝐾

𝑘=1 𝑋̂(𝑘, 𝑐𝑜𝑙)

𝐾
∑

𝑘=1
𝑋max

𝑘𝑓 𝑥̂(𝑘, 𝑐𝑜𝑙) =
𝑋max

𝑘𝑓
∑𝐾

𝑘=1 𝑋̂(𝑘, 𝑐𝑜𝑙)

𝐾
∑

𝐾=1
𝑥̂(𝑘, 𝑐𝑜𝑙)

=
𝑋max

𝑘𝑓
∑𝐾

𝑘=1 𝑋̂(𝑘, 𝑐𝑜𝑙)

𝐾
∑

𝑘=1
𝑋̂(𝑘, 𝑐𝑜𝑙) = 𝑋max

𝑘𝑓 ; ∀col

□ (30)

Considering that each term of the summation is positive, the term is less than or equal to 𝑋max
𝑘𝑓 and satisfies Constraint (17).

4.4. Performance evaluation metrics

Four standard performance metrics are applied to evaluate the performance of the proposed algorithms:
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Spacing metric (SP): This measures the standard deviation of the distances between the solutions in the Pareto front. Eqs. (31)
o (33) set the metric, where 𝑁 is the cardinality of the Pareto front, 𝑑𝑖 is a minimal distance of the solution 𝑖 from the set of
emaining solutions, 𝑑 is the mean of 𝑑𝑖, and 𝑚 is the cardinality of the objective functions.

𝑑𝑖 = min
𝑘∈𝑁
𝑖≠𝑘

√

√

√

√

𝑚
∑

𝑗=1
(𝑓𝑗𝑖 − 𝑓𝑗𝑘)2 (31)

𝑑 =
∑𝑁

𝑖=1 𝑑𝑖
𝑁

(32)

𝑆𝑃 =

√

∑𝑁
𝑖=1(𝑑𝑖 − 𝑑)2

𝑁
(33)

Number of Pareto solutions (NPS): This measures the size of the Pareto front and is described as the cardinality of the group
f all non-dominated solutions.
Mean Ideal Distance (MID): This measures the convergence rate of the Pareto front toward a specific point (0,0). Eqs. (34) and

35) set the metric, where 𝑁 is the cardinality of Pareto solutions, and 𝑚 is the cardinality of the objective functions.

𝑐𝑖 =

√

√

√

√

𝑚
∑

𝑗=1
(𝑓𝑖𝑗 − 𝑓 ∗

𝑗 )2 (34)

𝑀𝐼𝐷 =
∑𝑁

𝑖=1 𝑐𝑖
𝑁

(35)

Diversity metric (DM): It calculates the relative distance among solutions in Pareto front according to Eq. (36).

𝐷𝑀 =

√

√

√

√

𝑚
∑

𝑗=1
(max
𝑖∈𝑁

𝑓𝑖𝑗 − min
𝑖∈𝑁

𝑓𝑖𝑗 )2 (36)

4.5. Parameter tuning

To obtain valuable solutions, the parameters of both algorithms are calibrated in this Subsection using the Taguchi method
(Sadeghi et al., 2011; Sels and Vanhoucke, 2012; Zarandi et al., 2013). Roy (2010) proposed factorial designs to investigate the
impact of several factors on an average response. The response is the fitness value of a solution, whereas factors are the parameters
of the solution algorithms. Taguchi studied fractional factorial experiments (FFEs) to reduce a large number of experiments in the
factorial designs (Roy, 2010). In the Taguchi method, the factors are divided into noise factors (𝑁) and controllable factors (𝑆),
where only 𝑆 can be directly controlled in the experiments. Taguchi proposed a procedure to control 𝑁 for reducing the variation
around the target regarding orthogonal arrays. The design that is less disrupted by the noise factors is robust. There are two ways to
perform an analysis of results in the Taguchi method: (i) variance analysis for experiments with a single replicate; and (ii) the use of
the signal to evaluate noise ratio (𝑆∕𝑁) for experiments with multiple replications. The analysis with multiple replications has the
better performance, so the (𝑆∕𝑁) is applied to analyse the solutions. For more information about the Taguchi method, see (Taguchi
et al., 2005).

5. A real case-study

An authentic case study based on the healthcare ecosystem of greater Melbourne, Australia, is undertaken to validate the proposed
crisis-induced vaccine supply chain model. We perform several sensitivity analyses for the investigation of objective functions’
sensitivity to the input parameters. Finally, we code multiple numerical examples and calculate the four efficiency metrics to evaluate
and compare the performance of the suggested solution methodologies. The proposed model was run in MATLAB2020b software by
a computer with Corei7 CPU and 8 GB RAM.

Health networks and their public hospitals across the greater Melbourne are responsible for carrying out COVID-19 mass
vaccinations in four different time windows to vaccinate Melbournians until mid-2022 (Moore, 2021). We identified 39 public
hospitals (𝐹 = 39: seven large (over 500 beds), ten medium (250–500 beds), eight small (100–250 beds), and 14 very small (fewer
than 100 beds) hospitals) across the greater Melbourne (Department of Health, 2021b). Fig. 3 shows the local hospital networks
across Melbourne. We loaded Australia’s shape file for suburbs in Python (using Shapefile and Seaborn modules) and detected
Melbourne’s suburbs for our case. According to the State Revenue Office (2021), the greater Melbourne includes 284 suburbs with
approximately five million residents. Based on reports published by each local hospital network in 2019 (Department of Health,
2021c), we identified all those suburbs covered by their local hospital networks and estimated the number of people who had to
refer to each hospital for vaccination. For instance, the Eastern Health network includes the Box Hill hospital (large), Maroondah
hospital (medium), Angliss hospital (small), and Wantirna hospital (very small). As of August 2021, the Australian government has
ordered two vaccine types for Victorians (the Pfizer and AstraZeneca vaccines), it has also expressed its willingness to order the
Moderna vaccine as a backup.

We also included the Johnson & Johnson vaccine in the model to compare double-dose vaccines (Pfizer, AstraZeneca, and
Moderna) with the single-dose type vaccine Johnson & Johnson (J&J). We present the details of these four vaccine types (𝐾 = 4)
17
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Fig. 3. Melbourne regional area and its suburbs and hospitals — colours show the population range for each suburb.

Table 2
Ordering and holding costs per vaccine dose per year in AUD*.

Vaccine Transportation cost Total ordering

Vaccine price per
dose

Flight cost (Boeing
777) per dose per
24 h

Average cost from airport to hospital (30 km) costs per dose

Moderna 44.00 0.32 0.05 44.367
Pfizer 27.00 0.32 0.05 27.367
AsZe 5.50 0.32 0.05 5.867
J&J 13.50 0.32 0.05 13.867

Vaccine Holding costs Total holding

Vaccine Failure per
year

Costs of # of
freezers per dose
per year

Maintenance Real state costs per
dose per year

costs per dose

Moderna 0.53 0.08 0.06 0.24 0.908
Pfizer 0.32 0.36 1.32 0.24 1.920
AsZe 0.07 0.08 0.06 0.24 0.380
J&J 0.16 0.08 0.06 0.24 0.380

in Table 2. The Australian government has undertaken the vaccination effort based on priority age groups to better respond to the
crisis. According to the Department of Health (2021a), people aged 60 and over, critical and high-risk workers (e.g. caregivers,
nurses, quarantine workers), and people with chronic diseases or underlying medical conditions are at the first layer of priority.
The other priority layers belongs to people aged 50–59, 40–49 and 16–39 years respectively. According to the Centres for Disease
Control and Prevention (2021), the death rate among people aged 60+ and 50–59 years is 95 times and 35 times higher than other
age groups, respectively. Therefore, the inclusion of age priority in our model will help make the model more accurate.

To calculate the ordering and holding costs, we adopted the techniques proposed by Li et al. (2021) and Hovav and Tsadikovich
(2015). To calculate ordering cost, we considered the price of each vaccine and the average transportation costs from the USA
and UK to Melbourne Airport and from the airport to each hospital. The vaccine prices are fixed costs but vary depending on the
vaccine type per dose. Transportation costs were calculated based on air shipping costs and road transport costs. We obtained the
air shipping costs from The International Air Transport Association (2021) and found that each flight takes approximately 24 h from
the USA and 21 h from the UK to the Melbourne Airport. Assuming that vaccines would be transported using Boeing 777-300ER
aeroplanes, each flight can transport 1,000,000 doses to Melbourne (Beoing, 2021).
18
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Table 3
Objective functions values for the obtained Pareto solutions in the simulated real case scenarios.

Scenario # Time windows Vaccine types Pareto solutions Average values

𝑡1 𝑡2 𝑡3 𝑡4 Pfizer AsZe J&J Moderna 𝑧1 (minutes) 𝑧2 (mAUD) 𝑧1 (minutes) 𝑧2 (mAUD)

1

20% 30% 40% 10%

30% 60% 10% 0%
23.323600 8.250

23.32365 8.21023.323650 8.210
23.323658 8.160

2 60% 30% 10% 0% 23.155200 9.900 23.1552 9.79023.155220 9.680

3 20% 20% 60% 0% 23.831400 9.380 23.8314 9.37723.831430 9.370

4 70% 0% 30% 0% 23.071000 14.340 23.0751 14.31823.075000 14.300

5

20% 50% 20% 10%

30% 60% 10% 0%

23.040000 7.360

23.0910 7.33023.040670 7.340
23.141800 7.330
23.141830 7.290

6 60% 30% 10% 0% 23.101200 13.480 24.9700 11.12324.970000 10.900

7 20% 20% 60% 0% 23.462000 9.370 23.4600 8.54723.831000 8.240

8 70% 0% 30% 0% 23.590000 15.880 23.5900 15.87023.597000 15.870

9

20% 10% 50% 20%

30% 60% 10% 0% 23.776000 10.398 23.7700 10.39023.776200 10.390

10 60% 30% 10% 0% 24.170000 11.690 24.1700 11.68024.175000 11.660

11 20% 20% 60% 0% 23.383000 6.932 23.3830 6.93023.383900 6.931

12 70% 0% 30% 0% 23.240000 9.750 23.2400 9.64023.244000 9.520

We also identified the leasing cost of each flight, which is approximately AUD13,000.1. We considered this exchange rate per
hour. To transport 1,000,000 doses of the four different vaccine types, we developed four equal time windows to provide COVID-19
vaccinations in 12 different scenarios (see Table 3). For example, in Scenarios 1, 5 and 9, the transportation costs are different
from Scenarios 2, 6, and 10, as these scenarios present different percentages in vaccine delivery and distribution. In Scenarios 1,
5, and 9, for instance, the government orders 300,000 Pfizer, 600,000 AstraZeneca and 100,000 Johnson & Johnson vaccines. As
Pfizer vaccines require special conditions, compared to other types, we calculated the ordering costs per dose to better manage
the flexibility of vaccine costs in our scenarios. To calculate road transport costs, we used the average fixed costs from Melbourne
Airport to hospitals per hour per truck (4.5-tonne). According to the Transport Industry Council (2021), the fixed cost of each truck
(4.5-tonne) per hour per kilometre in 2021 is AUD11.56, and the variable cost is 35 cents per kilometre. We also contacted our
network in some hospitals to identify how these vaccines must be transported to hospitals. We assume that hospitals use the Haier
−86 ◦C freezer (959-litre), which costs AUD25,500 and can store up to 3000 Pfizer vaccines. Each truck (4.5-tonne) can carry up
to five Haier −86 ◦C freezers (959-litre). For other vaccine types, we understand that only a typical refrigerator temperature is
required; therefore, any type of refrigerator can be applied (we assumed the Laboratory Refrigerator BYC-5L666, with a storage
capacity of 2500 vaccines, would be appropriate). In Scenarios 1, 5, and 9, for instance, 20 trucks must be employed for 300,000
Pfizer vaccines and 35 trucks for 700,000 AstraZeneca and Johnson & Johnson vaccines. The average distance between Melbourne
Airport and the hospitals was calculated to be 30 kilometres. We did not include the fixed and variable costs or insurance expenses
during flights, as it would be the vaccine producer’s responsibility to warrant the delivery of vaccines.

We used the vaccine failure rate, storage, and maintenance equipment costs per dose to calculate holding cost. We adopted the
vaccine failure rate per vaccine from the study by Li et al. (2021, p. 3) that calculates this rate as ‘‘the average cost of vaccines
multiplied by the average power failure rate of storage equipment’’. Based on the historical data and our expert network in hospitals,
we calculated this failure at 1.4% per year. For example, the failure rate of a dose of a Pfizer vaccine is AUD44.00 × 1.2% = AUD0.53
per year. We also calculated the required number of Haier −86 ◦C freezers and their maintenance costs.

We simplified the vaccine allocation among hospitals by giving them equal allocation based on their number of beds. The
accine allocation in large hospitals was 47% of total vaccines in Victoria per week. In medium hospitals, it was 33%, in small
ospitals 15%, and in very small hospitals, 5%. Assuming that all hospitals at the same level will receive the same order, we can
enerate the number of doses each hospital will receive per week. For example, the Alfred, as a large-size hospital, will receive
(1∕7)×47%)×1,000,000 = 67,000 doses per week. We understand that each Haier −86 ◦C freezer can store up to 3000 doses of the
fizer vaccine, requiring a total of 100 Haier −86 ◦C freezers for all hospitals. Each Haier −86 ◦C freezer costs AUD25,500, requiring
ospitals to pay a total of AUD2,550,000 to purchase these freezers. We did not calculate these expenses for other vaccines, as we

1 As of August 2021, for the American dollar (USD) and Euro (€), we must use the exchange rate of .75 and .64.
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Fig. 4. Number of people who received at least one dose of a COVID-19 vaccine in Victoria during the past 106 days (12 Apr 2021–27 Jul 2021) and its
decomposed trend and seasonality (COVID LIVE, 2021).

assume our hospitals are well-equipped to store other types of vaccines that need regular refrigeration temperatures. However,
freezer and refrigerator variable costs (maintenance and electricity) are estimated at AUD1068 per year, requiring AUD1068 × 100
= AUD106,800 for all Haier −86 ◦C freezers and up to AUD148,000 per year for refrigerators. We also obtained the required
nformation for the average rents per square metre per year for commercial buildings in different hospital addresses from Real
state Victoria (2021) a figure that was treated equally for all vaccine types. All ordering and holding costs are reported in Table 2.

Each hospital is considered an 𝑀∕𝑀∕𝐶 queuing system. 𝐶, or 𝑐𝑡𝑓 in our model, is the number of parallel servers (i.e. nurses or
practitioners ready for vaccination) in each hospital in a given time window. We assumed a maximum of ten numbers of parallel
servers in each hospital. Fig. 4 demonstrates the number of vaccinations during the last 100 days (by the time of this research) in
Victoria. The original time series (the orange chart) is decomposed to its trend and seasonality, aimed at finding the daily arrival rate
of vaccinees to the predetermined hospitals. We used the classical decomposition approach with an additive decomposition model. It
is noteworthy that trend, seasonal, and remainder components are added to create the time series. According to the average number
of vaccinees acquired in each cycle of the seasonal trend and efficiency rates of the vaccines reported in Pilishvili et al. (2021), we
estimate the initial inter-arrival rate of vaccinees in every hospital as six people per hour (𝜆𝑓 = 6), which is reasonable in the
vaccination process. According to Eq. (7), the inter-arrival rate can change based on the alteration of vaccine inventory during the
planning time horizon. To estimate the risk aversion coefficient used in Eq. (7), we assume an initial value (= 22) with a heuristic
approach. We also implement other tests in using this coefficient in the model. The associated service time is approximately three
people per hour (𝜇𝑓 = 3). We consider four time windows (𝑇 = 4) as the time horizon. Each time window is assumed as three
months to help complete mass vaccination in one year (mid-2022). The purpose of the model is to minimise the expected wait time
of vaccinees and minimise the aggregate holding and ordering costs of vaccines during the planning time horizon.

As mentioned previously, we considered several different scenarios for vaccine supply to include conditions in a crisis-induced
vaccine supply chain (see Table 3). The expected demand is declared in the percentages of vaccine orders in each time window for
each vaccine type (𝐷𝑘𝑡). As the Pfizer and AstraZeneca vaccines are reported more effectively than the Johnson & Johnson vaccine
at the time this study was conducted (Centers for Disease Control and Prevention, 2021), in most demand scenarios, we assume that
the demand for double-dose vaccines would be higher than the demand for single-dose vaccines, as reported by the Department of
Health (2021a). This helps us estimate each hospital’s vaccine storage capacity. We also assume that the maximum supply of each
vaccine for each hospital during each window (𝑋𝑚𝑎𝑥

𝑘𝑡 ) is 1.5 times greater than the hospital’s expected demand. We then apply a
modified NSGA-II algorithm to find near-optimal solutions as we dealt with a large-scale case study at the state level (see Section 5.3
for problem sizes).

The levels of parameters for both the NSGA-II and its modified version are shown in Table A.1. We utilise the Taguchi 𝐿9
orthogonal array to run the experiments and adjust the parameters.

Four different responses, each representing a specific solution quality, are calculated according to the metrics introduced in
Section 4.4. When a minimisation problem is involved, MID and SP with lower values better explain the efficiency of the algorithms.
In contrast, NPS and DM with greater values better explain the efficiency of the algorithms. Considering that each parameter level
of the L9 forms orthogonal arrays, each problem identified in our real case study (39 public hospitals, three types of vaccines, and
four time windows as the time horizon) is run five times. The aggregation of the obtained metrics for the five runs are normalised
in Tables A.2 and A.3 for the NSGA-II and the modified algorithm, respectively. These normalised values are used in the Taguchi
method as the response values of experiments based on different combinations of the parameter levels. Since a solution with the
highest performance is desired, the aim is to find the maximum (𝑆∕𝑁), calculated by:

𝑆 = −10𝑙𝑜𝑔( 1
𝑛
∑ 1

2
) (37)
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Where, 𝑠𝑢𝑚𝑖(𝑖 = 1,… , 5) is the response in (𝑖𝑡ℎ) replication of the Taguchi method and 𝑛 = 5 is the number of replications in the
experiments. Tables A.2 and A.3 show the experimental results of NSGA-II and modified NSGA-II under different scenarios of the
parameter combinations, respectively. ‘‘1’’, ‘‘2’’, and ‘‘3’’ refer to the first, second, and third levels of the parameters. Tables A.2
and A.3 also report (𝑆∕𝑁). In addition, Figs. A.1 and A.2 exhibit the best values of 𝑆∕𝑁 (the highest average values). We obtained
the optimal parameter values in both algorithms as shown in Table A.5. We implement the proposed Taguchi method by Minitab
15.1 software. After adjusting the parameters, we summarise the results (the Pareto solutions and their averages) in Table 3. The
obtained solutions are feasible in both algorithms because none of the models’ constraints has been violated.

As evident in Table 3, the average wait time of vaccinees in all hospitals and time windows (𝑧1) present a reasonable time
with a tight variation range (23.09 to 24.17 min). Our queuing model is expected to control congestion in each time window and
allocate sufficient vaccines for meeting hospital demands. In the case of the system’s total cost (𝑧2), however, the demand violations
regarding time windows and vaccine types will cause significantly different values (6.931 to 15.883 million Australian Dollars). This
unveils the importance of the second objective function in our proposed model. Given that the Pareto solutions from Scenario 11
lead to lower average aggregated ordering and holding costs, we choose this option as the optimal scenario. Scenario 11 presents
the best vaccination plan for scheduling the highest vaccine demand (50%) in the third time window using the single-dose vaccine,
Johnson & Johnson, as the primary type (60%). Furthermore, comparing the results of scenarios that use a higher proportion of
double-dose vaccines (i.e., Pfizer and AstraZeneca), in each bundle of time window allocations (e.g., Scenarios 1, 2, and 4 in the
20-30-40%-10% bundle or Scenarios 5, 6, and 8 in the 20-50-20%-10% bundle) intuitively demonstrates the privilege of the cheaper
double-dose vaccine type (i.e., AstraZeneca). According to Usher (2020), governments prefer to purchase COVID-19 vaccines from
their international allies due to the high accessibility (i.e., Pfizer or AstraZeneca imported from the USA and UK, respectively (see
Table 2)). Therefore, the trade-off between these scenarios will benefit policymakers in optimal vaccine ordering during each time
window. For instance, comparing Scenarios 2, 4, 6, 8, and 10, we found Scenario 2 as the best allocation strategy with lower total
cost. Each combination of vaccine types (e.g., 60% of Pfizer, 30% of AstraZeneca, 10% of Johnson & Johnson, and 0% of Moderna)
should be allocated 20-30-40%–10% over the entire planning time horizon. As evident in Table 3, the Pareto set obtained for each
scenario reveals a correlation between two objective functions, meaning that an increase in the first objective function may cause
a decrease in the second objective function. This trend confirms the opposing yet interlinked behaviour of two objective functions.

5.1. Best scenario analysis

We consider Scenario 11 (the best option introduced in Table 3) for our following analyses. The model outputs suggest the
optimal order and inventory amounts for each vaccine type in each hospital over a specific time window. Fig. B.3 graphically shows
the accumulative number of orders for each suburb of Melbourne during each time window, considering the first Pareto solution.
Fig. 5 illustrates the order amount and inventory levels for a large hospital (Box Hill) compared to a small hospital (Williamstown).
It is recommended to order almost the same amount of vaccines in all time windows but to use the inventories remaining from the
previous ones. In this plan, the highest demand (50%) is estimated in the third time window, and the inventory level of the fourth
time window will be used in accordance with its planned demand (i.e., 20-10-50%–20%). The figures also illustrate that although the
demand for one vaccine type can be higher than others, the model may plan to order lower amounts and use the remaining inventory
to allocate vaccines optimally. This is an example of inventory management for the vaccines using their particular specifications.

The other significant finding of the model is associated with the number of parallel servers required in each hospital over each
time window. Fig. 6 shows the number of parallel servers and their utilisation rate for both hospitals mentioned above (i.e., Box Hill
and Williamstown). The utilisation rate refers to the probability that servers (i.e., caregivers, nurses, and practitioners) would not be
vaccinated prior to their service. This probability is shown as 𝜌𝑡𝑓 = 𝜆𝑓∕(𝑐𝑡𝑓𝜇𝑓 ). Fig. 6 shows that the maximum number of servers (9
servers in our case) is only required in the third time window in the Box Hill hospital (a large hospital). The corresponding findings in
the figure also demonstrate although we use the maximum number of servers in this time window, the utilisation rate of the hospital
may not be 100%. This can be justified by the formula of the utilisation rate related to the expected arrival rate of vaccinees to a
specific hospital (𝜆𝑓 ) and the expected service rate of the hospital (𝜇𝑓 ). The highest utilisation rates will be concluded by near eight
parallel servers; see the third time window for the Williamstown hospital (a small hospital), shown in Fig. 6. It is noteworthy that
our objective is not to maximise the utilisation rates but to minimise the wait times of vaccinees.

5.2. Sensitivity analysis

As mentioned before, minimising the expected wait time for the vaccination process is considered the first desirable goal for
vaccinees. However, the minimisation of vaccine holding and ordering costs is desirable for hospitals and is considered the second
research objective. We understand that the duration of the vaccination process depends on the availability of vaccines, vaccine
types, and the number of servers (i.e., nurses or practitioners). Therefore, it can be inferred that by allocating the optimal number
of servers for mass vaccination, more vaccines (and vaccine types) would be available. This would result in more vaccinees receiving
vaccines during a specified time window. Thus, vaccinees can expect that the wait time for their vaccination would be significantly
reduced. Simultaneously, the proposed model provides the optimal number of servers (i.e. nurses and practitioners) to reduce
hospital vaccine holding and ordering costs. In order to numerically demonstrate the contradiction of objective functions, we solve
the problem for a convex combination of both objective functions by minimising 𝑝𝑧1 + (1 − 𝑝)𝑧2 for various 𝑝 values selected from
21
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Fig. 5. Optimal inventory and ordering levels for large (Box Hill) and small (Williamstown) hospitals for the first Pareto front in the best scenario.

objective functions are conflicting yet interlinked, and the selection of separate objective functions is necessary for our problem
setting (Chaleshtori et al., 2020).

We recognise the effect of our proposed model’s most significant parameter in providing managerial insights. In the previous
section, we observed the changes of the second objective function, while the first one was stable. As evident in Eq. (8), the first
objective (the expected wait time of vaccinees) is closely related to the expected service rate of vaccinees to hospitals (𝜇𝑓 ) (see
Fig. 8). We conduct all experiments for the best scenario detected in our real case problem (see Table 3). All findings in this section
confirm that this parameter significantly influences the costs associated with the system. However, it can substantially change the
vaccinees’ expected wait times. Both charts shown in Fig. 8 validate the inverse relation between the expected service rate of
vaccinees and their wait times. Comparing the findings in Figs. 8(a) and 8(b) demonstrates that the increased service rate is most
readily in large hospitals (e.g., Box Hill hospital). Therefore, it is inferred that the 𝜇𝑓 parameter must be determined more carefully
for large hospitals than small or very small hospitals.
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Fig. 6. Number of servers and utilisation rate for large (Box Hill) and small (Williamstown) hospitals considering the best scenario for demands.

Fig. 7. Demonstration of the contradiction within the objective functions using 𝑝𝑧1 , (1 − 𝑝)𝑧2.

We also observe a non-monotonic trend in both objective functions. As discussed previously, the first objective function is
non-linear and the contradiction between two objective functions leads to this non-monotonic trend in both objective functions.

5.3. Performance evaluation

To verify the efficiency of the proposed solution approaches, we implement the model in multiple numerical experiments. The
input data for these ten problem sizes are developed according to the real case data and reported in Table A.4. The corresponding
outcomes, listed in Table 4, show that our proposed modified NSGA-II algorithm outperforms the classic NSGA-II and goal attainment
algorithms. In all instances, the DM, SP and NPS metrics of the modified NSGA-II are better than the corresponding values for the
two other algorithms. In the MID measure, the modified NSGA-II algorithm also outperforms the other algorithms. Moreover, we
can conclude that both the classic and modified NSGA-II algorithms are efficient tools for solving small- to large-sized problems.
The goal attainment approach could not solve large size (#7–10) problems in less than one hour. This is expected, as our problem
is NP-hard, and exact methods cannot reach an optimal solution for large-scale problems in a reasonable computational time.

Considering that the results may be inconsistent after changing numerical examples, we use several statistical hypothesis tests
to ensure the reliability of previous comparisons. Thus, the implementations of the solution algorithms concerning several statistics
are compared by employing the non-parametric Friedman test (Fadeyi, 2021). The results obtained from the SPSS software (𝜒2 test,
degree of freedom (𝑑𝑓 ), and significant level (𝑆𝑖𝑔)) are summarised in Table 6. The results illustrate significantly varied levels of
performance between the algorithms in the (𝐷𝑀), (𝑆𝑃 ), and (𝑀𝐼𝐷) metrics.
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Fig. 8. Expected service rate of hospitals for large (Box Hill) and small (Williamstown) hospitals in the best scenario.

Table 4
Performance metrics for numerical examples using the proposed algorithms.

Problem NPS DM SP MID

number mod. NSGA-II NSGA-II Goal-att. mod. NSGA-II NSGA-II Goal-att. mod. NSGA-II NSGA-II Goal-att. mod. NSGA-II NSGA-II Goal-att.

1 4 5 2 1.03E+04 8.12E+03 7.33E+03 3.83E+03 4.57E+03 4.49E+03 40.22 74.72 76.58
2 4 4 8 3.78E+04 3.29E+04 3.04E+04 3.097E+03 3.28E+03 3.44E+03 21.37 41.61 42.5
3 6 6 4 1.78E+04 1.68E+04 1.68E+04 4.21E+03 5.05E+03 5.08E+03 22.81 35.67 36.55
4 8 7 7 3.91E+04 3.39E+04 3.06E+04 3.57E+03 4.74E+03 4.63E+03 23.89 36.48 36.64
5 4 4 7 1.22E+04 1.2E+04 1.06E+04 946.40 1.79E+03 1.78E+03 39.72 51.18 52.47
6 8 2 6 9.71E+03 8.9E+03 7.65E+03 1.27E+03 2.15E+03 2.22E+03 45.85 87.5 87.26
7 3 2 – 4.08E+04 4.02E+04 – 3.64E+03 6.17E+03 – 35.54 53.19 –
8 8 6 – 1E+04 8.24E+04 – 4.04E+03 4.79E+03 – 28.53 50.59 –
9 3 3 – 2.27E+04 1.9E+04 – 2.79E+03 5.54E+03 – 41.38 56.38 –
10 2 2 – 2.39E+04 2.05E+04 – 1.15E+03 2.003E+03 – 30.65 38.84 –

Besides the general validation of the performance metrics, gained from the Friedman test, we apply a Post-Hoc test called
Wilcoxon signed-rank to distinguish which algorithms are significantly Superior to the others (Lin et al., 2021). Table 7 summarises
the results.

The results of Table 7 indicate that the modified NSGA-II performs better than the other two algorithms regarding (𝐷𝑀), (𝑀𝐼𝐷),
and (𝑆𝑃 ) metrics. However, the red values of the table show that the performance of the specified metric cannot be significantly
better than that within the pair of algorithms. This weakens the results gained from Tables 4 and 5 regarding the privilege of
24
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Table 5
Computational times (seconds) for solving the proposed algorithms.

Problem # mod. NSGA-II NSGA-II Goal-att.

1 57 58 94
2 102 100 220
3 136 135 248
4 400 410 680
5 522 529 935
6 736 745 1672
7 898 987 ≥3600
8 991 1002 ≥3600
9 1102 1143 ≥3600
10 1196 1225 ≥3600

Table 6
Statistical outputs obtained from the non-parametric Friedman test, applied on the results of the
numerical examples.

Performance Test statistics

metric 𝜒2 𝑑𝑓 𝑆𝑖𝑔.

NPS 1.625 2 0.444
DM 12 2 0.002
SP 9 2 0.011
MID 10.33 2 0.006

Table 7
Statistical outputs obtained from the Wilcoxon signed-rank test, applied on each pair of results in the numerical examples.

Wilcoxon signed-rank Performance Test pairs

Statistics metric Mod. NSGA-II vs. Cls. NSGA-II Mod. NSGA-II vs. Goal att. Cls. NSGA-II vs. Goal att.

𝑍 NSP −1.841 −0.106 −1.089
𝑆𝑖𝑔. 0.046 0.916 0.276

𝑍 SP −2.666 −2.201 −1.05
𝑆𝑖𝑔. 0.008 0.028 0.917

𝑍 DM −1.784 −2.201 −2.201
𝑆𝑖𝑔. 0.034 0.028 0.028

𝑍 MID −2.803 −2.207 −1.782
𝑆𝑖𝑔. 0.005 0.027 0.035

the classic NSGA-II over the goal attainment approach. Despite this uncertainty in the classic algorithm, all tests approve that the
proposed modified NSGA-II algorithm surpasses the other algorithms and can be used without failure.

5.4. Analysis of the queuing system

Based on the exponential utility function introduced in Eq. (6), the arrival rate at hospitals is in contrast to vaccinees’ risk
version coefficient that decreases (or increases) by increasing (or decreasing) the efficiency of vaccines. In this study, we consider
he vaccinee risk aversion behaviour to be an uncertain parameter because social studies are needed to identify this coefficient. Thus,
he probabilistic nature of the vaccinee’s behaviour is modelled via its PDF as a uniform distribution, with a range of (0, 𝐴], where
𝐴 is the upper bound of the distribution. We also understand that the vaccine efficacy varies depending on the vaccine type (95%,
95%, 70%, and 72%, for Moderna, Pfizer, AsZe, and J&J vaccines respectively) (Lopez Bernal et al., 2021). As per our assumptions,
the arrival rate to a hospital follows a Poisson distribution. Therefore, as per Eq. (6), 𝜆𝑓 follows a Poisson probability distribution
with a parameter equal to the sum of the vaccines’ utility function. To satisfy the stability condition of the 𝑀∕𝑀∕𝐶 queuing system,
we adjust the service rate of each hospital, 𝜇𝑓 , so that the utilisation rate of the hospital, 𝜌𝑓 , is always less than one. It is presented
as follows:

𝜌𝑓 < 1 →
𝜆𝑓

𝑐𝑡𝑓𝜇𝑓
< 1 → 𝑐𝑡𝑓𝜇𝑓 > 𝜆𝑓 → 𝜇𝑓 >

𝜆𝑓
𝑐𝑡𝑓

; ∀𝑡, 𝑓 (38)

To plot the PDF and CDF of wait times for the queues of a hospital, besides the above-mentioned setup, we consider seven hours
or a working day and the average number of servers in the hospital (five servers). Fig. 9(a) illustrates the wait time PDF. Increasing
he risk aversion coefficient of vaccinees to a specific value (the peak for each PDF trend) increases the expected wait time of
accinees. For values greater than the peak, increasing the risk aversion coefficient of vaccinees leads to a decrease in the expected
robability of the wait time in the queue for receiving the vaccine service. Using this plot, The crisis-induced vaccine supply chain
esigners can find the peak values as the best wait times (regarding the assumed risk aversion) for setting up the queuing system.
25
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Fig. 9. Probability distribution function (PDF) and cumulative distribution function (CDF) of wait times in a queue of vaccines concerning various risk aversion
oefficients.

Table A.1
NSGA-II and modified NSGA-II parameters.

Parameters Value

Level 1 Level 2 Level 3

Maximum iteration(MaxIt) 100 200 300
Number of population(nPop) 20 30 50
Crossover probability(pCrossover) 0.2 0.5 0.8
Mutation probability(pMutation) 0.1 0.3 0.4

Moreover, it can be inferred from the positive skew of the PDFs that the average queue wait time is greater than the median wait
time. This means that the wait time for half of the vaccinees is shorter than the average wait time for receiving the vaccines.

Fig. 9(b) shows the CDFs of wait time of vaccinees in a queue of vaccines concerning various boundaries (𝐴 = 0.2 − 1.0) for the
isk aversion coefficient. The crisis-induced vaccine supply chain designers can employ these CDFs to calculate the probability of
n expected wait time. In other words, the designers can determine how probable a wait time is for a hospital’s queues considering
specific risk aversion for vaccinees. This will give them insight in determining proper values for the parameters of the queuing

ystem aimed at controlling any potential congestion in the queues of a hospital.

. Discussion and conclusion

The healthcare systems have been experiencing significant burdens since the emergence of COVID-19. The number of hospitalised
nfected people has significantly increased, resulting in a shortage in healthcare staff to administrate COVID-19 vaccines in a timely
anner. We argue that responses to such emerging situations require the development of crisis-induced supply chains that increase

he pace of supply and distribution and reduce ordering and storage costs. Simultaneously, governments in general and public health
uthorities in particular must take proactive actions in such supply chains to ensure that vaccines are equally available to citizens.
accines must be administered promptly and with respect to the rate of vulnerability to COVID-19. The timely distribution and
dministration of COVID-19 vaccines have two important outcomes: (i) reducing the ordering and holding costs of such vaccines
hat require special conditions for storage and (ii) increasing the public resilience against the COVID-19 pandemic and boosting
accinee satisfaction, which has proven to have positive social and economic consequences (Pescaroli et al., 2021). To achieve this,
ealthcare systems must respond effectively and efficiently to vaccine demand.

Therefore, in this paper, a bi-objective non-linear programming optimisation model was proposed to design optimal distribution
lanning for ordering and holding different types of COVID-19 vaccines. Several planning time windows were determined to cover
he growing demand of COVID-19 vaccines with limited supply, especially in situations where certain age groups have priority of
26

accination over others. Therefore, we addressed two opposing yet interlinked objectives in this study. The first objective of the
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Fig. A.1. Average 𝑆∕𝑁 for different levels of parameters in the NSGA-II model.

Fig. A.2. Average 𝑆∕𝑁 for different levels of parameters in the modified NSGA-II model.

Table A.2
Experimental results of NSGA-II.

MaxIt nPop pCrossover pMutation 𝑆𝑢𝑚1 𝑆𝑢𝑚2 𝑆𝑢𝑚3 𝑆𝑢𝑚4 𝑆𝑢𝑚5 𝑆∕𝑁

1 1 1 1 4 1.2256 1.3333 1.5654 1.1302 3.0422
1 2 2 2 2.0401 1.1119 4 1.3333 1.3333 3.4937
1 3 3 3 4 1.3333 2.7970 1.5272 1.3243 4.5548
2 1 2 3 4 1.3333 1.2834 1.4385 1.7947 3.9236
2 2 3 1 1.500 1.500 1.500 1.4372 4 4.2482
2 3 1 2 3.6667 1.2199 1.5415 0.9491 1.2487 2.3378
3 1 3 2 1.3333 1.6129 1.3333 3.6667 1.1105 3.1971
3 2 1 3 1.7943 1.0701 1.3333 1.3333 3.6667 3.2179
3 3 2 1 1.7575 1.8303 1.2819 1.7005 4 4.8436

model focuses on the minimisation of the average wait time of vaccinees in hospitals, while the second objective function minimises
the total ordering and holding costs of vaccines.

The first objective provides policymakers with a set of directions to better manage congestion in the predetermined hospitals
using a queuing system. We also defined a utility function to study potential changes in arrival rates. Indeed, different vaccinees
may have different perspectives toward vaccine types and their efficacy. The utility function was also related to a risk aversion
coefficient. We assumed that the arrival rate to a hospital is related to a Poisson probability distribution with a parameter equal
to the sum of the vaccines’ utility function. We also proposed two optimisation algorithms (i.e., goal attainment and NSGA-II) to
27
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Table A.3
Experimental results of modified NSGA-II.

MaxIt nPop pCrossover pMutation 𝑆𝑢𝑚1 𝑆𝑢𝑚2 𝑆𝑢𝑚3 𝑆𝑢𝑚4 𝑆𝑢𝑚5 𝑆∕𝑁

1 1 1 1 1.1949 1.7863 4 1.6359 2.6314 4.9638
1 2 2 2 2.7776 1.8078 2.3615 1.5782 4 6.6600
1 3 3 3 2.1645 3.9112 1.4420 4 1.2238 5.5280
2 1 2 3 1.3597 1.6786 4 1.8536 1.3764 4.4924
2 2 3 1 1.1062 2.0326 3.6667 2.2777 1.1612 3.8344
2 3 1 2 2.1116 1.7519 4 1.3515 1.3333 4.6278
3 1 3 2 1.3333 1.3333 3.6667 1.9990 1.3333 3.9530
3 2 1 3 4 1.3333 1.0269 1.3709 1.6841 3.0389
3 3 2 1 1.3333 1.7106 2.8741 1.8239 3.6667 5.5274

Table A.4
Inputs parameters for numerical examples.

Problem Size of the problem Number of Assigned Demand Ordering Holding Maximum Maximum
number (K-T-F) servers (e.g. nurses) server cost cost capacity available vaccine

1 (5-2-3) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)
2 (5-3-5) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)
3 (5-4-3) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)
4 (6-3-2) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)
5 (6-3-10) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)
6 (4-9-12) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)
7 (5-12-14) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)
8 (6-18-15) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)
9 (6-24-20) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)
10 (6-24-40) U(1,10) U(0,1) U(4E+02,8E+04) U(5,30) U(1,5) U(12E+04,3E+05) U(4E+04,95E+04)

Table A.5
Tuned values of the parameters in the NSGA-II and the modified algorithm.

Algorithm MaxIt nPop pCrossover pMutation

NSGA-II 300 50 0.5 0.1
Modified NSGA-II 100 50 0.5 0.3

solve the opposing yet interlinked nature of the objective functions of the proposed model (i.e., contradictions between arrival rate
of vaccinees to a hospital versus the ordering and holding costs of a vaccine type).

We proposed some modifications in the NSGA-II algorithm as solution repairs to introduce a modified algorithm. The performance
f the proposed algorithms was investigated by four metrics. We then compared the results to find a better solution approach.
he results demonstrated that the heuristic approaches (the classic and modified NSGA-II algorithms) perform better than the
oal-attainment technique in solving large problems. Moreover, the modified heuristic algorithm outperformed the classic method,
eaning that our new algorithm can also solve NP-hard optimisation problems with reasonable computational time.

Based on the results obtained by the non-parametric Friedman and Wilcoxon signed-rank tests, the performance reported by
he modified NSGA-II was significantly higher than that in other algorithms involving all performance metrics. Consequently, we
roposed the modified NSGA-II as a specific algorithm for finding optimal solutions in a crisis-induced vaccine supply chain. In
ddition, we discussed how to expect a proper wait time for a hospital queue based on the corresponding PDF and CDF diagrams
nd various risk aversion levels.

The proposed model was implemented using an authentic case study in the greater Melbourne to show how to manage congestion
nd costs in the ordering and storing of vaccines in the proposed hospitals. For a better understanding of the input parameters of
he queuing model and how to estimate them, several recommendations were provided. The findings offer a way to coordinate a
risis-induced vaccine supply chain through optimising the number of required hospitals, the minimum expected wait times for the
accination of each vaccinee, and the maximum number of orders and inventories in each hospital during a specific time window.
e also conducted a sensitivity analysis on the main parameter to evaluate the model’s performance and facilitate the provision

f managerial insights. The findings validated the model and determined the importance of the expected service rate of medical
acilities — especially for large hospitals.

.1. Implications for policymakers and healthcare managers

This study proposed and validated a practical model for vaccine distribution in a crisis-induced supply chain. As of August 2021,
any countries (e.g. Australia) were unable to produce COVID-19 vaccines locally due to the unavailability of production technology,

he lack of R&D investments, and the need for immediate action regarding the COVID-19 pandemic. Therefore, healthcare systems in
hese countries are reinforced by the public to quickly import the best available vaccines. This demand has also caused international
ompetition in purchasing and distributing internationally recognised vaccine types among developing economies. The shortage in
28
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Fig. B.3. Optimal ordering levels for the Melbourne’s suburbs in the best scenario.

the COVID-19 vaccine supply and the high cost of transportation, storage, and administration in crisis-induced vaccine supply chains
cannot be easily resolved unless all the issues mentioned above are addressed. Thus, the findings of this study enable policymakers
and hospital managers in several ways.

First, the proposed method and model can help policymakers quickly and responsively develop optimal operational decisions
for vaccine supply chain distribution in emergencies under reservations arising from limited supply, diversity of vaccine types,
unfamiliarity with unexpected consequences, and disease vulnerability. As evident in prior studies (Tavana et al., 2021; Ferranna
et al., 2021), the prioritisation of certain groups over others (e.g., based on age and critical and high-risk jobs) for vaccination
will significantly reduce the number of infected and dead cases but does not necessarily guarantee herd immunisation at the
national level. We recommend that policymakers consider two opposing yet interlinked constraints in mass vaccination to succeed
in herd immunisation in a short time: (i) wait time of vaccination and (ii) total ordering and holding costs of vaccines. At the
national level, vaccination requires policymakers to maximise the utilisation of healthcare resources, which has proven to increase
pressure on healthcare ecosystems both financially and psychologically (Chen et al., 2021; Foy et al., 2021). The findings suggest
the best scenario for the optimal number of orders and amount of inventory for each vaccine type at each hospital, indicating
that our model can help hospital managers make optimal operational decisions for vaccine ordering, storage, and distribution.
However, we recommend that hospital managers not only consider the demographic information of their covered regions (e.g., the
population of each suburb, the diversity of age groups) but also assess their vaccine distribution and administration capacity to
better coordinate the vaccine supply and reduce ordering and storage costs of the vaccines. Vaccine supply chain coordination
in emergencies requires a partnership between governments to better manage vaccine orders and inventories. Our findings help
local and federal governments coordinate vaccine distribution locally to reduce unnecessary vaccine ordering and storage, allowing
other local governments to meet ordering requirements. More particularly, our model facilitates the process of vaccine ordering and
storage for state governments by enabling them to take great responsibility in vaccine ordering and distribution on their own,
minimising the centralised role of federal governments in the process of vaccine distribution. Indeed, although we understand
the benefits of centralised structures such as (i) having the capacity to mount a quick response to a crisis, (ii) preventing local
competition over resources, and (iii) increasing equity in vaccination (Desson et al., 2020), it may – to some extent – increase
29
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ordering and holding costs if federal governments show inflexibility in the local decision-making processes. In other words, enabling
state governments allows a flexible response for public hospitals to manage vaccine inventory in accordance with their resources and
local orders that can in turn reduce resource mobilisation across states (e.g. vaccines and nurses transportation) to meet the required
demand. Therefore, the findings of this study can encourage state governments to develop partnership with local public hospitals
and perform responsively toward the growing demand for vaccination in their service regions. It in turn reduces the burden on
the federal government and enables state governments to better recognise vaccine eligibility and prioritisation. In this view, local
public hospitals can better connect vaccine demand and supply by leveraging local call centres, online registration and vaccine
administration that can occur in a short period of time. In addition, as healthcare networks and main public hospitals can more
quickly make decisions about their vaccine inventory and storage capacity, the likelihood of supply disruption in the crisis induced
vaccine supply chain will be minimal.

Our model can also be applied in middle-to-low economies, where healthcare ecosystems may not be equipped appropriately to
espond to the high demand for vaccination, ordering and holding costs of vaccines on a large scale due to financial restraints. Our
ueuing model adopted a four-stage protocol of mass vaccination. The vaccination protocols may vary depending on vaccine supply
nd demand. These protocols may prioritise vaccinees based on their level of vulnerability to the COVID-19 pandemic. We applied
hese four stages based on the COVID-19 vaccine administration protocol proposed and implemented by the Australian government,
lthough our model can be flexibly applied to other vaccine administration processes (e.g. 3- or 5-stage protocols). The policymakers
an also select the best vaccination scenario (e.g., the best proportions of vaccine types) that will minimise the vaccination wait
ime and maximise the capacity of vaccine ordering and holding in their healthcare ecosystems.

As mentioned previously, the logistics of a crisis-induced vaccine supply chain is with a high-level uncertainty due to the nature
f the emergency. It requires immediate actions toward international agreements, transportation, storage and administration. In this
ein, the frequent change in the definition of ’full vaccination’ (shifting from 2- to 3- or 4-dose vaccination) has put much pressure
n the federal governments to maintain a centralised high-level standard of vaccination. Our model can help routinise daily vaccine
emands and supply in local areas to develop the vaccination national plan in synchronicity, providing a relatively practical toolkit
t both strategic and operational decision-making levels to enhance vaccine distribution processes in emergencies.

.2. Future research directions

Although this proposed model performs well in vaccine distribution planning, especially in emergencies, the model has limitations
hat future research can investigate. First, in the proposed model, we only considered a capacity for the servers, and there was no
estriction on the daily entrance of vaccinees to hospitals. In reality, however, a capacity limit (especially for the booking system)
an be demonstrated to make the model more accurate. Other types of queuing models, like 𝑀∕𝑀∕𝐶∕𝐾 can be implemented to

model this problem (𝐾 represents the size of the calling population in the CBS). In addition, considering the behaviour of vaccinees
in queues like bulking, reneging, or jockeying, recalculating the average wait time would be an interesting topic for future research.

Moreover, the inclusion of some uncertainties may extend the model and improve the accuracy of findings. For instance, vaccine
producers may fail to fulfil orders (supply uncertainty) due to the international competition in emergencies or vacinees may refuse
to accept the second/third/fourth dose of a special vaccine (demand uncertainty) due to vaccine side effects. In addition, the efficacy
rate of vaccine types is also a great concern in many developed economies, as it may fail the national vaccination plan for these
countries and cause massive pressure on economy. Future research is encouraged to develop a specific ratio for each vaccine type
to include the efficacy rate in the model.

Policymakers can allocate financial incentives to allow citizens to select a vaccine type from a diverse range of vaccines based
on their efficacy rate, price, and number of doses. Our model can be applied in situations where these incentives are essential.
However, we direct future research to consider policy objectives in developing the model to make the analyses more precise, helping
policymakers better decide which vaccine type would be cost-beneficial for citizens of different socio-economic statuses. For example,
our analyses did not indicate which vaccine administration protocol (i.e., 3-, 4-, or 5-stage protocol) minimises the holding costs or
wait times. This can direct future studies to consider the role of government’s initiatives and interventions in vaccine distribution
in emergencies. Future research can examine the implementation of the model with other optimisation algorithms and compare the
performance of the obtained solutions with the proposed algorithms.

We used an inventory model for our supply chain design considering the main costs of the chain (i.e., holding and ordering costs).
Another holistic view can integrate the spoilage and shortage costs of vaccines in the model. Quantifying these costs and minimising
the resultant total cost for any selected crisis-induced supply scenario will enhance the performance of the vaccine supply chain.

We did not analyse the public acceptance of vaccines in our model. Indeed, these analyses require employing other research
designs in which surveys on the vaccinee’s experience would be the central component of data collection and analysis. Our review
indicated that the public acceptance of vaccines plays a crucial role in succeeding the vaccine administration and minimising the
ordering and holding costs. Therefore, we encourage future research to develop and examine the vaccinee’s experience using a
survey-based research design to help understand how vaccinees adopt new vaccines especially in emergencies.
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