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Abstract

Normal cells explore multiple states to survive stresses encountered during development and self-

renewal as well as environmental stresses such as starvation, DNA damage, toxins or infection. 

Tumor cells co-opt normal stress mitigation pathways to survive stresses that accompany tumor 

initiation, progression, metastasis and immune evasion. Cancer therapies accentuate tumor cell 

stresses and invoke rapid non-genomic stress mitigation processes that maintain cell viability and 

thus represent key targetable resistance mechanisms. In this review, we describe mechanisms by 

which tumor ecosystems, including cancer cells, immune cells, and stroma, adapt to therapeutic 

stresses and describe three different approaches to exploit stress mitigation processes: a) interdict 

stress mitigation to induce cell death, b) increase stress to induce cellular catastrophe and c) 

exploit emergent vulnerabilities in tumor and microenvironment cells. We review challenges 

associated with tumor heterogeneity, prioritizing actionable adaptive responses for optimal 

therapeutic outcomes, and development of an integrative framework to identify and target 

vulnerabilities that arise from adaptive responses and engagement of stress mitigation pathways. 

Finally, we discuss the need to monitor adaptive responses across multiple scales and translation 

of combination therapies designed to take advantage of adaptive responses and stress mitigation 

pathways to the clinic.
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General introduction.

Tumor cells as well as cells in the tumor microenvironment are subjected to stresses 

inflicted by altered cell states associated with tumor initiation, progression, metastases 

and immune evasion13. To survive and adapt to these stressors, tumors co-opt endogenous 

stress mitigation pathways that have evolved to allow normal cells to deal with stresses that 

occur during development and renewal or as a consequence of environmental perturbations 

such as those induced by starvation, DNA damage, dietary toxins, infection or cancer 

therapy4,5. Examples of stresses that tumor cells are subjected to during tumor initiation, 

progression and metastasis are shown in Figure 1A and discussed in more detail by Luo 

et al6. Tumor cells, as well as cells in the tumor microenvironment, must also rapidly 

implement additional mitigation strategies (Figure 1A) to survive stress created by cancer 

therapies. Radiation, chemo- and targeted therapies, as well as immunotherapies, augment 

ongoing oncogenic stress, resulting in further dependence on stress mitigation pathways. 

The ability of tumor cells and tumor ecosystems to co-opt endogenous stress mitigation 

pathways and heterotypic cell-cell signaling that maintain tissue homeostasis, constitutes 

key targetable mechanisms of therapeutic resistance (three different therapeutic approaches 

to exploit these mechanisms are shown in Figure 1B)6,7. Table 1 lists examples of stresses 

induced by cancer therapies as well as the processes that cellular stress sensors engage to 

mitigate these stresses.

Several reviews have covered intrinsic drug resistance mechanisms, including pre-existing 

tumor clones8,9, as well as adaptive resistance mechanisms, including non-genetic tumor cell 

state plasticity, microenvironment mechanisms10–16 and drug target-focused mechanisms 

(drug efflux, drug inactivation, or alterations in drug targets17–22). In this review, we 

focus on adaptive responses to cancer therapy. These responses represent a unique form 

of non-genomic resistance that occurs rapidly and is highly reversible and targetable. 

Importantly, the ability of cells to adapt to the immediate effects of therapeutic stress 

can facilitate development of irreversible acquired genetic resistance including acquisition 

of new mutations23–29 or allow selection of pre-existing drug resistant clones30,31. Thus, 

therapeutic targeting of adaptive resistance provides an opportunity to improve patient 

outcomes by both immediate inhibition of tumor cell survival, and also by delaying or 

preventing emergence of genetically resistant clones. However, in order for patients to 

realize benefit from targeting stress mitigation responses, it is necessary to develop facile 

approaches to identify the suite of mitigation strategies utilized by individual cells as well 

as to quantify stress phenotypes and mitigation strategies as they change longitudinally 

under therapeutic stress. This review highlights examples of stress responses associated 

with cancer therapies to illustrate concepts that can be generalized across the spectrum of 

adaptive response and stress mitigation pathways. In addition, we describe three different 

approaches (Figure 1B) to exploit stress mitigation processes to improve the effectiveness 

of cancer therapy. Lastly, we discuss opportunities and challenges in implementing these 

approaches in the clinic. Due to space limitations, the review is designed to provide a 

framework for broad implementation of therapeutic approaches to capitalize on adaptive 

responses and engagement of stress mitigation pathways rather than a comprehensive 

coverage of research and clinical activities.
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Section 1: Tumor intrinsic adaptive response programs

Understanding the nature of stresses and adaptive mechanisms (Table 1) that maintain 

survival of drug-treated tumor cells promises to uncover therapy-induced vulnerabilities and 

provide rational approaches to target adaptive responses to therapeutic stress to enhance 

cancer cell death.

Section 1.1: Adaptive responses involving rewiring of signaling pathways

Adaptive responses to signal transduction inhibitors as a special case of 
stress mitigation: Given the key role of signaling pathways in the development and 

progression of cancer, major efforts have been deployed to develop targeted therapies 

that disrupt pro-oncogenic signaling. Unfortunately, the benefit from such drugs is often 

temporary due to the ability of cells to rapidly adapt through reactivation or bypass of 

the targeted molecule, allowing cell survival. In normal cells, signaling pathways have a 

high level of plasticity leading to stable regulatory networks that result in bistable states 

with cell populations maintaining distinct phenotypes independently of genotype. This 

plasticity is built on the balance of negative and positive regulators, availability of alternative 

isoforms, feedback and feedforward loops and crosstalk with other signaling pathways that 

are required to maintain normal cellular homeostasis. This plasticity, pathway rewiring, and 

rapid acquisition of adaptive responses allow tumor cells to mitigate stresses caused by 

inhibition of signaling mediators by targeted therapies. Pathway bypass through signaling 

rewiring does not engage a “professional” stress mitigation pathway but rather co-opts the 

normal homeostatic mechanisms that maintain signaling balance. For example, receptor 

tyrosine kinases (RTKs) activate both the PI3K/AKT and RAS/ERK pathways that co-

regulate pro-survival activity, at least in part, through converging on mTOR signaling32,33. 

As described in Figure 2, inhibition of either PI3K/AKT or the RAS/ERK pathway can 

lead to compensatory activation of the other pathway with subsequent maintenance of 

mTOR signaling and cell survival34. RTK signaling can be upregulated transcriptionally35, 

or post-translationally by decreased internalization and degradation36, decreased proteolytic 

shedding of receptors37, formation of novel RTK complexes38 and increased production of 

receptor ligands39,40. Together these processes engage a suite of mechanisms that could be 

targeted to interfere with bypass mechanisms and thus increase utility of signal transduction 

inhibitors.

Section 1.2: Adaptive responses that ameliorate cell death pathway activity

Dysregulated cell death programs including apoptosis, ferroptosis, pyroptosis, and 

necroptosis play critical roles in therapeutic resistance41. Many cellular compensatory 

mechanisms and stress mitigation pathways shift the balance of cell death pathways towards 

cell survival. In the case of apoptosis for example, these programs involve induction 

of anti-apoptotic proteins (e.g. BCL2 family proteins such as BCL2, BCLxL, MCL1) 

and inactivation or downregulation of pro-apoptotic proteins (e.g. p53, BH3-only BCL2 

family proteins). Inhibitors of PI3K and MEK and other cancer therapies can induce 

stabilization and transcription of BIM and other BH3 family proteins42–45, thus promoting a 

pro-apoptotic state. However, this is often balanced by upregulation of anti-apoptotic BCL2-

family proteins (Table 1). These BCL2-family proteins can be induced by multiple programs 
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at the level of transcription, alternate IRES-dependent translational46,47, or post-translational 

stabilization48.

Section 1.3: Adaptive responses induced by DNA damage and replication stress

Under conditions where DNA integrity is compromised (e.g. mutation, metabolic stress or 

environmental toxins), a suite of cell cycle arrest and DNA repair pathways are activated to 

mitigate effects of the DNA damage49–51. In the presence of DNA damage in normal cells, 

DNA integrity sensors such as ATM or ATR proteins are recruited to sites of DNA damage 

where they activate p53 and induce DNA damage repair pathways and cell cycle arrest52 

(Figure 2B). p53 is maintained at low levels in unstressed cells by the E3 ubiquitin ligase 

MDM2 that targets p53 for degradation. In normal cells, multiple stress signals, including 

oncogenic stress and DNA damage, stabilize p53 with subsequent activation of stress 

mitigation pathways. Thus, p53 serves as a major cellular stress sensor. Loss or mutation 

of p53, the most common genomic aberration in cancer, compromises the G1 checkpoint 

allowing stressed or metabolically compromised cells with decreased dNTPs available for 

accurate DNA synthesis and repair to enter S phase. Loss of p53 function also allows 

accumulation of DNA damage by suppressing DNA damaged-induced apoptotic response53. 

Furthermore, p53 targets multiple genes involved in mismatch repair, nucleotide-excision 

repair and base-excision repair resulting in dysfunctional DNA repair53. Taken together, 

loss or mutation of p53 compromises multiple cellular stress mitigation processes allowing 

accumulation of DNA damage.

Cancer therapies can directly induce DNA damage resulting in activation of the DNA 

damage response (DDR) pushing tumor cells with high levels of DNA damage over the 

threshold into cell death. Further a number of chemotherapies decrease the availability 

of dNTPs required to repair DNA damage, such as gemcitabine that targets RRM2 

(Table 1). Several targeted therapies decrease the levels of members of key DNA damage 

pathways54,55 such as MEK inhibitors compromising homologous recombination in RAS 

mutant tumors. Tumor initiation and progression is also associated with replication stress 

(RS) which is defined as failure to protect the replication fork in S phase resulting 

in replication fork stalling or collapse with subsequent accumulation of DNA damage 

(Figure 2B). Activation of oncogenes and/or loss of tumor suppressors can elevate RS 

through: 1) premature S phase entry and a resultant dNTP shortage, 2) stalled replication 

forks due to replication and transcriptional imbalance, and 3) replication fork collapse56. 

Interestingly, oncogenes that induce RS and or DNA damage frequently engage stress 

mitigation pathways56; for example, KRAS mutations can increase HR competence54,57 and 

MYC activation can resolve transcription-replication conflicts, upregulate dNTP synthesis 

and increase HR competence58,59.

A number of chemotherapy and targeted agents increase RS by depleting dNTPS 

or by inducing DNA damage including crosslinks and adducts that result in stalled 

polymerase60–63 (Table 1, Figure 2B). Drugs that induce replication fork collapse and 

subsequent double strand DNA breaks (DSBs), such as poly (ADP-ribose) polymerase 

(PARP) inhibitors (PARPi)64, lead to activation of the S and G2 cell cycle DNA damage 

checkpoints to allow resolution of the stress (S phase checkpoint) or repair of the damage 
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(G2 phase checkpoint) to occur through HR and other repair pathways prior to entry into M 

phase. Unresolved RS results in phospho-RPA deletion and further accumulation of DSBs 

as well as dsDNA in micronuclei and the cytosol65. Cytosolic DNA can lead to activation 

of the STING pathway, with resultant interferon induction and engagement of the innate and 

adaptive immune system66–69.

Section 1.4: Adaptive responses and stress mitigation pathways involving metabolic, 
endoplasmic reticulum and oxidative stress

Metabolic stress: In normal cells, metabolic plasticity allows cells to quickly adapt to 

energy and metabolite requirements during conditions where nutrients are limiting. While 

oxidative phosphorylation (OXPHOS) is the dominant source of energy for slow-growing or 

stem cells, glycolysis is the preferred energy source for highly proliferative cells. The ability 

to switch between glycolysis and OXPHOS is controlled by master regulators such as AMP-

activated protein kinase (AMPK) and HIF-1, which act as perturbation sensors70,71. Many 

different cancer therapies induce metabolic stress including PI3K pathway inhibitors that 

decrease glucose and amino acid uptake72 or BRAF inhibitors that impact glycolysis73,74 

(Table 1). For example, BRAF mutant melanoma cells that are reliant on glycolysis are more 

sensitive to the BRAF inhibitor vemurafemib74, while resistant cells display upregulation of 

the mitochondrial biogenesis coactivator PGC1a, via the melanocyte master regulator MITF, 

leading to increased mitochondrial respiration, adaptive resistance to therapy, and sensitivity 

to OXPHOS inhibition73. Cellular adaptation to BRAF inhibition in melanoma cells depends 

on the general control nonderepressible 2 (GCN2) kinase, an eIF2α kinase that senses amino 

acid levels75 (Figure 2C).

Oxidative stress: Tumor cells often exhibit high oxidative stress as a consequence of 

unbalanced generation and elimination of reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) resulting from internal and external metabolic stresses as well 

as from reduced cellular anti-oxidant levels76–78. Further, aberrant tumor cell metabolism 

can elevate ROS and RNS77. Most chemotherapies (anthracyclines, platinum coordination 

complexes, topoisomerase inhibitors, etc.) and many targeted therapies (Figure 2C) that 

alter nutrient uptake and oxidative phosphorylation (e.g. inhibitors of EGFR, BRAF, HER2, 

and others) increase ROS/RNS through alterations in mitochondrial electron transport and 

reduction in anti-oxidant systems like glutathione, peroxidases, superoxide dismutases, and 

others79 (Table 1). The two broadest-acting ROS-mitigation programs are regulated by 

NRF2 and NFκB80; these transcription factors induce expression of genes that serve as ROS 

scavengers and prevent apoptosis associated with high ROS81.

Endoplasmic reticulum (ER) stress: ER stress response is triggered by various 

stressors such as hypoxia, metabolic stress or misfolded proteins82,83. Although a strong 

activation of the ER stress response can lead to cell death, a moderate level of activity can 

be protective. Thus ER stress response can support both survival and therapy resistance of 

tumor cells. For example, RTK-targeted therapy in endometrial and renal cancers activates a 

PERK-driven ER stress response program, resulting in activation of autophagy and NF-κB 

signaling stress mitigation pathways that promote cell survival84,85 (Table 1, Figure 2C).
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Section 1.5: Multiple stress converge on the “integrated stress response” program.

Many of the stress response pathways described above feed into one more kinases (e.g. 

PERK, GCN2) that phosphorylate eIF2α. Phosphorylation of eIF2α promotes formation of 

an eIF2-eIF2B inhibitory complex that suppresses global cap-dependent translation, while 

at the same time promoting cap-independent translation of a subset of mRNAs that regulate 

homeostasis86,87. Together, these eIF2α kinases integrate signals from many different 

stresses to induce a common set of stress mitigation programs referred to as the ‘Integrated 

Stress Response’ (Figure 2C). Therapy-induced stress can overwhelm the integrated cell 

stress response in cancer cells, thus resulting in cell death88. Further, the switch from 

cap-dependent to cap-independent protein translation including the anti-apoptotic factor 

MCL1 can expose novel therapeutic opportunities such as targeting the apoptotic pathway. 

While this manuscript focusses on a number of independent stress pathways and mitigation 

process, it is important to acknowledge that they converge, in many cases, on the integrated 

stress pathway as a final downstream effector.

Section 2: Adaptive responses in tumor stromal cells

Adaptive responses to therapy can also be mediated by tumor-host interactions, where cell 

types in the tumor ecosystem, produce signals that engage stress mitigation pathways in 

tumor cells. In addition, therapy-induced alterations in the tumor ecosystem can reprogram 

stromal cells toward either a pro- or anti-tumor phenotype. Importantly, therapy-induced 

alterations in tumor-host interactions can reactivate signaling pathways and establish 

emergent therapeutic opportunities.

Section 2.1 Tumor rewiring during adaptive responses and stress mitigation alters immune 
contexture

Therapy-induced alterations in the tumor ecosystem can create additional vulnerabilities 

that can be exploited to enhance therapy efficacy. In order to mediate immunoevasion, 

tumors produce soluble factors that program both innate and adaptive immune cells in the 

tumor microenvironment to allow tumor progression89. For example, in melanoma BRAF 

inhibition can recruit and reprogram macrophages into a protumorigenic M2 phenotype 

and increase macrophage-derived secretion of VEGF that reactivates ERK in melanoma 

cells leading to therapeutic resistance90 (Figure 2D). Further, targeted therapy designed 

to inhibit tumor cell survival can also directly impact immune cell function. The multi-

RTK inhibitor sorafenib impairs dendritic cell function and induction of antigen-specific 

T-cells91, while MEK inhibition can increase anti-tumor activity of CD8+ T cells92. 

Thus, therapeutic targeting of tumor cells can impact immune population composition, 

exacerbate tumor supportive immune mechanisms through multiple different mechanisms93, 

or alternatively can induce an anti-tumor immune context. However, it is clear that the 

effects of targeting signaling pathways on immune cell phenotype and functional outcomes 

is nuanced and requires further exploration in model systems and clinical trials to develop 

approaches that shift the multiple types of immune cells present from an immune evasive 

microenvironment to a tumor suppressive immune contexture94. Hence, further investigation 

of therapy-induced adaptation in the complete tumor ecosystem of samples from patients on 

therapy95,96 will be necessary to inform effective clinical translation.
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Section 2.2: Interactions with cancer associated fibroblasts and extracellular matrix

Drug resistance can be sustained by a plethora of growth factors and cytokines released 

by the neighboring tumor microenvironment (TME), composed by adipocytes, cancer-

associated fibroblasts (CAFs), immune and endothelial cells97. Compared to normal 

fibroblasts, CAFs release elevated levels of pro-inflammatory cytokines and growth 

factors98. Each of these TME cell types can be influenced by juxtacrine and paracrine 

interactions with tumor cells. For example, CAFs associated with different tumor types 

undergo distinct state changes99. Secreted factors from CAFs can in turn influence tumor 

cells states, including reactivation of signaling pathways that limit the effectiveness of kinase 

inhibitors in multiple solid tumors100–103 and these pathways can be modulated by both 

cytotoxic and targeted therapies100,104,105. Extracellular matrix (ECM) remodeling driven 

by CAFs treated with BRAF inhibitors106 promotes cell survival (Figure 2D). Furthermore, 

cell-ECM interactions can mediate resistance to PI3K/mTOR and HER2-targeted therapy 

by adaptive responses involving upregulation of anti-apoptotic Bcl-2 family signaling in 

ovarian and breast cancer46,107,108. For a comprehensive discussion of effects of cancer 

therapies on the diverse cell types in the tumor ecosystem, we refer the reader to other 

review articles16,109.

Section 3: Strategies to exploit tumor cell vulnerabilities associated with adaptive 
responses to therapies

Tumor intrinsic therapeutic stress and stress mitigation processes engaged by the tumor 

ecosystem provide three independent therapeutic strategies (Figure 1B) to enhance efficacy 

of cancer therapies a) block the stress mitigation pathways that allow tumor cells to survive 

ongoing stress to induce death, b) accentuate existing stress and thus overwhelm mitigation 

strategies resulting in stress-induced catastrophe and c) exploit emergent vulnerabilities 

in the tumor ecosystem. In this section, we provide examples of each of these strategies 

(Figure 3 and Table 2), describe the challenges in deploying these strategies due to tumor 

heterogeneity (intratumoral and interlesional) (Box 1).

3.1. Strategies to block stress mitigation pathways that allow tumor cells to survive 
ongoing stress

Blocking bypass of signal transduction pathway activation: Cell survival 

resulting from adaptive signaling rewiring can be targeted by blocking bypass pathways or 

inhibiting redundant kinase members in the same family (Table 2, Figure 3A). For example, 

blocking multiple PI3K family members using PI3K-α/β inhibitors enhances antitumor 

efficacy in combination with multiple therapies in preclinical studies110. Targeting bypass 

pathways involving the PI3K/AKT and RAS/MAPK signaling axes can be accomplished 

by inhibiting receptor tyrosine kinases that are activated by negative feedback loops. 

For example, reactivation of AKT in breast cancer cells treated with mTOR inhibitors 

can be blocked using IGF-1R inhibitors111. To combat the heterogeneity and redundancy 

of receptor tyrosine kinase adaptive responses, pathway reactivation can be targeted by 

inhibiting downstream kinases. Blocking focal adhesion kinase which is downstream of 

multiple RTKs can effectively induce cancer cell apoptosis following treatment with HER2-

targeted agents in breast cancer112 and with BRAF inhibitors in melanoma106. RAS/MAPK 
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therapy-induced activation of the PI3K/AKT/mTOR stress mitigation pathway in pancreatic 

cancer113 and melanoma114 has been prevented using AKT and mTOR inhibitors. These 

examples provide evidence that coordinated inhibition of a target along with the adaptive 

responses used as a mitigation strategy can prevent bypass and convert cell survival 

mediated by adaptive responses to cell death. Although this predicts that coordinate targeting 

of the PI3K/AKT and RAS/ERK pathways would be highly effective, this combination 

therapy is associated with marked toxicity and is not tolerated in patients115.

Blocking apoptotic stress mitigation: Multiple targeted therapies (RTK, PI3K/mTOR, 

PARP and RAS/MAPKi inhibitors) have been shown to result in coordinate upregulation of 

pro-apoptotic and anti-apoptotic proteins that prime tumors cells for induction of apoptosis 

by BCL2-family inhibitors. Specifically, blocking BCL-2, BCL-XL or MCL-1 activity has 

been shown to synergize with RTK, PI3K/AKT and RAS/MAPK pathway blockade in 

multiple tumor lineages116–120 (Figure 3A, Table 2). Thus, targeting anti-programmed cell 

death proteins that are downstream of stress mitigation pathways represents an attractive 

therapeutic approach to increase the efficacy of many different targeted and chemotherapies. 

Notably, since multiple stress mitigation programs lead to elevation of anti-apoptotic 

proteins, targeting these proteins represents a potentially more broadly effective therapeutic 

approach than others that are specifically associated with a single stress mitigation program.

Blocking epigenetic factors: Targeting epigenetic regulators of cellular programs also 

represents a candidate approach to inhibit multiple adaptive responses. In melanoma and 

other cancer types, histone marks alterations, such as the loss of H3K4me3, H3K27me3 

and gain of H3K9me3 in response to therapeutic stress has been linked to the development 

of multidrug resistance121,122. Importantly, silencing methyltransferases can reverse the 

resistant phenotype. In another study, a BET (BRD4) inhibitor (JQ1) blocked the adaptive 

stress mitigation response involving upregulation of multiple receptor and non-receptor 

kinases following HER2 targeted-therapy in breast cancer cells123 (Figure 3A, Table 2). 

In addition, novel approaches to inhibit formation of active enhancer complexes with a 

CDK7/12 inhibitor blocked the transcriptional activation of survival programs in response 

to multiple RTK inhibitors and resulted in enhanced tumor cell killing in vitro and tumor 

regression in vivo124. Thus, combination therapies that target a key tumor driver while 

concurrently targeting transcriptional regulators that mediate stress mitigation pathways can 

increase the activity of a broad suite of drugs and block multiple stress mitigation pathways. 

Although inhibition of epigenetic regulators that mediate stress mitigation programs engaged 

downstream of a wide range drugs can reverse adaptive resistance; these combinations have 

been plagued by toxicity in solid tumors125.

Blocking stress responses associated with DNA damage or RS: As described 

above, therapy-induced DNA damage and RS stress mitigation pathways serve as targets 

to enhance drug efficacy. For example, because PARPi engage the S and G2 DNA damage 

stress mitigation checkpoints, PARPi combined with inhibition of the ATR/CHK1/WEE1 

cascade, which is responsible for activation of the S phase and G2 damage checkpoints, 

induces synergistic cell death through mitotic catastrophe, and tumor regression in vivo 
in ovarian and lung cancer models126–128. A number of studies, albeit controversial, 
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suggest that inhibitors of ATR/CHK1/WEE1 cascade are more active in cells that lack 

p53 due to an increased dependence on the S phase and G2 damage checkpoints129. In 

addition to engaging DNA damage checkpoints, PARP inhibition can increase homologous 

recombination (HR) repair competency via RAS/MAPK pathway activation that can be 

interdicted using MEK inhibitors to sensitize cells to the effects of PARPi130 (Table 2, 

Figure 3A). Combinations of PARPi with ATR/CHK1/WEE1 or MEK inhibitors have 

been translated to clinical trials with promising early activity. Importantly, the optimal 

combination partner for effective PARPi therapy depends on which DNA repair pathways 

are activated in each tumor. For example, ATR inhibition is most effective in ATM-deficient 

models127, gemcitabine in cells with premature cell cycle entry and limited dNTP stores 131, 

and WEE1 inhibition in tumors with high endogenous RS132,133.

Blocking metabolic stress mitigation programs: Several different approaches to 

target metabolic adaptations to therapies have also been described, e.g. increasing therapy-

induced metabolic stress by coordinate inhibition of the pentose phosphate shunt and 

glutaminolysis to limit generation of anti-oxidant mediators and render cells sensitive to 

reactive oxygen species (ROS) generated by OXPHOS134,135. The effects of decreasing 

or increasing ROS, as with many other targets, is likely to be complex as ROS not only 

have effects on tumor viability but can influence metastatic potential as well as immune 

activity136,137. In addition, treatment of breast and colorectal tumors with CDK4/6 inhibitors 

results in metabolic reprogramming with a shift to utilization of glutamate as an energy 

source that can be exploited by targeting glutaminase138 (Table 2). While it is clear that 

adaptation to metabolic stress is a mitigation strategy utilized by both tumor and normal 

cells, currently there are no facile clinically applicable approaches to identify and target the 

mitigation processes engaged by the different cell populations in individual tumors.

Blocking oxidative stress mitigation programs: Development of effective targeted 

inhibitors of anti-oxidant stress mitigation programs presents challenges in specificity, 

pharmacodynamics, efficacy and safety139,140. However, inhibition of targets of NRF2 and 

NFκB such thioredoxin or glutathione generating enzymes can enhance drug sensitivity141. 

For example, the elevated oxidative stress induced by PARPi that contributes to the 

induction of DNA damage and cell death142, can be exploited by inhibiting the anti-oxidant 

enzyme thioredoxin reductase to induce tumor regression in prostate cancer xenografts128. 

Further work is required to develop optimal anti-oxidant dosing strategies and delivery to 

avoid toxicities and develop a therapeutic index in cancer patients.

Section 3.2: Strategies to increase ongoing and therapy-induced stress to induce cellular 
catastrophe

As indicated above, sustained therapeutic stress in tumor cells results in the engagement 

of stress mitigation programs. If the stress can be increased to a level that overwhelms the 

stress mitigation programs, this ultimately results in tumor cell death. Given that cancer 

cells, as opposed to normal cells, are subject to ongoing stress, combination therapies that 

exploit this differential stress level could provide an adequate therapeutic index. Previous 

studies have shown that normal cells compared to tumor cells exhibit lower baseline levels 

of stress143,144. To explain the increased sensitivity of tumor cells compared to normal 
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cells to a number of stress-inducing therapies, it has been proposed that stress-induced 

catastrophe when cell pass a common stress threshold145,146. This is particularly evident 

in cases such as RS or apoptosis where catastrophe or cell death occurs above a stress 

threshold65,147. Several approaches have been used to increase RS or to target pathways 

that mitigate the effects of RS60,62. Addition of gemcitabine or PI3K inhibitors to PARPi 

can significantly increase RS by depleting dNTPs thus overloading RS mitigation pathways 

resulting in accumulation of DNA damage, S phase and mitotic catastrophe and tumor 

growth inhibition61,148. Overloading the DDR pathways and the DNA damage checkpoint 

mitigation strategy can be induced by combining PARPi with radiotherapy (Figure 3A) 

resulting in increased double strand breaks, apoptosis and slower tumor growth in Ewing’s 

sarcoma models149. We have demonstrated that an equal increase in ongoing RS in tumor 

cells induced by sequential therapy with PARP and WEE1 inhibitors induces death of tumor 

cells while concurrently sparing normal cells and mitigation of toxicity132. The concept that 

ongoing RS in tumor cells with low RS in normal cells could result in a therapeutic index is 

being tested in an ongoing clinical trial (NCT0419773).

Exacerbating the metabolic, ER and oxidative stress pathways described above can also 

overwhelm mitigation pathways and result in cell death through apoptosis or other cell death 

mechanisms such as necrosis, ferroptosis and autophagic cell death150. For example, EGFR 

inhibition has also been shown to elevate ER stress (Figure 3A) and in combination with 

PDK1 inhibitors increase ER stress to a level that overwhelmed the mitigation pathway and 

resulted in cell death and improved survival in lung cancer xenografts151. Thus, combination 

therapies that effectively increase therapy-induced stress levels in tumor cells provide a 

promising strategy to block cell survival by inducing stress overload that can overwhelm 

stress mitigation processes and this approach could lead to a therapeutic index.

Section 3.3: Targeting stroma cell adaptive responses

Immune cell responses: Both the pro and anti-tumor immune effects induced by 

therapeutic targeting provide novel opportunities for intervention. For example, in melanoma 

targeting CSF1R on M2 macrophages reduced their recruitment and reduced tumor growth 

rates in xenografts90. PARPi can induce both anti- and protumorigenic macrophages 

through metabolic reprograming in BRCA1-deficient breast cancer syngeneic models152. 

The protumorigenic effects mediated by PARPi-induced CSF1 production by tumor cells can 

be reversed by targeting CSF1R on macrophages.

Conversely, activation of the STING pathway by PARPi in lung, colorectal, breast and 

ovarian tumors leads to production of interferon that can activate an innate immune 

response that, in turn, induces mobilization of CD4+ and CD8+ T cells68,153 (Figure 

3B, Table 2). Treatment with immune checkpoint inhibitors (ICI) against PD-1 or PD-L1 

capitalized on this therapy-induced alteration in the immune tumor ecosystem and induced 

complete regression and durable responses in both BRCA-proficient and BRCA-deficient 

tumor models, highlighting the critical role of therapy-induced immune cell recruitment 

for therapeutic efficacy154. Indeed, multiple PARPi and ICI combination trials are 

underway95,155. Oncogenic activation can induce an immunosuppressive microenvironment 

with targeting of oncogene signaling in tumor cells both demonstrating tumorintrinsic 
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activity and altering the tumor microenvironment. For example, mutant KRAS is associated 

with the production of multiple cytokines that recruit myeloid derived suppressor cells 

(MDSCs). The recruitment of MDSCs can be reversed by MEK inhibitors with the 

inhibition of the tumor intrinsic effects increasing tumor cell sensitivity to ICI156. Thus, it is 

possible to capitalize on new vulnerabilities in the tumor ecosystem resulting from adaptive 

responses induced by therapeutic targeting that are not directly a consequence of the agent 

on tumor cells. To translate these findings to the clinic, it is critical to identify recurrent 

mechanisms of tumor-immune and immune-immune interactions directly in samples from 

patients on therapy, while considering both the pro- and anti-tumor effects of the tumor 

microenvironment. Unfortunately, many of our anti-tumor therapies mediate deleterious 

effects on the immune system (e.g. impaired dendritic cell function by RTK inhibition91). 

Thus it will be critical to determine the effects of targeting adaptive responses in tumor and 

the microenvironment on tumor cells as well as on components of the immune system to 

identify approaches that compromise tumor cell viability while at the same time engaging an 

effective anti-tumor immune response.

Targeting CAF responses and the vascular barrier: Tumors adapt to limited 

nutrient and O2 availability by inducing a neoangiogenic program157. Notably, strategies 

aimed at targeting CAF-mediated ECM remodeling using angiotensin blockers (Figure 

3B) have also been shown to normalize blood vessels leading to enhanced sensitivity 

to chemotherapy in ovarian cancer xenografts158 and the recruitment of immune cells 

and improved response to immunotherapy in a syngeneic breast model158, as well as 

the response to chemotherapy in human pancreatic cancer patients159. Therapies directed 

towards the vascular barrier (e.g. via the VEGFC/VEGFR3 axis160) represent a stroma-

targeted approach (Figure 3B) that has been FDA-approved in combination with cytotoxic 

chemotherapy or immunotherapy160–162 for a subset of solid tumors (lung, ovary and 

breast). Taken together, effects of therapies designed to target tumor cells can rewire 

the extracellular stromal environment providing opportunities to develop an anti-tumor 

environment.

Section 4. Translation to the clinic

The concept that tumors and the tumor ecosystem are under ongoing stress that is 

accentuated by therapy underlies the rationale for translating the three proposed approaches 

(Figure 1B, Table 1) to exploit adaptive responses and resultant mitigation processes to 

the clinic. Compared to empirical combination therapy design, this concept provides a 

framework to rationalize choice of drug pairs and biomarkers of therapeutic response. 

Translating these opportunities to the clinic with subsequent patient benefit requires 

deploying a complex suite of combination therapies able to: a) target adaptive responses 

in the clinic by interdicting stress mitigation resulting in cell death, b) increase stress in 

tumor cells resulting in cellular catastrophe or c) exploit the network rewiring that occurs 

as cells explore different states and mitigation strategies through combination therapies 

targeting tumor or stromal cells in the tumor ecosystem. Importantly, the drug combinations 

able to exploit each of these alternatives are markedly different and need to be deployed in 

the appropriate manner (potentially with different scheduling and dosing strategies) and in 

patients most likely to benefit (Figure 4). The combination therapies must secondly exhibit a 
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therapeutic index so that efficacy is displayed at tolerable doses. Indeed, as therapeutic index 

represents the rate limiting step for utility of any therapy, combination therapies including 

those targeting adaptive responses are all too often limited by toxicity rather than by lack of 

efficacy (Box 2)163. The underlying precept we have espoused wherein tumors, in contrast to 

normal cells, are under chronic stress and that this stress state can be accentuated by therapy 

provides the potential for a therapeutic index1–3,132.

Importantly, a suite of cost-effective CLIA compliant assays that can select combinations for 

specific patients based either on the pre-therapy state or on the changes that are induced by 

therapy stress must be deployed. The overarching goal is to develop assays that facilitate 

selection of therapies targeting adaptive responses and determine when changes in therapies 

are necessary at a pace that is faster than the tumor can evolve to utilize alternative 

mitigation pathways. Importantly, the information content in widely used DNA sequence-

based analyses is inadequate as the mitigation processes described herein are primarily 

mediated by non-genomic mechanisms10–16. Assessment of transcriptional changes that 

mediate adaptive responses or more direct measurement of the protein and metabolic 

events that mediate the mitigation strategies will be required. The analytic platforms and 

computational biology pipelines must be able to deliver results to the physician in near real 

time. The suite of potential approaches to deliver on this opportunity include molecular 

imaging164–166 or analysis of tissue or liquid biopsies167–169 (Figure 4). Other surrogates 

such as analyzing immune state in peripheral blood to predict immune contexture in the 

tumor also hold promise 170,171. Optimally, the CLIA compliant assays should capture the 

state of tumor cells and the tumor ecosystem across the set of metastatic lesions present in 

the patient. Liquid biopsies as they integrate information across all of the tumor sites in the 

body are thus attractive. To fulfill this goal, analysis of circulating tumor cells169, circulating 

hybrid cells172, RNA173 and miRNA174 and proteins in exosomes175 as they change with 

therapeutic stress has the potential to alleviate the need for tumor biopsies, allow assessment 

of multiple time points, make personalized therapy approaches available to a wider set of 

patients and help to democratize the concept of targeting adaptive responses.

Currently we do not have approved combination therapies that can exploit the broad suite 

of mitigation strategies engaged by tumors. Fortunately, the repertoire of available drugs 

is increasing rapidly. Considering both on-target and known off-target activities covers an 

impressive set of potential targets and is beginning to make targeting adaptive responses and 

stress mitigation pathways practical. Furthermore, drugging what was previously thought to 

be undruggable targets by selectively degrading proteins or decreasing protein production 

through antisense or miRNA therapies is changing the landscape of potentially targetable 

molecules176–178. Whether CRISPR will prove applicable to cancer therapy and further 

increase the target repertoire is only beginning to be explored179. Most current targeted 

therapies target both the wild type and mutated molecule with attendant challenges with 

toxicity. The emerging ability to target mutant molecules such as KRASG12C while sparing 

the wild type molecule has resulted in high activity with limited toxicity180,181.

To fully exploit opportunities to target mitigation strategies, novel trial designs with 

the flexibility to both measure adaptive responses and to rapidly change therapy as 

the mitigation strategies used by the tumor evolve under therapeutic stress will be 
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needed. Further, as the mitigation strategies engaged by tumors are likely to be 

patient- or tumor-specific, the trials must allow selection of patient-specific approaches. 

Novel trials design such as monotherapy run-ins followed by on-therapy biopsies and 

subsequent combination therapy selection provide the opportunity to identify patient-specific 

combination therapies designed to exploit adaptive responses182. However, the monotherapy 

run-in with subsequent combination therapy selection comes with challenges of requiring 

multiple biopsies (pre- and on-therapy) and also of deploying effective analytics in real 

time. Longitudinal profiling of adaptive responses coupled with genomic analysis of mutant 

clone evolution (e.g. estrogen receptor in luminal breast cancer23–25, PI3K in HER2 breast 

cancer183, MET in lung cancer184 and KRAS in melanoma185) will inform the design 

of therapies that capitalize on vulnerabilities of the heterogeneous tumor clones with the 

ultimate goal to prevent the emergence of new resistant clones.

The amount of information that will be available on each patient based on emerging 

technologies that assess mitigation strategies, the broad array of available drugs particularly 

considering both on and off target activity, the challenge of predicting toxicity of 

combination therapies and the need to have up-to-date results from clinical trials to guide 

patient management are rapidly emerging challenges. Physician support approaches such as 

highly curated databases linking molecular markers to therapeutic options are sorely needed. 

Even more importantly, these databases must be easily accessed and readily understood. 

Artificial intelligence approaches linked to natural language processing have the ability 

to overcome some of the challenges. However, even the best current approaches require 

additional validation and curation. Data management and visualization tools will be required 

for tumor boards to engage the “wisdom of the crowd” that could aid in selecting patient 

specific combination therapies that effectively take advantage of adaptive responses.

Section 5 Conclusions & Perspectives

Resistance to cancer therapy remains a major challenge. To improve patient outcomes, 

we need to advance our understanding of the mechanisms that tumor ecosystems employ 

to survive both ongoing and therapy-induced stress. Single-cell RNA-seq or single-cell 

proteomics approaches that separately analyze the heterogeneity of tumor, stroma and 

immune cell states will aid in the discovery of new therapeutic opportunities that can 

exploit vulnerabilities induced by adaptive responses to therapy at the tumor-stroma 

interface186–188. Profiling of the complete tumor ecosystem will also advance understanding 

of tumor microenvironment adaptation to therapeutic stress, given the intense focus on 

immunotherapy combinations189. The efficacy of combination therapies on tumor cell 

intrinsic states will need to be balanced with their potentially deleterious effects on 

the immune system190. Importantly, the effects of stress, stress mitigation pathways and 

attempts at targeting are likely to be more nuanced than presented herein and will require 

a much deeper analysis of underlying mechanisms and importantly of the effects of 

perturbations on tumor, stromal and immune cell states with both temporal and spatial 

resolution in the clinic and in model systems. Indeed, while this review has focused on 

using examples to elucidate critical concepts, the effects of therapeutic targeting is likely to 

be dependent on the particular tumor context, treatment history and also on the complete 

tumor ecosystem. Further, the complex network of stress mitigation pathways and utilization 
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of different stress mitigation pathways in different tissues and different individuals and the 

likelihood that multiple different mitigation pathways are initiated in individual tumors will 

require detailed analysis of the effects of therapies on stress mitigation pathways in patient 

samples and in particular samples from patients on therapy. The challenges behind obtaining 

and analyzing samples in depth will require the development of national and international 

consortia as well as mechanisms to share data in a more efficient manner.

Objective analysis of therapy-induced stress mitigation responses in the clinic will be 

necessary to develop therapeutic strategies that prevent the emergence of drug resistance. 

While current analytic approaches are dependent on tumor biopsies, surrogate assays 

with imaging modalities164–166 or liquid biopsies167–169 to alleviate the cost, technical 

challenges and morbidity associated with repeat tumor biopsies would be preferable. 

Molecular imaging-based approaches (e.g. reporters of specific signaling pathways106,191) 

offer the ability to capture adaptive responses in multiple metastatic sites; an area of 

critical importance to combat metastatic cancers. Furthermore, longitudinal monitoring 

will help address the challenge of designing optimal treatment schedules (sequential 

administration and the order of each inhibitor192 versus simultaneous delivery) to balance 

on-target toxicity with tumor cell eradication. As the spectrum of clinically-relevant 

adaptive responses employed in tumors are revealed, high fidelity, spatially resolved tumor 

models34,193,194 195–197 will be needed to allow longitudinal analysis of tumor cell intrinsic 

and extrinsic adaptive responses. Importantly, barcoding technologies198 have the potential 

to allow better characterization of the plasticity of the stress mitigation pathways. Systems-

level profiling199,200 of therapy-induced cellular stress homeostasis in diverse tumors will 

address the open questions of whether different tumor genotypes share a finite suite of 

adaptive responses and approaches to identify optimal nodes for combination therapy.

Despite the challenges, the opportunity to target adaptive responses and stress mitigation 

pathways provides a potential to not only directly impact tumor cell survival but also to 

prevent the emergence of genomic mutation driven resistant clones that are notoriously hard 

to target while at the same time to engage an effective immune response. Thus, exploiting 

stress and stress mitigation pathways has the potential to provide major benefits to cancer 

patients.
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Box 1:

Heterogeneity of adaptive responses and mitigation pathways:

Cancer cells can adopt a broad range of adaptive responses to survive therapeutic 

stress. For example, the adaptive rewiring of RTK activity in response to the EGFR/

HER2 inhibitor lapatinib was heterogenous across a suite of HER2-positive breast 

cancer cell lines123. Interestingly, although adaptive responses are heterogeneous across 

cancer cells, convergence into downstream pathways have been observed. For example, 

although different RTKs have been shown to be induced across tumor cell lines treated 

with HER2 inhibitors, bromodomain inhibition blocked the induction of the majority 

of kinases, suggesting that this epigenetic regulator mediated a common mitigation 

mechanism123. Further, profiling the proteomic response of ovarian cancer patient 

derived xenografts treated with PI3K/AKT/mTOR and MAPK pathway inhibitors also 

revealed heterogeneous patterns of induced RTK expression, but a common coordinated 

induction of anti-apoptotic proteins116,225. The heterogeneity of adaptive responses 

engaged by cancer therapies engenders a critical question relating to the extent to which 

specific stress mitigation pathways adopted by a tumor to bypass therapy stress are driven 

by underlying genomic aberrations or epigenetic cell states. As a corollary question, can 

cells be steered with therapy to a particular state with limited mitigation pathways being 

available to escape therapeutic stress? For example, BRD4 inhibitors have been shown to 

block expression of multiple kinases precluding the upregulation of RTK activation as a 

mitigation strategy potentially representing a more therapeutically tractable state226,227.

Importantly, while the impact of intratumoral and interlesion genetic heterogeneity on 

drug response has been well documented in various cancer types, there is currently 

little information about the impact of that heterogeneity on adaptive responses to 

anticancer therapy228. Many genomic alterations converge into a limited set of functional 

events and protein networks229. Thus, it is possible that a tumor underlying molecular 

features dictate the possible adaptive resistance mechanisms and that increased tumoral 

heterogeneity has limited effect on the availability of those adaptive responses. Clearly, 

further investigation with single-cell analyses will be needed in order to determine 

the heterogeneity of adaptive responses across cells from a single tumor and across 

multiple metastatic sites. It will also be important to better determine the impact of 

intratumoral and interlesion genetic heterogeneity on the variety of available stress 

mitigation pathways for a given tumor.

Our team has shown that adaptive responses to PARP inhibition can vary greatly across 

different cell lines as well as patient tumor samples. Adaptive responses included the 

induction of the DNA damage checkpoint and the PI3K-AKT-mTOR and RAS-MAPK 

viability pathways126. Importantly, differences were observed in the directionality (e.g. 

more or less DNA damage), magnitude (e.g. extent of RAS/MAPK activation) and 

selection of mitigation pathways both within a cell line panel and across patient 

samples126. The lack of uniformity in mitigation strategies engaged by different tumors 

highlights the challenge of developing therapies designed to interdict adaptive responses 

to targeted therapies. Despite the heterogeneity, there appear to be a limited number of 

programs able to mitigate the therapeutic stress induced by PARPi suggesting that if 
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the mitigation strategy engaged by a particular tumor could be predicted or measured 

following initiation of therapy, it would be possible to select drug combinations likely 

to provide patient-specific benefit. Interestingly, although high-grade ovarian cancer 

tumors have high inter-lesion heterogeneity230,231, our study revealed conserved adaptive 

responses in different lesions within the same patient126, suggesting that targeting 

patient-specific mitigation strategies could be effective across different metastatic sites.
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Box 2.

Limitation of drug combinations targeting stress mitigation pathways

Based on the current literature, translation of the three proposed approaches (Figure 1B) 

to exploit adaptive responses and resultant mitigation processes to the clinic has the 

potential to improve patients care. However, there are still several questions that grants 

further exploration. For example, it is unclear how different cells in the tumor ecosystem 

will respond to the therapy. Also, where multiple stress mitigation pathways are activated 

simultaneously, targeting one might not be sufficient. The heterogeneity in mitigation 

processes between and within tumors are still poorly described. Other challenges that 

might be encountered comes from the complexity of some networks and the effects of 

perturbing them, as well as the impact of the presence of pre-existing resistant clones that 

could be selected by the proposed approaches.

Although many drug combinations have demonstrated promising results in pre-clinical 

studies, the additive or synergistic activity often comes at the cost of increased toxicity 

in patients. This can be associated specifically with acute tumor cell cytotoxicity such 

as tumor lysis syndromes232 or with more direct effects of the drugs on host organs 

that are dependent on the targeted pathways. One potential advantage of targeting stress 

mitigation pathways is that these programs are generally not required for normal tissue 

homeostasis. Several strategies can be used to improve the therapeutic index. With 

therapeutic option ‘a’ (Figure 1B), the second drug that inhibits the stress mitigation 

pathway can be delivered sequentially to reduce toxicity. For option ‘b’ that involves 

use of drugs that enhance stress, it is important to specifically design combinations that 

target tumor specific stress programs to avoid systemic toxicities. Therapies that target 

molecules preferentially expressed in cancer cells, as well as immunotherapies tends to 

present with a better therapeutic index than cytotoxic agents. For drugs that have similar 

toxicity profiles (e.g. selumetinib and erlotinib233) dose-escalation to the recommended 

phase II monotherapy doses is unlikely. Thus, exploring different treatment schedule such 

as sequential drug administration or periodic drug holiday (intermittent treatment) can 

be considered132. Finally, delivering or trapping the drugs at the desirable site using 

nanocarriers or anti-body drug conjugates for example, can improve drug bioavailability 

selectively in tumor and decrease adverse events affecting normal cells234.
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Figure 1: Therapeutic opportunities created by adaptive responses due to tumor cell endogenous 
stress, engagement of stress mitigation pathways and interactions in the tumor ecosystem.
(A) Stresses associated with tumor initiation and stress mitigation programs that are engaged 

to allow cancer cells to survive and proliferate. (B) Adaptation to therapeutic stress and 

engagement of stress mitigation pathways in the tumor ecosystem (tumor, stromal and 

immune cells) provide three therapeutic options: a) induce tumor cell death by interdicting 

stress mitigation pathways that allow tumor cell survival, b) overwhelm the mitigation 

pathways by increasing existing stress that results in stress-induced catastrophe, c) exploit 

emergent vulnerabilities in the tumor ecosystem by targeting tumor-host interactions. The 

difference in stress levels and stress mitigation programs between normal and tumor cells 

provides an opportunity for increased therapeutic index.
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Figure 2: Adaptive response programs in tumor cells and in the tumor ecosystem.
(A) Examples of adaptive responses that bypass inhibition of the PI3K/mTOR pathway: 

1) Transcriptional upregulation of RTKs via FOXO transcription factors, 2) secretion 

of autocrine growth factors via release of the mTOR-driven IRS1 negative feedback 

loop and 3) utilization of a non-targeted isoform of PI3K. We also highlight another 

example of signaling rewiring following EGFR inhibition due to downregulation of 

negative mediators in the PI3K pathway such as PTEN. Purple bolded arrows indicate 

adaptive responses following each targeted therapy (e.g. EGFRi, PI3Ki, PARPi, MEKi). 

(B) Engagement of DNA repair pathways to mitigate DNA damage and replication stress. 
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DNA damaging anti-cancer therapies (examples of chemotherapy and PARP inhibition) 

induce activation of DNA integrity sensors ATM/ATR that induce cell cycle arrest and 

active DNA repair pathways. PI3K inhibition promotes DNA damage by depletion of 

nucleoside availability that is required for DNA repair. MEK inhibition represents another 

example that decreases the levels of DNA repair pathway members resulting in elevated 

DNA damage. (C) Stress response pathways feed into kinases that phosphorylate eIF2α to 

induce cap-independent translation of transcription factors that regulate stress homeostasis 

(integrated stress response). For example, BRAF inhibition mediates metabolic stress via 

upregulating the upstream kinase GCN2, while RTK inhibition results in PERK upregulation 

and endoplasmic reticulum (ER) stress. Targeted therapies (e.g. BRAFi) can also result in 

unbalanced generation of reactive oxygen species (ROS) that via the same eIF2α kinases 

engage ROS-mitigation programs that are regulated by transcription factors such as NRF2 

and NFkB. (D) Tumor-immune paracrine signaling following BRAF inhibition that mediates 

immunoevasion (proliferation of pro-tumor M2 macrophages) and reactivation of ERK 

in tumor cells via macrophage-derived VEGF. BRAF inhibition has also been shown 

to reactivate focal adhesion kinase-driven ERK in melanoma cells via cancer associated 

fibroblast-mediated extracellular matrix remodeling. Purple bolded arrows indicate adaptive 

responses resulting from cell-cell communication.
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Figure 3. Strategies to induce tumor cell death by exploiting stress adaptation, accentuating 
existing stress and targeting emergent vulnerabilities in the tumor ecosystem
(A) Example of therapeutic opportunities emerging from therapy-induced stress. PARP 

inhibitors induce DNA damage and replication stress that results in cell cycle arrest and 

engagement of DNA repair pathways. This diagram show strategies involving combination 

therapies to enhance the efficacy of PARP inhibition that increase stress via radiation or 

chemotherapy. In addition, there are multiple approaches to interdict the stress mitigation 

process via 1) blocking anti-apoptotic survival proteins such as BCL-XL, 2) inhibiting 

upstream mediators of DNA repair (RAS/ERK inhibition) or cell cycle checkpoints (ATR), 

3) blocking epigenetic reprograming (HDAC/BET) and 4) stress mitigation programs (e.g. 

anti-oxidant NRF2, NFkB). (B) Targeting emergent opportunities in the tumor ecosystem 

represents another approach to develop rational combination therapies. Tumor cells in 

therapy-resistant tumor ecosystems can be targeted by 1) inhibiting immune checkpoints 

to augment anti-tumor immunity that is mediated via tumor-immune paracrine signaling, 

2) blocking therapy-induced extracellular matrix remodeling that enhances recruitment of 

cytotoxic immune cells, 3) targeting anti-apoptotic signaling that is induced via stromal-

derived cytokines and extracellular matrix remodeling, and 4) blocking angiogenesis to 

normalize blood vessels and enhance immune cell recruitment.
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Figure 4. Potential approach to deliver personalized combination therapies in real time.
Liquid biopsy and tumor samples are collected at diagnosis. A suite of CLIA assays 

are performed to establish the baseline tumor phenotype and genotype of the tumor and 

select an initial therapy. After a short treatment period, a second liquid biopsy and tumor 

samples are collected and re-analyzed. The on-treatment tumor phenotype and genotype is 

established and the therapy is reassessed for one of three scenarios. (1) If sensitivity to 

therapy is suspected, no changes are made in terms of treatment. (2) If targetable adaptive 

responses are induced, a second drug is added to generate a patient-specific combination 

therapy. (3) If the tumor is indifferent to therapy or displays acquired resistance, a new 

treatment will be selected. Importantly, during the whole process, the progression of the 

disease is monitored regularly. In case of progression, new samples are acquired and 

analyzed for therapy reassessment.
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Table 1.

Stresses and stress mitigation pathways that can limit therapeutic activity.

Endogenous 
and therapeutic 
stresses

Master regulators 
of stress mitigation 
pathways

Stress mitigation pathways Examples of therapeutic 
response affected by stress 
mitigation pathways

Ref

Metabolic AMPK, SIRT1, mTOR, 
PHD/HIF system

Oxphos/Glycolysis balance, autophagy, 
mitophagy, mitochondial metabolism, 
lipid metabolism

Metformin, BRAFi, phenformin 73,201,202

Oxidative NRF2, NF-kB, HIF1 Antioxidant programs, metabolic 
reprograming

Radiation therapy, temozolomide, 
gemcitabine

77,203–205

Apoptosis p53, TRAIL BCL2 family balance, epithelial to 
mesenchymal transition, senescence 
phenotype

Doxorubicin, paclitaxel, BCL2i, 
BCL2/XLi, radiation therapy

206–209

Endoplasmic 
reticulum/
proteostatic

GRP78, PERK, IRE1a, 
ATF6

Unfolded protein response, E-
Rassociated degradation, heat shock 
response, proteasome upregulation, 
autophagy

Chemotherapy, tamoxifen, multi-
RTKi

210 

Hypoxia HIFs Hypoxic response, angiogenesis, 
metabolic reprograming, autophagy, 
extracellular matrix remodelling, immune 
suppression

anti-VEGFR, multi-RTKi 211–213

DNA damage/
replication stress

ATM, ATR, CHK1, 
CHK2, RPA, H2AX

Cell cycle checkpoints, DNA repair, 
anti-apoptotic response, replication stress 
response

Gemcitabine, PARPi, 
doxorubicin, cisplatin, radiation 
therapy,

214–216

Immune activation Sting, STAT3, TGFb Reduced antigen presentation, immune 
checkpoint activation

Radiation therapy, PARPi, anti-
PD1, anti-PD-L1

68,217,218
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Table 2 –
Therapeutic opportunities created by adaptive responses to cancer therapies.

Combination therapies are organized based on therapeutic approach and the primary therapy that induced the 

adaptive response.

Therapeutic strategy Primary therapy
Combination 

therapy partner Cancer Type Ref

Exploit tumor rewiring: block bypass pathway 
reactivation 

Blocking signaling reactivation via upstream target 
inhibition MTORi IGF-1Ri breast 111 *

Blocking multiple members of the same kinase family PI3Kαi PI3Kβi breast 110 

Blocking pathway activation via downstream target 
inhibition BRAFi FAKi melanoma

106, 219 *

Blocking pathway activation via downstream target 
inhibition MTORi MAPKi breast 220 *

Interdict stress mitigation programs 

Targeting DNA damage repair checkpoints PARPi ATRi or WEE1i ovarian 126 *

Blocking homologous recombination repair competency PARPi MEKi ovarian 54,130

Targeting anti-oxidant to prevent adaptation to elevated 
oxidative stress PARPi TrxR1i prostate 142 

Inhibiting autophagy to prevent adaption to endoplasmic 
reticulum stress multi-RTKi chloroquine endometrial 84 

Blocking metabolic reprograming CDK4/6i GLS-i
breast& 

colorectal 138 

Inhibiting anti-apoptotic proteins to target multiple stress 
mitigation pathways

MAPKi, PI3Ki, 
HER2i BCL-XLi, MCL-1i multiple 46,116–120,221 *

Preventing upregulation of pathway reactivation by 
targeting transcriptional reprograming HER2i BETi breast 123 

Blocking prosurvival reprogramming by targeting 
transcriptional activity PI3Ki

anti-estrogen 
Receptor breast 222 *

Increase therapy-induced stress 

Overloading DNA damage repair pathways via 
chemotherapy-induced stalled replication forks gemcitabine PARPi lung 148 

Overloading DNA damage repair pathways via 
irradiation radiotherapy PARPi

Ewing sarcoma
149 

Replication stress increased due to decreased nucleotide 
synthesis PI3Ki PARPi

breast cancer
61 

Synergistic cell death via increased reactive oxygen 
species generation EGFRi HDACi lung cancer 223 

Elevated endoplasmic reticulum stress overwhelms 
unfolded protein response pathway EGFRi PDK1i lung cancer 151 

Exploit emergent vulnerabilities in the tumor ecosystem 

Reactivation of CD8+ T cells that were recruited via 
PARPi-induced STING upregulation PARPi anti-PD-L1 multiple 69, 95 *

Targeting macrophages that reactivate ERK in melanoma 
cells via VEGF secretion BRAFi anti-CSF1R melanoma 90 *

Enhancing recruitment of cytotoxic T cells by 
normalized blood vessels

anti-PD-1, anti-
CTLA4

AGTR1i, AGTR2i breast cancer 158, 224 *

Nat Rev Cancer. Author manuscript; available in PMC 2022 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Labrie et al. Page 37

*
References with clinical evidence of adaptive responses to the primary therapy.
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