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Abstract

Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) 

plays a critical role in rodent models of excessive alcohol drinking. However, the source of CRF 

acting in the CeA during alcohol withdrawal remains to be identified. In the present study, we 

hypothesized that CeA CRF interneurons may represent a behaviorally relevant source of CRF 

to the CeA increasing motivation for alcohol via negative reinforcement. We first observed that 

Crh mRNA expression in the anterior part of the mouse CeA correlates positively with alcohol 

intake in C57BL/6J males with a history of chronic binge drinking followed by abstinence 

and increases upon exposure to chronic intermittent ethanol (CIE) vapor inhalation. We then 

found that chemogenetic activation of CeA CRF neurons in Crh-IRES-Cre mouse brain slices 

increases gamma-aminobutyric acid (GABA) release in the medial CeA, in part via CRF1 receptor 

activation. While chemogenetic stimulation exacerbated novelty-induced feeding suppression 

(NSF) in alcohol-naïve mice, thereby mimicking the effect of withdrawal from CIE, it had 

no effect on voluntary alcohol consumption, following either acute or chronic manipulation. 

Furthermore, chemogenetic inhibition of CeA CRF neurons did not affect alcohol consumption 

or NSF in chronic alcohol drinkers exposed to air or CIE. Altogether, these findings indicate that 
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CeA CRF neurons produce local release of GABA and CRF and promote hyponeophagia in naïve 

mice, but do not drive alcohol intake escalation or negative affect in CIE-withdrawn mice. The 

latter result contrasts with previous findings in rats and demonstrates species specificity of CRF 

circuit engagement in alcohol dependence.

Introduction

Alcohol use disorders (AUDs) represent a spectrum of pathological patterns of alcoholic 

beverage consumption that affect 6.2% of the adult population in the United States of 

America1 and more than 100 million people worldwide2. AUDs are not only characterized 

by the intake of excessive amounts of alcohol but also by the emergence of a negative 

emotional state (e.g., anxiety, irritability) upon withdrawal. While the motivation to drink 

alcohol is initially driven by the desire to experience the pleasurable effects of intoxication 

(positive reinforcement), it becomes progressively driven by the need for relief from the 

negative emotional state associated with withdrawal (negative reinforcement)3. Excessive 

alcohol drinking (i.e., beyond intoxication threshold) and negative affect during withdrawal 

can be triggered in several mouse and rat models, which has enabled the dissection of 

underlying neurobiological mechanisms4–8.

Multiple pharmacological and genetic studies have highlighted that recruitment of 

the extrahypothalamic corticotropin-releasing factor (CRF, encoded by the Crh gene) 

system plays a pivotal role in the emergence of negative reinforcement in alcohol-

withdrawn animals, whereby activation of CRF type 1 receptors (CRF1) contributes to 

the excessive drinking, heightened anxiety, and stress sensitization characterizing alcohol 

dependence3, 9–12. In particular, CRF is released in the central nucleus of the amygdala 

(CeA) during alcohol withdrawal13 and blockade of CRF1 signaling in the CeA reduces 

the anxiogenic-like effect of alcohol withdrawal14, 15, dependence-induced increase in 

alcohol self-administration16, 17, as well as heavy binge drinking18. CRF1 in the CeA also 

mediates the elevation of gamma-aminobutyric acid (GABA) dialysate induced by alcohol 

dependence19 and CRF1 overexpression in the CeA potentiates stress-induced reinstatement 

of alcohol seeking20.

Despite this wealth of converging evidence, the specific neurons responsible for the release 

of CRF in the CeA during alcohol withdrawal have not been identified. In the present study, 

we tested the hypothesis that these neurons are intrinsic to the CeA rather than arising 

from an extrinsic source. This hypothesis was supported by evidence that Crh is upregulated 

in the CeA of alcohol-dependent and post-dependent rats19, 21, 22, along with our own 

findings (reported here) that Crh expression in the anterior part of the CeA correlates with 

alcohol intake in mice with a history of chronic alcohol drinking followed by abstinence and 

increases upon exposure to chronic intermittent ethanol (CIE) vapor inhalation. Importantly, 

psychological stress also upregulates Crh in the CeA23–25 and CRF synthesis in the CeA 

plays a critical role in mediating anxiety-like behavior26, 27. In addition, CRF1-expressing 

neurons in the CeA receive direct input from local interneurons28 and CeA CRF neurons 

provide both local inhibitory GABA and excitatory CRF1-mediated signals to other CeA 

neurons in Crh-Cre rats29, which supports the notion that CRF can be released from intrinsic 
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CeA neurons. Furthermore, studies in Crh-Cre rats have recently shown that chemogenetic 

stimulation of CeA CRF neurons elicits anxiety-like behavior30, 31, while their optogenetic 

inhibition reduces escalated alcohol self-administration in alcohol-dependent rats32. In the 

mouse, CeA CRF neurons are more active than their non-CRF neighbors during repeated 

alcohol binge drinking33.

According to the hypothesis that CeA CRF neurons can release CRF locally, we predicted 

that chemogenetic stimulation of mouse CeA CRF neurons would replicate cellular and 

behavioral hallmarks of alcohol dependence. While this manipulation produced local CRF1-

mediated GABA release and elicited signs of negative affect resembling those seen during 

alcohol withdrawal, it did not increase voluntary alcohol consumption. Furthermore, their 

chemogenetic inhibition did not reverse ethanol intake escalation in alcohol-dependent mice. 

Accordingly, our data suggest that contrary to reports in rats, CeA CRF neurons are neither 

sufficient nor necessary to drive excessive alcohol drinking in mice.

Materials and Methods

Animals

C57BL/6J males were purchased from the Jackson Laboratories (stock #000664) or from 

Scripps Research rodent breeding colony. Crh-IRES-Cre breeders were obtained from The 

Jackson Laboratory (B6(Cg)Crhtm1(cre)Zjh/J, stock # 012704,34). All Crh-IRES-Cre mice 

used for experimentation were heterozygous males. Additional details are provided in the 

Supplement. All procedures adhered to the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals and were approved by the Institutional Animal Care and Use 

Committee of Scripps Research.

Viral vectors

Adeno-associated viral serotype 2 (AAV2) vectors encoding the hM3Dq (excitatory) or 

hM4Di (inhibitory) designer receptors35 fused to the red fluorescent protein mCherry, 

under the control of the human synapsin promoter and in a Cre-dependent manner36, were 

obtained from the Vector Core at the University of North Carolina (UNC) at Chapel Hill or 

from Addgene. Vectors were injected bilaterally into the anterior part of the CeA (AP −0.9 

mm from bregma, ML ± 2.8–3.0 from the midline, DV −4.5 mm from the skull). Additional 

details are provided in the Supplement.

Experimental cohorts

In situ hybridization data were collected from two cohorts of C57BL/6J mice subjected 

to chronic alcohol drinking and alcohol vapor inhalation, respectively. For chemogenetic 

stimulation, a first cohort of Crh-IRES-Cre mice was used for electrophysiological 

recordings. A second cohort was tested in the elevated plus-maze (EPM), social approach, 

and novelty-suppressed feeding (NSF) assays, with at least one week between tests; these 

mice were then single-housed and tested for alcohol drinking. A third cohort was tested 

for digging and marble burying, and their brains were used to quantify c-Fos induction 

one week later. A fourth cohort was used to confirm the phenotype observed in the NSF 

test and included negative control mice; these mice were also tested for locomotor activity 
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and fasting-refeeding in the home cage. For chemogenetic inhibition, electrophysiological 

validation was conducted in a first cohort of Crh-IRES-Cre mice and alcohol dependence 

was induced in a second cohort. The effect of CP376395 on alcohol drinking was tested in a 

separate cohort of C57BL/6J mice exposed to air or CIE.

Detailed methods for in situ hybridization, electrophysiology, immunohistochemistry, 

alcohol exposure, and behavioral testing are provided in the Supplement.

Statistical analysis

Data analysis was performed in Statistica 13.3 (TIBCO Software Inc.). The correlation 

of Crh in situ hybridization signal with ethanol intake was evaluated using Pearson’s r. 

The effect of alcohol vapor inhalation on Crh signal was analyzed by one-way analysis 

of variance (ANOVA) followed by Dunnett’s comparisons to the Air group. The effect of 

clozapine-N-oxide (CNO) on c-Fos counts, firing rate, and sIPSC parameters was analyzed 

using paired two-tailed Student’s t-tests. The effect of CNO combined with R121919 was 

analyzed by repeated measures (RM) ANOVA and Pearson’s correlation. CNO-responsive 

cells were identified by comparing the distribution of inter-event intervals at baseline and 

after CNO application using a Kolmogorov-Smirnov test. In hM3Dq-expressing mice, one-

way RM-ANOVAs were used to analyze the effect of CNO on locomotor activity and 

ethanol intake (acute regimen). The effects of CNO on ethanol intake (chronic regimen), 

social approach, hyponeophagia, and refeeding were analyzed by two-way RM-ANOVA. 

Other behavioral endpoints were analyzed using unpaired two-tailed Student’s t-tests. 

Behavioral measures obtained in hM4Di-expressing mice were analyzed by two-way RM-

ANOVA. Tukey posthoc tests were conducted when relevant. The effect of CP376395 was 

analyzed by two-way RM-ANOVA followed by Dunnett’s comparisons to vehicle. Data are 

shown as mean ± s.e.m. on the graphs.

Results

Crh expression in the anterior part of the CeA correlates with ethanol intake and increases 
upon CIE

As described previously using CRF immunostaining and a GFP reporter strain, CRF 

expression varies along the rostro-caudal extent of the mouse CeA37, 38. We confirmed this 

observation using chromogenic in situ hybridization to label Crh mRNA (Fig. 1A), as can 

also be seen in the Allen Mouse Brain Atlas (https://mouse.brain-map.org, experiment 292). 

At the most anterior level (≈ −0.8 mm from bregma), a V-shaped cluster of CRF neurons is 

found at the transition between the interstitial nucleus of the posterior limb of the anterior 

commissure (IPAC) and the CeA. At midlevel (≈ −1.2 mm from bregma), CRF neurons 

are more sparsely distributed, mostly within the lateral aspect of the CeA, and to a smaller 

extent within the medial CeA. At a more posterior level (≈ −1.6 mm from bregma), CRF 

neurons are tightly packed within the lateral CeA, with again a few cell bodies found in the 

medial CeA.

Semi-quantitative measures of Crh expression at these three antero-posterior levels were 

obtained in C57BL/6J males subjected to chronic alcohol binge drinking for nine weeks 
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and euthanized four weeks after their last drinking session. Average ethanol intake during 

the last drinking week ranged between 1.6 and 5.8 g/kg per 2-h session (Fig. 1B). Crh 
expression in the most anterior part of the CeA (bregma −0.8 mm, including IPAC) 

correlated positively with the average ethanol intake measured during the last week of 

drinking (r=0.60, p=0.02, Fig. 1C). No significant correlation was observed at more 

posterior levels of the CeA (bregma −1.2 mm: r=0.13, p=0.65; bregma −1.6 mm: r=0.33, 

p=0.23; Fig. 1C).

Additional analyses were conducted to determine whether Crh expression in the anterior 

CeA responded to alcohol intoxication or withdrawal. C57BL/6J males were exposed to a 

single bout (Acute) or eight bouts of 16 h of ethanol vapor inhalation. Mice subjected to 

eight bouts were euthanized either immediately after vapor exposure (Chronic) or following 

72 h withdrawal (Withdrawal). Crh expression at bregma −0.8 mm was significantly higher 

in Chronic and Withdrawal mice (Fig. 1D; main effect of group: F3,13=4.5, p=0.022; posthoc 
comparisons to Air group: p=0.014 and p=0.035, respectively).

Based on these results, the anterior level of the CeA was targeted for viral vector infusions in 

subsequent chemogenetic experiments.

Validation of chemogenetic approach to stimulate CeA CRF neurons

We used Cre-dependent expression of the excitatory designer receptor hM3Dq in Crh-IRES-

Cre males to analyze the effects of CeA CRF neuron stimulation on CRF release, alcohol 

drinking and affective behaviors. We first assessed the specificity of Cre activity distribution 

in the CeA of Crh-IRES-Cre mice and verified that CNO activated hM3Dq-expressing cells 

both in vivo and in brain slices.

We analyzed the overlap between Crh and tdTomato mRNAs in CeA sections of Crh-IRES-

Cre;Ai9 mice by double in situ hybridization (Fig. 2A). We found that 86.3 ± 4.9 % of 

tdTomato+ neurons expressed Crh (a measure of reporter fidelity), while 64.0 ± 5.4 % 

of Crh+ neurons expressed tdTomato (a measure of reporter penetrance). Consistent with 

these results, in Crh-IRES-Cre mice injected with an AAV2-hSyn-DIO-hM3Dq-mCherry 

vector in the CeA, mCherry-immunolabeled cell bodies showed the same distribution as 

Crh mRNA (Fig. 2B, compare with Fig. 1A left panel and Fig. 2A). Mice were perfused 

90 min following i.p. administration of either vehicle or CNO (5 mg/kg) and their brains 

were processed for immunohistochemistry. mCherry immunoreactivity was used to label 

hM3Dq-expressing cells and c-Fos immunoreactivity was used as a marker of cellular 

activation (Fig. 2C–D). As expected, CNO increased the number of c-Fos+ cells selectively 

in the subpopulation expressing hM3Dq (t11=4.1, p=0.002), but it did not affect the number 

of c-Fos+ cells among mCherry-negative cells (t11=−0.1, p=0.91; Fig. 2D, left). Upon CNO 

administration, the proportion of active (c-Fos+) hM3Dq-expressing cells increased about 

4-fold (t11=6.3, p<0.0001; Fig. 2D, right).

In another cohort of Crh-IRES-Cre mice injected in the CeA with a Cre-dependent vector 

encoding hM3Dq-mCherry, action potentials were recorded from mCherry-positive (i.e., 

hM3Dq-expressing) CeA neurons (Fig. 3A–B). As expected, CNO (500 nM) application 

significantly increased their firing rate (t7=−6.5, p=0.0003; Fig. 3B).
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Stimulation of CeA CRF neurons increases local GABAergic transmission via activation of 
CRF1 receptors

We first evaluated the possibility that CeA CRF neurons release CRF in the medial CeA, 

where both CRF and ethanol are known to increase GABA release via the activation of 

CRF1 receptors39. Voltage-clamp recordings of spontaneous inhibitory postsynaptic currents 

(sIPSC) were obtained from mCherry-negative neurons (n=33 neurons from 11 mice) 

located in the medial CeA before and during application of CNO (500 nM). Overall, CNO 

produced a significant increase in sIPSC frequency (Fig. 3C–D, t32=−3.5, p=0.001), but had 

no effect on amplitude (Fig. 3E, t32=−1.5, p=0.16), rise time (Fig. 3F, t32=−0.8, p=0.45) 

or decay time (Fig. 3G, t32=−0.2, p=0.83). However, the response to CNO was variable 

between cells. Within-cell analysis of the cumulative distribution of inter-event intervals 

indicated that sIPSC frequency was significantly increased in 19 cells (blue bars in Fig. 

3D–G), reduced in 3 cells, and unchanged in the remaining 11 cells (p>0.05). In the subset 

of neurons that responded with increased sIPSC frequency (t18=−7.6, p<0.0001), there was 

still no effect of CNO on sIPSC amplitude (t18=−1.5, p=0.15), rise time (t18=−0.6, p=0.53) 

and decay time (t18=−0.7, p=0.52).

In a subset of CNO-sensitive neurons (n=10), the CRF1 antagonist R121919 (1 μM) was 

applied with CNO to determine whether the effect of CNO on sIPSC frequency was 

in part mediated by CRF1 activation (see Fig. 3A for schematic representation of tested 

hypothesis). There was a significant main effect of treatment (Fig. 3H, F2,18=6.1, p=0.01) 

reflecting the increase in sIPSC frequency induced by CNO and partial reversal of the effect 

of CNO by R121919. Posthoc analysis revealed a significant difference between baseline 

and CNO (p=0.008). Furthermore, R121919 exerted a stronger inhibition in cells with higher 

sIPSC frequency, as indicated by a significant correlation between the reversal effect of 

R121919 (expressed as frequency change after addition of R121919) and baseline frequency 

(Fig. 3I, r=−0.90, p<0.001).

Altogether, these data indicate that chemogenetic stimulation of mouse CeA CRF neurons 

increases GABA release onto local medial CeA neurons and that this effect is at least 

partially mediated by CRF1 activation.

Stimulation of CeA CRF neurons does not affect alcohol drinking

These results, combined with the fact that CRF1 signaling in the CeA drives excessive 

alcohol intake in rodent models of binge-like drinking and dependence16–18, led us to 

hypothesize that chemogenetic stimulation of CeA CRF neurons (Fig. 4A) may promote 

voluntary alcohol consumption. To test this hypothesis, the effect of CNO on ethanol intake 

during 2-h ethanol (15% v:v)/water two-bottle choice (2BC) drinking sessions was tested 

under different conditions (see Fig. 4B for experimental timeline).

Acute CNO (1, 5 and 10 mg/kg) administration (30 min prior to drinking session) did not 

affect ethanol intake (Fig. 4C, F3,39=1.6, p=0.21). We then attempted to replicate the pattern 

of CRF release in the CeA elicited by chronic intermittent ethanol (CIE) exposure. In the 

CIE-2BC model, weeks of 2BC (Mon-Fri) are alternated with weeks of CIE consisting of 

four 16-h periods of ethanol vapor inhalation separated by 8-h periods of air inhalation 
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(Mon-Fri)4. Extracellular CRF levels are known to gradually increase in the amygdala 

of rats withdrawn from chronic alcohol exposure starting about 6 h after the onset of 

withdrawal13. Accordingly, to replicate the predicted pattern of CRF release experienced 

by CIE-exposed mice, we injected CNO (5 mg/kg) once per day (Tue-Fri) and conducted 

2BC sessions on alternate weeks (Fig. 4B). In the CIE-2BC model, CIE-exposed mice 

typically start increasing their voluntary ethanol intake after 1–3 weeks of CIE exposure4, 40. 

However, alternating weeks of repeated CNO administration with weeks of 2BC for three 

rounds did not affect ethanol intake compared to mice repeatedly injected with vehicle (Fig. 

4D). A two-way ANOVA of weekly average intakes revealed no effect of time (F3,36=1.4, 

p=0.26), no effect of treatment (F1,36=0.01, p=0.91) and no time × treatment interaction 

(F3,36=0.3, p=0.86). We examined whether repeated CNO administration may produce a 

delayed effect but there was again no effect of treatment on ethanol intake following 3 weeks 

of deprivation (Fig. 4E, t12=−1.0, p=0.33). Finally, we exposed the mice to a single week of 

CIE, which was not sufficient to alter ethanol intake in subsequent 2BC sessions (Tue-Fri). 

We then tested the ability of acute CNO (5 mg/kg) administration to sensitize the mice and 

increase their post-vapor ethanol intake. There was again no significant effect of CNO (Fig. 

4F, t6=−0.2, p=0.87).

In conclusion, chemogenetic stimulation of mouse CeA CRF neurons is not sufficient to 

increase ethanol drinking following acute or chronic administration, or in combination with 

CIE exposure.

Stimulation of CeA CRF neurons exacerbates hyponeophagia

We then examined whether chemogenetic stimulation of CeA CRF neurons (Fig. 5A) may 

elicit anxiety-like behavior. CNO (1 or 5 mg/kg) did not affect locomotor activity in a 

familiar environment (Fig. 5B, F2,16=0.9, p=0.44). The dose of 5 mg/kg was used in all other 

tests. In the digging assay (Fig. 5C), CNO tended to increase the total duration of digging 

(t10=−2.0, p=0.07), but had no effect on marble burying (t10=−0.5, p=0.62). In the EPM 

(Fig. 5D), CNO had no effect on the total distance traveled (t10=0.1, p=0.94), the number of 

entries on open arms (t10=0.4, p=0.73) or the time spent on open arms (t10=−1.5, p=0.16). 

In the social approach test (Fig. 5E), there was a significant main effect of compartment 

(F2,24=29.9, p<0.0001), reflecting a preference for the chamber containing a stranger mouse 

compared to both the center and empty cup compartments (p<0.0001 for both posthoc 
comparisons). CNO did not alter this preference, as reflected by a lack of treatment effect 

(F1,12=1.5, p=0.24) and compartment × treatment interaction (F2,24=0.2, p=0.80). There was 

also no effect of CNO on the number of transitions between compartments (t12=0.6, p=0.56), 

in agreement with the lack of effect of CNO on locomotor activity.

In the NSF test (Fig. 5F), it took longer for the food-deprived mice to start eating in the 

arena than in their home cage (main effect of environment: F1,12=57.1, p<0.0001) and CNO 

selectively prolonged the arena latency (environment × treatment interaction: F1,12=8.3, 

p=0.01; posthoc comparison Arena-Vehicle vs Arena-CNO: p=0.0006; Home cage-Vehicle 

vs Home cage-CNO: p=1.00). We replicated this finding in an independent cohort, which 

also included control mice (Cre-dependent tdTomato expression, no hM3Dq). In this second 

replicate (Fig. 5G), CNO again increased the latency to start eating the pellet in the arena 
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but not the home cage in hM3Dq-expressing mice (environment × treatment interaction: 

F1,6=6.9, p=0.04; posthoc comparison Arena-Vehicle vs Arena-CNO: p=0.007; Home cage-

Vehicle vs Home cage-CNO: p=1.00), and it had no effect in Control mice (main effect of 

environment: F1,6=32.1, p=0.001; main effect of treatment: F1,6=1.0, p=0.36; environment 

× treatment interaction: F1,6=0.5, p=0.50). To verify that the anxiogenic-like effect of CNO 

in the NSF test was not related to reduced appetite, we further examined the effect of CNO 

on feeding in a home cage setting. CNO had no effect on food consumption after 24-h 

deprivation at any of the time points examined (Fig. 5H, F1,7=0.09, p=0.77).

In summary, chemogenetic stimulation of mouse CeA CRF neurons promotes 

hyponeophagia without altering appetite. The anxiogenic-like effect of this manipulation 

is not detected in other assays of anxiety-like behavior.

Chemogenetic inhibition of CeA CRF neurons does not reverse alcohol dependence 
phenotypes

Although stimulating CeA CRF neurons was not sufficient to increase alcohol drinking, 

this population might still be necessary to ethanol intake escalation in the CIE-2BC model. 

We employed chemogenetic inhibition to test this hypothesis. Crh-IRES-Cre mice were 

injected in the CeA with a Cre-dependent vector encoding hM4Di-mCherry (Fig. 6A). CNO 

reduced the frequency of events recorded in loose cell attached configuration selectively 

in hM4Di-expressing cells, thereby validating our approach (Fig. 6B, mCherry+: t5=−6.3, 

p=0.003; mCherry-: t4=0.5, p=0.68). The effect of CNO on CIE-induced behaviors was then 

tested (see Fig. 6C for experimental timeline). As expected, withdrawal from CIE increased 

voluntary alcohol consumption (Fig. 6D, main effect of CIE: F1,18=18.2, p<0.001), digging 

activity (Fig. 6E, F1,16=4.1, p=0.06), and hyponeophagia (Fig. 6F, F1,14=9.6, p=0.008). 

However, there was no significant effect of CNO (ethanol intake: F2,36=0.8, p=0.46; digging 

duration: F1,16=2.4, p=0.14; arena latency: F1,16=0.001, p=0.97) or CIE × CNO interaction 

(ethanol intake: F2,36=1.7, p=0.19; digging duration: F1,16=0.8, p=0.39; arena latency: 

F1,16=1.0, p=0.35) on either measure.

Given the lack of effect of chemogenetic stimulation or inhibition of CeA CRF neurons, we 

sought to verify the involvement of CRF1 signaling in the control of alcohol drinking under 

our experimental conditions. As expected, systemic administration of the CRF1 antagonist 

CP376395 dose-dependently reduced ethanol intake during 2-h 2BC sessions in both air- 

and CIE-exposed C57BL/6J mice (Fig, 6G; main effect of dose: F2,30=20.5, p=0.000002; 

main effect of CIE: F1,30=17.3, p=0.0008; dose × CIE interaction: F2,30=0.17, p=0.85). 

Posthoc analysis indicated a significant effect of the 15 mg/kg dose (p=0.00001), but not 5 

mg/kg (p=0.69).

In conclusion, chemogenetic inhibition of mouse CeA CRF neurons does not reverse 

behavioral hallmarks of alcohol dependence in mice, and it does not reduce alcohol drinking 

or hyponeophagia in moderate drinkers despite pharmacological evidence of a significant 

role of CRF1 signaling in alcohol intake.
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Discussion

Our study first shows that chronic binge-like drinking and repeated alcohol vapor inhalation 

both elevate Crh expression at the most anterior level of the mouse CeA, suggesting that 

anterior CeA CRF neurons may be functionally involved in the behavioral consequences 

of chronic intermittent alcohol exposure. However, these neurons are neither necessary 

nor sufficient to drive ethanol intake escalation in mice. Their chemogenetic stimulation 

increases GABA release onto medial CeA neurons and exacerbates hyponeophagia but does 

not affect voluntary alcohol consumption. Furthermore, their chemogenetic inhibition does 

not alter ethanol intake or hyponeophagia in alcohol-dependent or non-dependent mice. 

The latter finding is at odds with the effect of optogenetic manipulation in rats32, which 

highlights species differences in the function of CeA CRF circuits. The reduction in alcohol 

intake elicited by CP376395 is consistent with the effects of systemic CRF1 blockade on 

binge-like drinking previously reported in mice and confirms that CRF1 signaling promotes 

alcohol consumption under our experimental conditions12, 18, 41–43.

While multiple studies had previously demonstrated Crh upregulation in the CeA of 

animals withdrawn from chronic alcohol exposure19, 21, 22, 44, most of them did not 

consider anteroposterior level in their analysis. In rats withdrawn from CIE for 2 h, CRF 

immunoreactivity selectively increased in the most posterior area of the CeA17. In contrast, 

we found that the impact of chronic binge drinking on Crh expression was specific to the 

most anterior level of the CeA – the area that shows the highest density of CRF-producing 

neurons in mice while most CRF-expressing neurons are located at middle and posterior 

levels in rats37. Furthermore, CIE also increased Crh expression at this level and the effect 

persisted after 72 h withdrawal. These observations indicate that the anatomical organization 

of the CeA CRF system as it relates to alcohol sensitivity differs between rats and mice.

The penetrance of Cre activity in CeA CRF neurons was lower in Crh-IRES-Cre mice (64%) 

than in Crh-Cre rats (99%), which may also explain differential experimental outcomes in 

the two species. However, our quantification by in situ hybridization may have been less 

sensitive than the method used in rats (immunohistochemistry, confocal imaging at 63x 

and 3D reconstruction)29. Previous characterization of the distribution of Cre activity in the 

amygdala of Crh-IRES-Cre;Ai14 mice by immunohistochemistry concluded that the pattern 

“largely recapitulated” the distribution of CRF, although no quantification was presented45. 

We found that the fidelity of Cre activity for CeA CRF neurons was reasonably high (86% - 

which may again be an underestimate), confirming that the cellular and behavioral effects of 

CNO reported in the present study result, for the most part, from the activation of CeA CRF 

neurons.

There was no effect of CeA CRF neuron stimulation on the overall activity of other 

CeA neurons (as indexed by c-Fos expression in mCherry-negative CeA neurons). This 

observation contrasts with the effect of the same manipulation in Crh-Cre rats, where robust 

c-Fos induction was also detected in non-CRF neurons of the medial and lateral CeA 

and was mediated by CRF1 activation29. This discrepancy could relate to the differential 

anatomy of the CRF system, with the dense cluster of CRF neurons at the junction of the 

IPAC and anterior CeA being unique to mice and possibly exerting a stronger inhibitory 
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control over the remainder of the CeA than the more posterior CRF neurons. Consistent with 

this hypothesis, the connectivity of CeA CRF neurons is species-specific, as local synapses 

are predominant in mice46, while long-range projections to the BNST, lateral hypothalamus 

and parabrachial nucleus are robust in rats30, 32. Alternatively, the discrepancy may stem 

from a differential excitatory/inhibitory signaling balance between the two species, whereby 

a higher ratio of GABA to CRF may be released in mice compared to rats, inhibitory 

neuromodulators may be co-released to a larger extent in mice, or inhibitory signaling 

may override excitatory signaling via mouse-specific postsynaptic mechanisms. Of note, the 

GABA release induced by CNO likely reduced the activity of neurons directly contacted 

by hM3Dq-expressing neurons but c-Fos immunolabeling is not well suited to detect such 

inhibition owing to low baseline expression of this immediate early gene.

Chemogenetic stimulation of CeA CRF neurons triggered GABA release onto a subset 

of medial CeA neurons, as reflected by increased sIPSC frequency in response to CNO. 

This result is consistent with the ability of optogenetic stimulation of CeA CRF terminals 

to evoke IPSCs in a subset of CeA neurons in Crh-Cre rats and mice29, 46. The CNO 

insensitivity of some medial CeA mCherry-negative ties in with the notion that all medial 

CeA cells may not be contacted by CRF (i.e., hM3Dq-expressing) neurons. Combined with 

the lack of activation of mCherry-negative CeA cell bodies we observed with c-Fos labeling, 

our data indicate that mouse CeA CRF neurons release GABA from their own terminals 

(given that CeA CRF neurons are GABAergic47) or possibly stimulate GABA release from 

extrinsic afferents, but not from local non-CRF interneurons as may be the case in rats (see 

discussion above). The ability of R121919 to reverse this increase in GABA release in cells 

with high baseline release is consistent with previous work showing that exogenous CRF 

acts at presynaptic CRF1 receptors to increase GABA release in the mouse CeA39. We chose 

to focus on inhibitory transmission as it provides a consistent readout of CRF1 signaling 

in both the rat and mouse CeA, while CRF effects on excitatory transmission are more 

complex, at least in rats48–50. Relevant to the present study, although ethanol can increase 

glutamate release in the mouse and rat CeA and this action requires activation of CRF 

receptors in both species, CeA CRF neurons do not mediate this effect in the mouse50, 51.

The effect of chemogenetic stimulation of CeA CRF neurons on anxiety-like behavior 

appears to be species- and assay-dependent. While this manipulation did not affect mouse 

EPM behavior in the present study, it reduces open arm exploration in rats30, 31. Previous 

studies in Crh-IRES-Cre mice also showed that chemogenetic activation of CeA CRF 

neurons increases immobility in the EPM (although this may not necessarily translate into 

reduced time spent on open arms) and optogenetic activation of the CeA CRF projection to 

the locus coeruleus reduced exploration of open sections of an elevated zero-maze52, 53. We 

therefore anticipated that activating CeA CRF neurons would reduce open arm exploration 

in the EPM, but it had no effect. It is possible that other projections of CeA CRF neurons 

oppose the anxiogenic-like effect of the coerulear projection, resulting in a lack of EPM 

phenotype in the present study.

It is important to note, however, that mice and rats can manifest negative affect in different 

ways, even when undergoing a similar aversive experience. For instance, while it has been 

repeatedly shown that rats withdrawn from chronic alcohol exposure exhibit anxiety-like 
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behavior in the EPM54–61, a similar phenotype has been difficult to detect in mice using the 

same assay62. However, negative affect can be captured in alcohol-withdrawn mice using 

alternative assays. Most relevant to the present study, C57BL/6J males display increased 

digging activity and exacerbated hyponeophagia, but unaltered light-dark box exploration 

and social interaction, when tested 3–10 days into withdrawal from CIE8, 63–67. The latter 

data are consistent with our observation that chemogenetic stimulation of CeA CRF neurons 

in mice exacerbates hyponeophagia and tends to increase digging activity but has no effect 

in the EPM and social approach tests. However, chemogenetic inhibition of CeA CRF 

neurons failed to reverse the exacerbated digging and hyponeophagia of CIE-withdrawn 

mice, discounting a functional implication of these neurons in withdrawal-induced negative 

affect. Altogether, our results indicate that mouse CeA CRF neurons have the capacity to 

drive hyponeophagia but do not contribute to the hyponeophagic phenotype associated with 

CIE withdrawal. Based on the molecular dissection of the anxiety-like behavior driven by 

CeA CRF neurons in rats, the NSF phenotype we observed in alcohol-naïve mice may 

result from the combined release of CRF and dynorphin31. Furthermore, although our 

electrophysiological results demonstrated local GABA and CRF release upon activation of 

CeA CRF neurons, it is possible that the effect of CNO in the NSF assay is driven by CeA 

CRF neurons projecting outside of the CeA. There is, to the best of our knowledge, no 

experimental approach currently available to target CRF neurons intrinsic to the CeA while 

sparing CRF neurons projecting to other regions.

We had hypothesized that CeA CRF neurons would not only drive negative affect but 

also increase alcohol drinking by mimicking negative reinforcement-driven escalation 

of alcohol self-administration elicited by CIE68. However, neither acute nor chronic 

chemogenetic stimulation of CeA CRF neurons altered alcohol intake in mice given 

limited access to alcohol. Furthermore, chemogenetic inhibition failed to reduce ethanol 

intake in alcohol-dependent or non-dependent mice. This observation contrasts with the 

ability of optogenetic inhibition of the same neuronal population to selectively reduce 

escalated alcohol self-administration in CIE-exposed rats32. This discrepancy demonstrates 

a differential involvement of CeA CRF neurons in the control of ethanol intake in mice vs. 

rats. Our results, combined with the prior demonstration that intra-CeA CRF1 antagonism 

reduces alcohol consumption in binge drinking and CIE-exposed mice16, 18, indicate that an 

extrinsic source of CRF to the CeA promotes alcohol drinking in mice. Future work will aim 

to elucidate the identity of behaviorally relevant CRF-containing projections to the CeA and 

their recruitment by CIE exposure.

A recent study demonstrated that a subset of CeA CRF neurons is activated prior to alcohol 

licks in binge-drinking mice33. The inability of chemogenetic inhibition to reduce the 

alcohol intake of Air or CIE mice indicates that these neurons may encode the anticipation 

of drinking but are not required for moderate or excessive consumption. Alternatively, there 

may be another subset of CeA CRF neurons exerting an opposing influence on alcohol 

consumption, such that concomitant inhibition of both subsets in our study may have 

neutralized the role of the pre-lick activated subset.

Aside from fear learning and anxiety, CeA neurons have also been implicated in feeding 

control. Specifically, lateral CeA PKCδ-positive neurons suppress food intake69. In the NSF 
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test, we found that chemogenetic stimulation of CeA CRF neurons increased the latency 

of food-deprived mice to start eating in an anxiogenic arena but did not affect their home 

cage feeding. This observation is consistent with the minimal overlap between mouse CeA 

populations expressing PKCδ versus CRF46, 70. Interestingly, CRF suppresses feeding when 

administered in the brain and CRF signaling mediates the anorexigenic effect of several 

stressors (see71 for review). While CeA CRF neurons can be recruited by stress (72, 73, but 

see74), our findings indicate that their activity is not sufficient to inhibit feeding.

A general limitation of our study is that mice from each cohort were subjected to multiple 

behavioral tests and CNO injections. We cannot rule out that potential effects of CNO may 

have been occluded by prior testing, despite the 1-week interval between tests. However, this 

concern is mitigated by the robust effect of CNO on hyponeophagia in hM3Dq-expressing 

mice, which was observed after multiple injections. It is also possible that significant effects 

of CNO would have been detected in hM4Di-expressing CIE-withdrawn mice if we had 

used a higher dose of CNO.

Altogether, our results indicate that excitation of CeA CRF neurons is sufficient to produce 

negative affect but not to increase the motivation to consume alcohol in mice. Furthermore, 

although CeA neurons are known to be hyperactive during CIE withdrawal in both rats and 

mice32, 75–77, we found that the CRF-expressing subset does not contribute to the behavioral 

phenotypes of CIE withdrawal in mice. Their lack of involvement in CIE-induced ethanol 

intake escalation contrasts with their role in rats and indicates that observations made in one 

species may not translate to another species. This consideration is relevant to the targeting 

of CRF signaling for the treatment of alcohol use disorders in humans, as the differential 

engagement of central amygdala CRF neurons in the control of alcohol consumption in 

two phylogenetically close species (rats and mice) likely extends to a more distantly related 

species (humans) and provides a possible explanation for the disappointing results of clinical 

trials that were motivated in large part by the promises of preclinical studies conducted in 

rats78, 79. Relevant to the latter point, available evidence points to substantial discrepancies 

in the anatomical localization and molecular identity of amygdala CRF neurons between 

humans and rodents. Notably, in the human amygdala, CRH transcripts are enriched in 

a subpopulation of inhibitory neurons that expresses high levels of CALB2 (calretinin), 

CCK, and VIP transcripts80. Both CRF- and calretinin-immunoreactive cells are scarce in 

the human central nucleus81, 82. Moreover, CCK/Cck and VIP/Vip do not co-localize with 

CRF/Crh in the rodent amygdala37, 83, 84.

Altogether, our findings, combined with the ability of intra-CeA CRF1 antagonism to 

reduce ethanol intake in C57BL/6J mice, suggest that CRF acting in the mouse CeA to 

promote alcohol drinking arises from an extrinsic source16, 18. Future work will be needed 

to identify other mechanisms contributing to alcohol drinking escalation in CIE-exposed 

mice, including additional neural circuits releasing CRF in the CeA, additional projection 

targets of CeA CRF neurons, as well as non-CRF signaling pathways that may potentiate the 

influence of CRF transmission on alcohol drinking.
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Figure 1. Crh mRNA levels in the anterior CeA increase upon chronic intermittent alcohol 
exposure.
A. Representative images of Crh mRNA distribution at three antero-posterior levels of the 

mouse CeA (scale bars = 200 μm) and corresponding brain atlas diagrams highlighting a 

V-shaped cluster of CRF neurons at the junction of the anterior CeL and IPAC (left panels), 

and scattered CRF neurons at more posterior levels of the CeL (middle and right panels). 

Brain atlas diagrams were reproduced from85. BLA, basolateral amygdaloid nucleus; CeC, 

capsular part of the CeA; CeL, lateral division of the CeA; CeM, medial division of the 

CeA; DEn, dorsal endopiriform claustrum; EP, entopeduncular nucleus; IPAC, interstitial 

nucleus of the posterior limb of the anterior commissure; GP, globus pallidus; I, intercalated 
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nuclei of the amygdala; LaDL, lateral amygdaloid nucleus, dorsolateral part; opt, optic 

tract; Pir, piriform cortex; st, stria terminalis; VCl, ventral part of claustrum; VEn, ventral 

endopiriform claustrum. B. Average weekly ethanol intake in a cohort of mice subjected 

to 2-h two-bottle choice (ethanol 15% v:v vs water) sessions five days per week for nine 

weeks. Each color represents an individual mouse. C. Crh chromogenic in situ hybridization 

signal density at three antero-posterior levels of the CeA as a function of ethanol intake 

during the last week. There was a significant correlation at the most anterior level (≈ bregma 

−0.8 mm, p<0.05), but not at more posterior levels. D. Crh chromogenic in situ hybridization 

signal density at the most anterior level of the CeA in mice exposed to a single 16-h bout 

of alcohol vapor inhalation (Acute), eight bouts (Chronic), or eight bouts followed by three 

days of withdrawal (Withdrawal). Data are shown as mean ± s.e.m. of Crh signal normalized 

to Air controls. Data were analyzed by one-way ANOVA; *, p<0.05 vs. Air, Dunnett’s 

posthoc test.
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Figure 2. Validation of Cre activity and chemogenetic stimulation in CeA CRF neurons of 
Crh-IRES-Cre mice.
A. Distribution of Crh (red) and tdTomato (green) mRNAs in the CeA of Crh-IRES-Cre;Ai9 

mice, as visualized by double fluorescent in situ hybridization (scale bar = 100 μm). B. 
mCherry immunolabeling recapitulates the V-shaped pattern of Crh expression in the CeA of 

Crh-IRES-Cre mice injected with a Cre-dependent AAV vector encoding hM3Dq-mCherry. 

The area framed in the top picture (scale bar = 500 μm) is shown at higher magnification in 

the bottom picture (scale bar = 100 μm). C. Double immunostaining of mCherry (red) and 

c-Fos (green) was used to evaluate neuronal activation in the CeA following i.p. injection of 

vehicle (n=7) or CNO 5 mg/kg (n=6) in Crh-IRES-Cre mice injected with AAV2-hSyn-DIO-

hM3Dq-mCherry in the CeA (scale bars = 100 μm). D. Chemogenetic stimulation of CeA 

CRF neurons increased c-Fos expression selectively in mCherry-positive CeA neurons. Data 

are shown as mean ± s.e.m. of the number of c-Fos+ cells expressed as percentage of Vehicle 

values (left graph) or percentage of mCherry+ cells (right graph). Data were analyzed by 

unpaired t-test: **, p<0.01; ***, p<0.001.
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Figure 3. Chemogenetic stimulation of CeA CRF neurons increases GABA release onto medial 
CeA neurons in a CRF1-dependent manner.
A. Crh-IRES-Cre mice were injected in the anterior CeA with a Cre-dependent AAV vector 

encoding hM3Dq-mCherry. Whole-cell recordings were then obtained from mCherry+ 

neurons (panel B) or mCherry− neurons (panels C-I) to test the hypothesis that 

chemogenetic stimulation of CeA CRF neurons (red, ①) triggers the release of GABA 

(blue) and CRF (yellow) in the medial CeA (②), which may in turn stimulate GABA release 

(③) onto non-CRF neurons (grey) via the activation of CRF1 receptors located on intrinsic 

or extrinsic GABAergic presynaptic terminals39. B. Firing rates were recorded from CeA 

mCherry+ neurons. Top: red fluorescence and differential interference contrast images of 

patched CeA neuron. Bottom: representative current-clamp trace before and during CNO 

application (500 nM). Right: Firing rates are shown as mean ± s.e.m. (n=8 neurons). Data 

were analyzed by paired t-test: ***, p<0.001. C-I. Spontaneous inhibitory postsynaptic 

currents (sIPSCs) were recorded from medial CeA mCherry− neurons. C. Representative 
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traces before and during CNO application (500 nM) followed by subsequent R121919 co-

application (1 μM). CNO increased sIPSC frequency (D), but did not affect sIPSC amplitude 

(E), rise time (F) or decay time (G). Data are shown as mean ± s.e.m. for the whole set 

of recorded neurons (n=33, black bars), as well as for the subset of neurons whose sIPSC 

frequency was significantly increased by CNO (n=19, blue bars). Data were analyzed by 

paired t-test: **, p<0.01; ***, p<0.001. H-I. In a subset of CNO-sensitive cells (n=10), the 

CRF1 antagonist R121919 was co-applied following CNO alone. H. sIPSC frequencies are 

shown as mean ± s.e.m. and were analyzed by one-way ANOVA; **, p<0.01, Tukey posthoc 
test. I. The effect of R121919 (expressed as sIPSC frequency difference before and after 

addition of R121919) was correlated with baseline sIPSC frequency; p<0.001.
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Figure 4. Chemogenetic stimulation of CeA CRF neurons does not affect alcohol drinking.
A. Crh-IRES-Cre male mice were injected with a Cre-dependent hM3Dq-encoding vector in 

the anterior CeA and were tested for voluntary ethanol intake under different experimental 

conditions. B. Experimental timeline. Each box represents one week, the color code 

indicates the experimental procedure conducted during that week. Two-bottle choice (2BC) 

drinking sessions were conducted Mon-Fri, starting at the beginning of the dark phase 

and lasting 2 h (blue boxes). Mice were given ten baselining sessions prior to testing the 

acute effect of CNO (0, 1, 5 and 10 mg/kg, i.p., 30-min pretreatment) according to a within-

subject Latin-square design over four consecutive days (red arrows; data shown in panel C). 

An additional 2BC session without pretreatment was conducted and mice were then split 

in two groups exhibiting equivalent baseline ethanol intake, which were repeatedly injected 

with either CNO (5 mg/kg) or vehicle. Weeks of CNO or vehicle administration (once per 

day, Tue-Fri; red boxes) were alternated with weeks of 2BC drinking sessions (Mon-Fri, as 

described above; blue boxes; data shown in panel D) for a total of 3 rounds. Mice were then 

given a 3-week ethanol deprivation period (white boxes), after which 2BC sessions were 

resumed for a week (blue box; data shown in panel E). Next, the mice were exposed to four 

cycles of chronic intermittent ethanol exposure (16-h ethanol vapor inhalation followed by 

8-h air inhalation, Mon-Fri; yellow box). The mice were then returned to their home cages 

and 2BC sessions resumed four days later (Tue-Fri; blue box; data shown in panel F). On the 

third session (Thu), CNO (5 mg/kg) or vehicle was administered 30 min prior to the session 

(red arrow). C-F. Ethanol intake is expressed in g ethanol per kg body weight in 2-h session. 

Data are shown as mean ± s.e.m. Number of mice per group is shown in the legend of each 

graph.
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Figure 5. Chemogenetic stimulation of CeA CRF neurons exacerbates hyponeophagia without 
altering other affective responses nor appetite.
A. Crh-IRES-Cre male mice were injected with a Cre-dependent hM3Dq-encoding vector in 

the anterior CeA. B. Locomotor activity 45 min prior and 60 min following i.p. injection of 

vehicle or CNO. C-H. Mice were tested in assays probing affective behavior 30 min after 

i.p. injection of saline or CNO (5 mg/kg). C. CNO tended to increase digging duration but 

did not affect marble burying. D. CNO did not affect open arm exploration in the elevated 

plus maze. E. CNO did not affect the preference for social interaction. F-G. CNO increased 

the latency to start feeding in an anxiogenic arena, but not in the home cage. This effect of 

CNO was replicated in an independent cohort and was not observed in control mice with no 

hM3Dq expression. **, p<0.01; ***, p<0.001, Tukey posthoc test. H. CNO did not alter the 

amount of food consumed following 24-h food deprivation. Data are shown as mean ± s.e.m. 

Number of mice per group is shown in the legend of each graph.
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Figure 6. Chemogenetic inhibition of CeA CRF neurons does not reverse ethanol intake 
escalation or affective disturbance in alcohol-dependent mice.
A-F. Crh-IRES-Cre male mice were injected with a Cre-dependent hM4Di-encoding vector 

in the anterior CeA. B. Firing rates were recorded from CeA mCherry+ and mCherry− 

neurons. Left: red fluorescence and differential interference contrast images of patched 

CeA neuron. Middle: representative traces before and during CNO application (500 nM). 

Right: CNO-induced change in firing rate (mCherry+, n=5; mCherry-, n=4). **, p<0.01, 

one-sample t-test. C. Experimental timeline for behavioral testing. Each box represents 

one week. AAV designates the timepoint at which the viral vector was injected, mice 

recovered for 3 weeks before resuming alcohol drinking sessions. The digging test (Dig) 

was performed 7 and 10 days after last vapor exposure (within-subject design). The novelty-

suppressed feeding (NSF) test was conducted 14 days after last vapor exposure (between-

subject design). D-F. Exposure to CIE increased ethanol intake (D), digging activity (E), and 

hyponeophagia (F). Acute CNO administration had no significant effect on these measures. 

Data were analyzed by two-way ANOVA (main effect of CIE: ##, p<0.01; ###, p<0.001). 

G. C57BL/6J mice subjected to the CIE-2BC procedure were injected with the CRF1 

antagonist CP376395 30 min prior to 2BC. CP376395 reduced ethanol intake in both Air 

and CIE mice. Data were analyzed by two-way repeated-measures ANOVA (###, p<0.001, 
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main effect of CIE; ***, p<0.001, Dunnett’s posthoc test). Data are shown as mean ± s.e.m. 

Number of mice per group is shown in the legend of each graph.
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