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Coronavirus disease (COVID-19) was first reported in December 2019, China and later it was found that
the causative microorganism is severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). As on
3rd June 2021, SARS-CoV-2 has affected 171049741 people worldwide with 3549710 deaths.
Nanomedicine such as nanoparticles, liposomes, lipid nanoparticles, virus-like nanoparticles offer
tremendous hopes to treat viral infections including COVID-19. Most importantly target specific ligands
can be attached on the surface of them and this makes them more target specific and the loaded drug can
be delivered to cellular and molecular level. These properties of nanomedicines can be utilized to deliver
drugs or vaccines to treat viral diseases including SARS-CoV-2 infection. This review discusses about
SARS-CoV-2 and the potential application of nanomedicines for delivering biological macromolecules like
vaccines and drugs for treating COVID-19.
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1. Covid-19

Viral diseases are a major cause of death worldwide. The treat-
ment options are vaccination or drugs which inhibit virus multipli-
cation by inhibiting an important step in the virus life cycle. But
many viruses, over a period of time, evolve and become drug resis-
tant, which requires better drugs and novel drug delivery
approaches for the effective treatment. COVID-19 was first
reported in December 2019, China [1]. A group of patients with
cough, fever, breathing difficulties and other symptoms were hos-
pitalized and computed tomography (CT) scanning of patients’
lungs showed varied opacities when compared with the images
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Fig. 1. Structure of SARS-CoV-2.
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of the lungs of healthy persons [2]. At first, it was thought pneumo-
nia but nucleic acid analysis did not show positive result for known
pathogen panels which suggested unknown origin of pneumonia
[1]. On 10thJanuary 2020, bronchoalveolar lavage fluid analysis of
patients showed a pathogen which has a genetic sequence similar
to the betacoronovirus B family. Later, it was found that the virus
had �50%, �80% and �96%, similarities to the genome of Middle
East respiratory syndrome virus (MERSCoV), severe acute respira-
tory syndrome virus (SARS-CoV) and bat coronavirus RaTG13
respectively [1]. The novel corona virus causing COVID-19 was
named as SARS-CoV-2 (Fig. 1). The COVID-19 pandemic has led
severe health crisis worldwide. As on 3rd June 2021, SARS-CoV-2
has affected 171049741 people worldwide with 3549710 deaths
[3]. The possible mode of transmission is human-to-human
through droplets which outspread when an infected person coughs
or sneezes and to minimize the possibility of infection by droplets
of nose or mouth, the WHO has advised to keep a distance of 1.5 to
2.0 m between people. However, recent studies indicated possibil-
ity virus transmission by a distance of 2 m by airborne droplets [4].
This article reviews about SARS-CoV-2 and the potential applica-
tion of nanomedicines for delivering vaccines and drugs for treat-
ing COVID-19.
2. Mechanism of COVID-19 infection and clinical features

Amajor determinant for SARS-CoV-2 entry to the host cell is the
spike glycoprotein by binding with host cell’s angiotensin convert-
ing enzyme 2 (ACE 2), a cellular receptor and the infectivity and
fusion are because of significant proteolytic cleavage and by
clathrin-dependent and clathrin independent endocytosis. Once
internalized into the host’s cell, the virus releases RNA which syn-
thesizes two polyproteins and structural proteins resulting in viral
replication. The nucleocapsid is formed by the combination of
genomic RNA and nucleocapsid protein and finally the vesicles
which contain the viral particles combine with plasma membrane
and releases the viruses [5]. The important symptoms are fever,
cough, breathlessness and fatigue. The other symptoms which
3932
are less common are sore throat, rhinorrhea, headache, dyspnea,
loss of appetite, panting, diarrhoea, vomiting and abdominal pain.
If the COVID-19 patients have other comorbidities like coronary
heart disease, diabetes and hypertension, the severity of the dis-
ease increases. The incubation period of the infection has been
reported between 5 and 14 days [6]. The symptoms are generally
noticed approximately after five days of contracting the infection.
Studies have shown that COVID-19 causes severe viral pneumonia.
In many patients, the subpleural region of lungs showed presence
of glass like opacities and these opacities may produce local and
systemic immune reactions resulting in increased inflammatory
reactions and interferon administration failed to show effective
clinical results [7]. Recent reports reveal that COVID-19, in some
patients, damages other organs such as kidney, heart, brain and
the eyes. SARS-CoV-2 damages other organs directly or indirectly
due to compromise of immune system [8]. A significant number
of COVID-19 patients develop acute kidney injury. Acute respira-
tory distress syndrome (ARDS) is commonly associated with
COVID-19 patients with high mortality. Initially COVID-19 patients
develop mild symptoms, but a group of patients suddenly develop
severe complications like ARDS and sometimes multiorgan failure
and death. It is believed that the rapid severe complications are
due to cytokine storm. It has recently been reported that coagu-
lopathy as a serious morbidity in COVID-19 patients [9].

In SARS-CoV-2, an early and accurate detection is very impor-
tant to decrease transmission risk by isolating the infected persons.
Clinical diagnosis is mainly based on clinical symptoms and history
of contact SARS-CoV-2 infected persons. The common clinical
symptoms are cough, fever, sore throat, dyspnea and pneumonia.
But serological tests are important for the diagnosis of COVID-19.
A rapid detection test for the suspected person is essential to take
appropriate steps and decrease transmission. Various tests have
been developed based on serological, nanotechnology and molecu-
lar methods to detect SARS-CoV-2. Reverse transcription- poly-
merase chain reaction (RT-PCR) and chest computed tomography
have currently been used as screening and diagnostic tests. The
other tests performed include quantitative real time RT-PCR and
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RT-loop mediated isothermal amplification. Immune methods like
SARS-CoV-2 specific IgM/IgG detection can be used to current or
previous infection [10,11].
Table 1
Some promising drug candidates for treating COVID-19.

Sl.
No.

Drug name Category Reference

1 Remdesivir Nucleotide analogue prodrug
which inhibits viral RNA
polymerases (antiviral)

[33]

2 Baricitinib Janus kinase inhibitor used for
treating rheumatoid arthritis

[34]

3 Favipiravir Selectively inhibits the RNA
dependent RNA- polymerase of
RNA viruses (antiviral)

[35]

4 Dexamethasone Corticosteroid possess anti-
inflammatory and
immunosuppressant effects

[36]
3. Organs involved in COVID-19

An important target of the virus is angiotensin converting
enzyme II (ACE2), a surface receptor present in human cells, which
is essential for the effective uptake of SARS-CoV-2 in the host cells.
During infection, the viral spike glycoprotein binds with the ACE2
of the host cell (peptidase domain of ACE2). Attachment of S pro-
tein with ACE2 is an important and the first step of infection, hence
disrupting this binding process is a key approach in treatment [12].
Initially, SARS-CoV-2 impairs the respiratory system and thereafter
systemically reaches heart, liver and kidneys, but still it is unclear
that the disease directly causes organ damage as found in COVID-
19 patients [13]. ACE2 is expressed highly in the airways. The other
organs where it is expressed highly are the cardiovascular system,
central nervous system, gastrointestinal tract and the female
reproductive system [14]. The respiratory system serves as the
main entry point and binding place for SARS-CoV-2 due to the high
expression of ACE2 in the lungs and respiratory tract [15]. Hence,
SARSCoV-2 can easily enter into the body by interacting ACE2 in
the alveolar cells and this is described as the reason to develop
immediate pneumonia and leads to ARDS and failure of multiple
organs in severe patients [1]. ACE2 is expressed highly in the cells
of cardiovascular system and play a vital role in blood pressure reg-
ulation and myocardial contractility [16]. The binding of SARSCoV-
2 to ACE2 may result in the formation cardiac inflammation and
fibrosis. The CoV-2 can infect the central nervous system by direct
infection injury as well as hypoxic injury. The infection of astro-
cytes, macrophages and microglia can activate brain immune cells
which leads to cytokine storm and severe brain damage. The inter-
action of SARS-CoV-2 with the ACE2 of brain capillary endothelial
cells may affect the integrity of the BBB thus helps the entry of
virus. Intestinal epithelial cells including pancreas and liver have
more ACE2 and TMPRSS2 (transmembrane serine protease 2) and
this makes these organs a potential target of CoV-2 [13]. Xiao
et al., recently found viral RNA and N protein in the epithelial cells
of stomach, duodenum and rectum [17]. ACE2 is expressed more in
reproductive system particularly in uterus, placenta and foetal
interface of pregnant women. The ACE2 expression in foetal tissue
can make it as an important target site for the binding of CoV-2
which further causes morbidity and mortality [18]. High level of
inflammatory chemokines and cytokines were observed in
COVID-19 patients, which results in cytokine release syndrome
(CRS). Advanced forms of CRS particularly combined with ARDS
can cause severe multiorgan failure and eventually death. The
chemokines and cytokines involved are interleukins 1 or 6 (IL-1,
IL-6) or tumour necrosis factor (TNF), hence already available
drugs can be tried for treating this syndrome [19]. Further, highly
symptomatic COVID-19 patients have a high viral load in their
lungs, hence strategies are required not only prevent the infection
but also to reduce the viral load to prevent fatal consequences like
hyperinflammation of lungs and multiple organ failure [12].
5 Methylprednisolone Corticosteroid possess anti-
inflammatory and
immunosuppressant effects

[37]

6 Tocilizumab Interlukin-6 receptor inhibitor
(humanized monoclonal antibody)

[38]

7 Bamlanivimab and
etesevimab

Bamlanivimab is a neutralizing
IgG1K monoclonal antibody.
Etesevimab ia s fully human
recombinant monoclonal antibody.

[39]

8 Casirivimab and
imdevimab

Monoclonal antibodies [40]

9 Ivermectin Anthelmintic [41]
4. Current pharmacotherapy approaches for COVID-19

Many drug molecules are under development and testing to
treat COVID-19. Drug repurposing is another quick approach to
identify potential candidates to prevent or treat COVID-19 and
hydroxychloroquine and ivermectin trials are examples of drug
repurposing. Current research also focuses on antiviral drugs used
to treat viral diseases like SARS-CoV and MERS-CoV and it appears
these drugs are promising. Remdesivir, an antiviral drug effective
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against MERS-CoV, was the first drug tried clinically in the United
States for COVID-19 [20]. In an in vitro study, a combination of
remdesivir and chloroquine effectively controlled coronavirus
infection [21] and it was reported that remdesivir exhibits its activ-
ity by inhibiting the nucleotide analog of RNA of RNA-dependent
RNA polymerase and further investigation on rhesus macaque
infection model of MERS-CoV showed that remdesivir minimized
lungs damage and prevents viral replication [22]. Umifenovir, an
antiviral drug, is effective against both enveloped and non-
enveloped DNA and RNA viruses and are used for treating influen-
za. In vitro studies showed its efficiency against SARS and now in
China its being used in the empirical treatment of COVID-19
[23]. COVID-19 patients who received umifenovir with other
antiviral drugs like lopinavir or ritonavir showed significant
improvement, better viral clearance and could increase patients
discharge rate and decrease mortality rate [24]. Administration of
lopinavir/ritonavir in a 54 years old male patient showed null titre
values of coronavirus [25]. It was further reported that a combina-
tion of interferon-a (INF-a) with lopinavir/ritonavir and INF-a
with lopinavir/ritonavir plus ribavirin might be useful to treat
COVID-19 [26]. But this combination failed to provide any benefits
to severe COVID-19 patients beyond standard care [27]. Hence,
more studies are required to confirm their effectiveness to treat
COVID-19 patients. Favipiravir, a broad-spectrum antiviral drug
inhibits viral replication by inhibiting RNA dependent RNA poly-
merase of RNA viruses, has shown effectiveness against various
viruses such as influenza virus, arenavirus, bunyavirus and filo-
virus. An early report of a clinical trial revealed that favipiravir
has better antiviral activity than lopinavir/ritonavir with milder
side effects [28]. Other antiviral drugs like oseltamivir and ribavirin
also have been studied to find out their usefulness to treat COVID-
19.

Activation of large number of mononuclear macrophages and T
lymphocytes happen in COVID-19 infection which results in
cytokines such as IL-6 production and this IL-6 binds with IL-6
receptors leading to cytokine storm and severe inflammatory
responses in lungs as well as other organs. Hence, monoclonal anti-
bodies which target the IL-6 pathways might be used to prevent
cytokine storm. Tocilizumab, a humanized monoclonal antibody
and an IL-6 receptor blocker which can bind with the IL-6 receptor



Fig. 2. Some promising nanomedicines to deliver drugs to treat COVID-19.
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with high affinity, reduces inflammatory responses. A retrospective
study suggests that it can be used to manage high risk COVID-19
patients with cytokine storm [29]. Further studies showed that
tocilizumab improved respiratory functions and immediately
reduced the elevated body temperature to normal [30]. Many other
studies also support the usefulness of tocilizumab. Coronavirus
neutralizing antibodies can be used as they target the spike protein
which facilitates virus entry to the host cells. The receptor binding
makes irreversible conformational changes in the spike proteins
and hence prevents infusion of virus with host cells [31].
CR3022, a SARS-CoV specific human monoclonal antibody, has
been suggested along with other neutralizing antibodies against
SARS-CoV-2 [32]. Other monoclonal antibodies such as sarilumab,
lenzilumab and gimsilumab are in clinical trials. Some promising
drug candidates for treating COVID-19 are given in Table 1.
5. Nanomedicine for COVID-19

Nanomedicine, application of nanotechnology (nanocarriers) to
treat and diagnose diseases, offers tremendous hopes to treat
deadly diseases like cancer, neurodegenerative diseases, viral
infections and others [42–44]. Some nanoparticle and liposome-
based products such as Doxil�, MyocetTM, Caelyx�, Abraxane�,
OnivydeTM and Vyxeos� are available in the market. Many
attempts have been made to develop new molecules to eradicate
the SARS-CoV-2 virus since the COVID-19 pandemic was declared
as a medical emergency. SARS-CoV-2 virus affects the organs of
the respiratory system in addition to the other organs. Hence drug
targeting especially using nanomedicine such as NPs, liposomes
and virus like particles (Fig. 2) would be helpful to target the drugs
into the affected organs and play a vital role in COVID-19
treatment.

Nanoparticles (NPs) are versatile drug delivery carriers and
studied extensively to deliver a variety of drug molecules. NPs
are further biocompatible, biodegradable and offer the advantage
of encapsulating a variety of drugs for site-specific delivery includ-
ing the brain [45–47]. NPs can be prepared by many methods using
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various synthetic and natural polymers [48,49]. Many vaccines,
genes, drugs and antibodies are under development to treat
COVID-19 and a high concentration of these substances in non-
target organs can cause severe side effects, and these problems
might be solved by site specific targeting of these substances by
nanomedicine approach. NPs can be surface engineered to reach
specific target sites, both extracellular and intracellular and block
virus binding to the host cell receptors. This is important to control
viral diseases, to minimize side effects, to improve antiviral drug’s
safety and overcome drug resistance. NPs also have other advan-
tages in antiviral drug delivery such as improving the drug’s solu-
bility, modifying drug’s pharmacokinetics, hence reduced dose
would be required for the antiviral therapy and supresses viral
spreading. Drug loaded NPs have been effective in inhibiting viral
replication. NPs based on b-cyclodextrin containing acyclovir
showed superior activity against clinical isolates of HSV-1 when
compared with free acyclovir [50]. Further, acyclovir loaded NPs
increased the inhibition of DNA replication in herpes virus infected
cells [51]. Hu et al., formulated diphyllin/bafilomycin loaded PEG
functionalized PLGA NPs and the drug loaded NPs increased the
safety and antiviral activities of the drugs when compared with
free diphyllin or bafilomycin. The diphyllin loaded NPs showed
activity against H1N1 and H3N2 viral infection. In vivo studies fur-
ther revealed that diphyllin loaded NPs showed good tolerability
in mice, decreased weight loss and viral load in the lungs after
H1N1 influenza virus infection and increased mice survival [52].
Methotrexate loaded NPs are currently in Phase I and II clinical tri-
als to study their safety and effectiveness in COVID-19 patients
with acute lung injury [53].

Dendrimers are nanosized, radially symmetric, three dimen-
sional, highly branched, monodispersed polymeric scaffolds. Den-
drimers have been studied to deliver antiviral drugs [54]. One of
the strategies used to control viral infections is to inhibit virus
uptake into the host cells and NPs could be used to prevent the
interaction between SARS-CoV-2 and ACE2 thus prevent infection.
Dendrimers have a tree like branched structure and have the abil-
ity to improve the effectiveness of drugs and bioactive compounds.
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In a study, PAMAM (polyamidoamine) dendrimers were able to
bind with angiotensin receptors and acted as an antagonist for viral
infection [55]. NPs functionalized with ligands, which are specific
to angiotensin converting enzymes readily bind with these
enzymes. Hence, these NPs can inhibit viral binding to ACE2 there-
fore, they can be explored to prevent SARS-CoV-2 infection. Den-
drimers have been studied to treat HIV infection and have shown
strong interactions with viruses and might increase antiviral activ-
ity. They can be engineered with functional ligands to interact with
HIV E protein cell receptors of the host and eventually supress viral
replication. VivaGel� (SPL7013), a microbicide dendrimer gel and a
product of Starpharma, was developed to prevent HIV and HSV
infections and available in the market [56]. Starpharma is develop-
ing VIRALEZETM COVID-19 nasal spray and it is given that the pro-
duct has the potential to prevent acquisition and transmission of
SARS-CoV-2 and to complement vaccine-based prevention strate-
gies [57]. Polyanionic dendrimers can be used to improve the
antiviral activity of drugs. Hence, dendrimers can be studied as a
potential carrier to deliver antiviral drugs against COVID-19.

Liposomes, one of the most well-studied nanomedicines used
for drug targeting, are vesicles containing one or more lipid bilay-
ers enclosing aqueous spaces. Liposomes are made of mainly natu-
ral or synthetic phospholipids and few liposome-based products
such as Doxil� and AmBisome� are available in the market. Hence,
they have the potential to deliver antiviral drugs for COVID-19 as
they have the ability to deliver drugs intracellularly. Liposomes
have studied to treat hepatitis B and C viruses and HIV. The lipid
composition of liposomes affects cells infectivity and it was
reported that cationic and anionic liposomes interacted with
equine herpes virus type 1 thus inhibiting infection [58]. Surface
functionalization of liposomes with proteins, hydrophilic sub-
stances and mAbs improve specificity. Functionalization with
PEG reduces unspecific protein adsorption. PEGylated liposomes
coated with a HIV directed mAb fragment were specifically taken
up by HIV 1 infected cells and produced sustained antiviral activity
[59]. Metered dose inhalers, jet nebulizers, dry powder inhalers
and soft mist inhalers are used to deliver drugs in the respiratory
tract. NPs successfully delivered drugs after intranasal administra-
tion to organs such as the brain and lungs. NPs containing corticos-
teroids showed deep penetration into the lungs when
administered as aerosols for treating asthma [60]. Hence, NP-
based aerosols appear to be promising to deliver antiviral drugs
into the lungs. NPs have been studied to increase the antiviral
activity of drugs to treat respiratory infections. In a study after
intranasal administration, influenza (H1N1) antigen conjugated
chitosan NPs improved the immunogenicity of the antigen [61].
Nanoemulsions are mainly composed of water, oil and surfactant
and assembled in nanodroplets and nanoemulsion droplets are
stable when diluted and hence can be used for parenteral applica-
tions. Nanoemulsions have been studied to deliver vaccines and
antiviral drugs. Neutralizing monoclonal antibodies to SARS-CoV-
2 can be used for both prophylactic and therapeutic applications.
Three monoclonal antibodies have been approved by the FDA for
the treatment or prophylaxis of infectious diseases like respiratory
syncytial virus, anthrax and Clostridioides difficile [62]. Monoclonal
antibody products reduced the mortality by Ebola virus infection
[63]. This supports the usefulness of monoclonal antibodies to treat
COVID-19. But they have limitations such as issues related to
bioavailability and viral diversity. Hence, it is important to observe
the emergence of resistant viral mutations [62].

Nanovesicles derived cell membranes like exosomes play a vital
role in drug targeting because they are biocompatible, surface
engineered and cross the biological barriers [Xia et al., 2020]. Spike
CAR-NK cells and Spike CAR macrophage cells showed good tar-
getability and neutralizing capacity of SARS-CoV-2 pseudotyped
virus [63]. But CAR-immune cell therapy may cause cytokine
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release syndrome, therefore an alternative may be use of nanovesi-
cles. Nanovesicles have the capacity to load drugs including antivi-
ral drugs. In a study Zhu et al. developed a nanovesicle derived
from bispecific CAR-T cells which express CR3022 and B38 (single
chain fragment variables) to specifically target SARS-CoV-2.
Nanovesicles which express CR3022 and B38 showed stronger
capacity for neutralizing spike pseudovirus infection when com-
pared with the nanovesicles which express CR3022 and B38 alone.
Further, the nanovesicles which express CR3022 and B38 could
decrease the occurrence of viral resistance and their binding capac-
ity to the spike protein of SARS-CoV-2 as well as the drug loading
capacity help site-specific delivery of remdesivir to 293 T cells
which overexoress spike protein [64]. This study shows the ability
of nanovesicles to target antiviral drugs to treat COVID-19. In
another study, Li et al. developed human lung spheroid cells (LSCs)
derived ACE2 nanodecoys. The ACE2 nanodecoys can attach with
SARS-CoV-2 and neutralize them for protecting the lung cells of
the host from infection. The LSC ACE2 nanodecoys stayed in the
lungs of mice after inhalation for a period of 72 h and increased
the removal of SARS-CoV-2 mimics from the lungs. Further, four
doses of inhalation of nanodecoys in Cynomolgus macaques, which
were administered with live SARS-CoV-2, increased viral clearance
with decreased lung injury [65]. This study suggests the potential
usefulness of LSC nanodecoys in treating COVID-19.

The main target site of SARS-CoV-2 is nasal mucosa hence tar-
geting ACE2 and DPP4 (dipeptidyl peptidase 4) (virus specific
receptors) is a promising strategy and this can be achieved by con-
jugating receptor specific ligands like peptide or mAb onto the
nanoparticles [19]. The mAbs or peptides was used as ACE2 or
DPP4 antagonist to block receptors functions which resulted in
preventing cell entry of CoVs [66]. Another strategy is to design
the peptides or mAbs in such that to target the AE2 or DPP4 recep-
tors by conjugating the peptides onto the nanomedicines. In this
way, these nanomedicines could be used to deliver the drugs into
the infected cells while preventing virus entry into the normal cells
[67]. But no study described the usefulness of these peptides or
mAbs to target drugs to SARS-CoV-2 [19]. It was reported that syn-
thetic S proteins showed antiviral activity, by blocking ACE2, in
SARS associated CoV [68] and may be used as a targeting ligand
[19]. Reactive oxygen species (ROS) play a role in immunological
responses and removing virus, but excess level of ROS oxidize cel-
lular proteins and membrane lipids and quickly kill the cells
infected with virus. This can damage the normal cells of lungs
and heart which results in organ failures. An antioxidant therapy
can be useful to decrease COVID-19 related cardiac problems.
Nanoparticles containing antioxidants (nanoantioxidants) could
be useful to reduce the oxidative stress in preventing and treating
viral diseases including COVID-19 [69].

The safe and effective entry of NPs into the cells is important to
achieve targetability and exhibit therapeutic activity. Further, the
intracellular fate of NPs is crucial if the nanocarrier is intended
for delivering specific drug or gene to the nucleus or the cytosol
or any other specific intracellular site. More knowledge, about
the different mechanisms involved in the uptake of NPs by the
cells, is essential to develop safe and effective nanomedicines by
modifying physicochemical properties of NPs to improve their cel-
lular uptake followed by their targeting to the specific cellular
organelle [70]. When NPs come and contact with plasma mem-
brane of a cell, they interact with plasma membrane components
or extracellular matrix and internalized into the cell mainly by
the process of endocytosis. Endocytosis results in engulfing of
NPs by invagination of cell membrane and pinching off to produce
endocytic vesicles, followed by their transport to the specific intra-
cellular organelle. The NPs fate, after administration, is related to
NP-protein association and dissociation. This association and dis-
sociation play a vital role to interact with biological surfaces in



Table 2
Clinical trial status of some promising vaccines for the prophylaxis of SARS-CoV-2 infection (www.clinicaltrials.gov) Accessed on May 5, 2021.

Candidate and
clinical trial
identifier
number

Sponsor Study title and Clinical trial status Characteristics/
Description

Actual
enrolment

Actual study
start date and
estimated
study
completion
date

mRNA-1273
NCT04283461

National Institute of
Allergy and Infectious
Diseases (NIAID)

Safety and immunogenicity study of
2019-nCoV vaccine (mRNA-1273) for
prophylaxis of SARS-CoV-2 infection
(COVID-19)
Phase 1
Open-label, dose-ranging study to
determine the safety and
immunogenicity of mRNA-1273

mRNA-based vaccine is encapsulated in a
lipid nanoparticle that encodes for a full
length, S protein of SARS-CoV-2.

120
participants

March 16,
2020
November 22,
2022

LV-SMENP
NCT04276896

Shenzhen Geno-Immune
Medical Institute

Immunity and safety of Covid-19
synthetic minigene vaccine
Phase 1/2Multicentre study to determine
the safety and efficacy of Lentiviral
Minigene Vaccine
(LV-SMENP)

LV-SMENP vaccine is prepared by
modifying dendritic cells with lentivirus
vectors expressing COVID-19 minigene
SMENP and immune modulatory genes

100
participants
(estimated)

March 24,
2020
December 31,
2024

INO-4800
NCT04336410

Inovio Pharmaceuticals Safety, tolerability and immunogenicity
of INO-4800 for COVID-19 in healthy
volunteers
Phase 1
Open-label study to determine the
safety, tolerability and immunogenicity
of INO-4800

Contains the plasmid PGX9501 which
encodes full length S protein (Vaccine is
administered intradermally followed by
electroporation using CELLECTRA� 2000

120
participants

April 3, 2020
January 2022

COV001
NCT04324606

University of Oxford A study of a candidate COVID-19 vaccine
(COV001)
Phase 1/2
Single-blinded, randomized multicentre
study to determine the efficacy, safety
and immunogenicity of ChAdOx1 nCoV-
19

ChAdOx1 nCoV-19 is a Chimpanzee
adenovirus vectored vaccine expressing
the SARS-CoV-2 spike protein

1090
participants

April 23, 2020
October 2021

BNT162b1 and
BNT162b2
NCT04368728

BioNTech SE Study to describe the safety, tolerability,
immunogenicity, and efficacy of RNA
vaccine candidates against COVID-19 in
healthy individuals
Phase 2/3
A placebo- controlled, randomized,
observer-blind, dose finding study to
determine the safety, tolerability,
immunogenicity and efficacy

BNT162b1 is a lipid nanoparticle
formulated, nucleoside modified mRNA
vaccine that encodes the trimerized
receptor binding domain of spike
glycoprotein of SARS-CoV-2

46,663
participants
(estimated)

April 29. 2020
April 6, 2023

Recombinant
novel
coronavirus
vaccine
(adenovirus
type 5 vector)
NCT04313127

CanSino Biologicals Inc. Phase I clinical trial of a COVID-19
vaccine in 18–60 healthy adults
(CTCOVID-19)
Phase 1Single centre opel-label, dose-
escalating study to determine the safety,
reactogenicity and immunogenicity of
recombinant novel coronavirus vaccine
(adenovirus type 5 vector)

Recombinant novel coronavirus vaccine
(adenovirus type 5 vector)

108
participants

March 16,
2020
December 20,
2022

Pathogen-
specific
artificial
antigen
presenting
cell (aAPC)
NCT04299724

Shenzhen Geno-Immune
Medical Institute

Safety and immunity of Covid-19 aAPC
vaccine
Phase 1
Open-label study to determine the safety
and immunity of artificial antigen
presenting cell vaccine

aAPC vaccine is prepared by modifying
lentivirus including immune modulatory
genes and the viral minigenes to the
artificial antigen presenting cells

100
participants
(estimated)

February 15,
2020
December 31,
2024

GX-19
NCT04445389

Genexine, Inc. Safety and immunogenicity study of GX-
19, a COVID-19 preventive DNA vaccine
in healthy adults
Phase 1/2
Multicenter, randomized, double blind,
placebo controlled study to study the
safety, tolerability and immunogenicity
of GX-19

GX-19 is a SARS-CoV-2 spike (S) DNA
based vaccine

210
participants
(estimated)

June 17, 2020
June 17, 2022

Ad26.COV2.S
NCT04505722

Janssen Vaccines &
Prevention B.V.

A study of Ad26.COV2.S for the
prevention of SARS-CoV-2-mediated
COVID-19 in adult participants
(ENSEMBLE)
Phase 3
Randomized, double-blind, placebo
controlled study to investigate the

Ad26.COV2.S is a recombinant,
replication-incompetent adenovirus
serotype 26 vector encoding a SARS-CoV-
2 spike protein.

44,325
participants

September 7,
2020
January 2,
2023
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Table 2 (continued)

Candidate and
clinical trial
identifier
number

Sponsor Study title and Clinical trial status Characteristics/
Description

Actual
enrolment

Actual study
start date and
estimated
study
completion
date

efficacy and safety of Ad26.CoV2.S.

Gam-COVID-Vac
NCT04436471

Gamaleya Research
Institute of Epidemiology
and Microbiology, Health
Ministry of the Russian
Federation

An open study of the safety, tolerability
and immunogenicity of the drug ‘‘Gam-
COVID-Vac” vaccine against COVID-19
Phase 1/2
An open two stage non-randomized
study to assess the safety, tolerability
and immunogenicity of Gam-COVID-Vac

Gam-COVID-Vac is a recombinant
adenovirus vector based on human
adenovirus type 26 containing the SARS-
CoV-2 S protein

38
participants

June 17, 2020
August 10,
2020

SARS-CoV-2rS/
Matrix-M1
Adjuvant
NCT04611802

Novavax A study to evaluate the efficacy, immune
response, and safety of COVID-19
vaccine in adults � 18 years with a
pediatric expansion in adolescents (12–
17 years) at risk for SARS-CoV-2
Phase 3
Randomized, observer blinded, placebo
controlled study to determine the
efficacy, safety and immunogenicity of
SARS-CoV-2 rS/Matrix-M1 adjuvant

SARS-CoV-2 rS/Matrix-M1 is a SARS-
CoV-2 recombinant spike protein
nanoparticle vaccine with Matrix-M1
adjuvant

33,000
participants
(estimated)

December 27,
2020
June 30, 2023

BBV152
NCT04641481

Bharat Biotech
International Limited

An efficacy and safety clinical trial of an
investigational COVID-19 vaccine
(BBV152) in adult volunteers
Phase 3
Event-driven, randomized, double blind,
placebo controlled, multicentre study to
evaluate the efficacy, safety and
immunogenicity of BBV152.

BBV152 is a whole virion inactivated
SARS-CoV-2 vaccine.

25,800
participants

November 16,
2020
December
2022
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general and receptors in particular. NPs which entered into the cell
via endocytosis may remain in the endocytic vesicles and therefore
limit their usefulness to target intracellular level [70]. One of the
effective strategies to overcome this is surface modification of
NPs. Cell penetrating peptides and peptides with nuclear localiza-
tion sequences can be used to guide the NPs into the cell interior
including the cell nuclei [71,72].
6. Nanomedicine for vaccine delivery

Vaccines intervene with the virus before the virus infects the
host. Vaccines provide long-lasting effectiveness against the virus.
Vaccines provide specific viral antigens into the body and often
these antigens are presented on the cell surface of antigen present-
ing cells (APCs) and this is important for the adaptive immune sys-
tem. The adaptive immune system recognizes such antigens and
releases antibodies or activate the T cells to destroy them. Further,
memory B cells produce antibodies specific to the virus on the cell
membrane, which recognize the virus, activate immediate immune
response to kill the virus [19]. The identification of genetic
sequence of SARS-CoV-2 has initiated the development of vaccines
against COVID-19. The vaccines are in different stages of clinical
trials and many are in preclinical development (Table 2). Vaccines
can be developed from viral antigens such as vectored vaccines,
recombinant proteins, whole attenuated or inactivated virus and
also can be developed from RNA- or DNA-encoding of viral anti-
gens. The COVID-19 vaccines such as Pfizer/BioNTech Comirnaty
vaccine, Covishield and AstraZeneca vaccines (developed by Astra-
Zeneca/Oxford), Janssen/Ad26.COV 2.S (developed by Johnson &
3937
Johnson), Moderna COVID-19 vaccine and Sinopharm COVID-19
vaccine are listed in the WHO Emergency Use Listing (EUL) [73].
The US-FDA on 11th December 2020 issued emergency use autho-
rization (EUA) to the Pfizer-BioNTech COVID-19 vaccine
(BNT162b2) to prevent COVID-19 disease caused by SARS-CoV-2
in individuals of 16 years age or older [74] and Moderna COVID-
19 vaccine (mRNA-1273) in individuals of 18 years age and older
[75]. The AstraZeneca’s COVID-19 has been approved for emer-
gency supply in the UK by MHRA [76]. The BNT162b2 is a lipid
nanoparticle formulated, mRNA vaccine that encodes the spike gly-
coprotein of SARS-CoV-2 [77]. The mRNA-1273 is a lipid NP-
encapsulated mRNA- based vaccine that encodes for a full length,
S protein of SARS-CoV-2 [78]. The mRNA vaccines deliver antigen
encoding mRNA to the ribosomes to produce antigens. Various
types of cells uptake the mRNA vaccine after vaccination and then
activates the immune system via the MHC-I and MHC-II pathways.
When APCs uptake the mRNA vaccine, the APCs express the target
protein as an endogenous antigen and thereafter stimulates the
CD8+ T cells via the MHC-I pathway. If non-APCs uptake the mRNA
vaccine, then the non-APCs translate and secrete the target protein
which is thereafter internalized by the APCs. Thereafter, the APCs
stimulate the CD8+ T cells via the MHC-II pathway [79]. Both
DNA and RNA vaccines have some advantages over conventional
vaccines like low cost and simple purification. But there are some
drug delivery issues such as degradation, less bioavailability and
easy clearance from the body. These problems can be overcome
by nanomedicine-based approaches of drug targeting.

Many preclinical studies support the usefulness of delivering
antiviral drugs, recombinant virus subunit vaccines, attenuated
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viral antigens delivery using nanocarriers to treat viral infections.
NPs have shown effectiveness to deliver small interfering RNA
(siRNA) to treat diseases such as infections, malignancies, neuro-
logical diseases and autoimmune disease. Various antigens like
HBsAg, tetanus toxoid, malaria antigens, Listeria monocytogenes
and Bacillus anthracis were successfully loaded into PLGA NPs
and produced sustained cellular and humoral immune response.
Antigenic substances can be encapsulated into the nanocarriers
or attached on their surface. The encapsulation strategy is used
to protect the antigens from proteolytic degradation and target
them to APCs. In the case of direct attachment of antigens on the
surface, the NPs mimic the virus itself. Purified immunoglobulins,
from COVID-19 patient plasma, attached on a NP may be a promis-
ing NP vaccine against coronaviruses [19]. SARS-CoV-2 gains entry
into the body through the nasal cavity, especially through mucosal
epithelial cells which include mucous producing goblet cells and
ciliated cells [80]. NPs are suitable for administration by various
route such as oral, intravenous, subcutaneous, intramuscular and
intranasal, therefore can be used to target vaccines to lymph nodes
and penetrate across mucosal and epithelial barriers which
includes the airways, gastrointestinal and nasal barriers. Vaccines
administration through intravenous or intramuscular routes
induced systemic immunity, but the mucosal response was weak
[81]. Administration of vaccines through nasal route, to activate
mucosal surface immunity and systemic immunity seems encour-
aging [19]. Administration of vaccine by nasal route enhanced the
propagation of antigen-specific lymphocytes, improved cytokine
production and induction of antigen-specific antibodies in compar-
ison with systemic or subcutaneous administration [82]. Hence
nasal sprays especially nano nasal sprays are promising to deliver
vaccines. Self-assembling protein NPs were also studied for vaccine
delivery. In a study, a combination of coronavirus S protein loaded
NPs and Matrix M1 increased the immunity against coronaviruses
in mice. Further, the vaccination increased the presence of neutral-
izing antibodies [83].

Virus like particles (VLPs) are viral protein-based particles, have
the capacity to self-assemble into spherical NPs with size ranging
between 20 and 200 nm. Chimeric spherical VLPs based on
MERS-CoV viral proteins increased both cellular and humoral
immunity in mice [84]. In another study Kato et al., prepared
MERS-CoV VLPs including the full S protein of MERS-CoV using
insect cells [85]. VLNs prepared from HCoV-NL630s structural pro-
teins M, E, S efficiently transfected nasal mucosal ciliary cells [86].
The VLPs can be used as a strategy to deliver drugs to treat COVID-
19 as they are similar to virus, have the ability to escape from
immune clearance, penetrate through the mucous to reach lungs
as well as other affected sites [19]. Medicago, a Canada based bio-
pharmaceutical company, started phase I clinical trials in July 2020
for its VLP-based vaccine against SARS-Cov-2 and planning a phase
2/3 trial in October 2020 [87]. Lipid based NPs like solid lipid NPs
(SLNs) or liposomes have high similarities with virus particles. Fur-
ther, they have similar surface structures as viruses. The efficiency
of liposomes to deliver genes have been studied by many authors.
The mRNA based COVID-19 vaccines are in clinical development
[16]. For example, Moderna’s mRNA-1273 (lipid NP capsule) is in
clinical trial phase 3 [88]. LUNAR�COV19 (ARCT-021), a self-
replicating mRNA vaccine formulated in a lipid NP, was developed
by Arcturus Therapeutics is in clinical trial phase 1/2 [89]. Self-
replicating mRNA construct encodes an RNA-dependent RNA poly-
merase complex which is required for self-amplification and also
the components which are present in the nonreplicating con-
structs. Self-replication enhances the magnitude and prolong con-
struct expression and therefore encoded immunogen production.
Further, it is possible to include multiple gene sequences into the
same replicon. An Alphavirus derived replicon RNA vaccine stabi-
lized in lipid NPs induced strong antibody responses in mice and
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these antibodies neutralized SARS-CoV-2 [90]. These studies show
the feasibilities of using lipid NPs to deliver RNA vaccines.

The other nanomedicines which can be used for delivering
mRNA are cationic nanoliposomes, PEG-lipid functionalized den-
drimers, nanoemulsion, polyethylenimine NPs and polymeric
NPs. Naked DNA also faces systemic stability problems by nucle-
ases. Polymeric NPs, lipid-based cationic NPs and inorganic NPs
have been suggested for DNA-based vaccines. PLGA NPs have been
widely studied to deliver DNA vaccines and the results showed
increased systemic antigen specific antibody responses [91]. NPs
functionalized with PEG can avoid RES uptake hence increase sys-
temic circulation time and enhance target specificity. NPs were
able to target both innate immune systems such as macrophages,
monocytes and neutrophils and the adaptive systems like T cells
and B cells. NPs can modulate APCs and which is important for
COVID-19 vaccine approach [92]. Antigen loaded NPs delivery to
dendritic cells can enhance T cell immunity. A major challenge in
COVID-19 vaccine research is to find out various approaches which
are able to stimulate T cells and B cells immunity against SARS-
CoV-2. Further, it is also required to develop next generation vac-
cine strategies which are useful for specific subgroups or individual
with impaired immunity [93]. Another important strategy is to
introduce nanomedicine-based COVID-19 vaccines which have
the capacity on the cellular presentation of the selected antigen
[13]. Nanomedicines can help to improve the immune response
against specific antigens. Immune targeted nanomedicines are
expected to intensify hosts’ immune responses. Further,
nanomedicines functionalized with virus specific target molecules
can enhance the vaccines’ efficiency as well as their effectiveness
to prevent viral infections [12]. APCs present in the lymphoid
organs are very near to T cells which provides an ideal microenvi-
ronment to effectively amplify T cell responses. In a study, den-
dritic cells were effectively and precisely targeted in in vivo using
RNA-lipoplexes after intravenous administration by adjusting the
net charge of the lipid carrier without functionalizing the particles
with specific molecular ligands for cancer immunotherapy [94]. In
the case of COVID-19, mRNA-1273 is in the first phase of clinical
trial [95]. The mRNA vaccine encodes the S-2P antigen containing
the SARS-CoV-2 glycoprotein. The lipid nanoparticle capsule con-
sisting of four lipids and it was prepared in a fixed ratio of mRNA
and lipid [96]. The RNA vaccine development involves the utiliza-
tion of a proper delivery system to increase the stability and thus
the translatability intracellularly. But encapsulating mRNA vacci-
nes encoding SARS-CoV-2 proteins into nanomedicines for site
specific targeting and clinical translation is a great challenge. The
efficiency of protein-based vaccines such as viral vector, recombi-
nant protein, attenuated or inactivated vaccines have well docu-
mented against many viral infections with licenced products. All
these approaches can be studied for SARS-CoV-2.
7. Nanomedicine for vaccine adjuvant delivery

Inactivated and recombinant protein vaccines sometimes
require adjuvants to enhance their immunogenicity. NPs have the
capacity to deliver molecular adjuvants and many a time NP alone
has adjuvant property for the incorporated antigen. Vaccine adju-
vant NPs can overcome the disadvantages of traditional way of
delivering molecular vaccine adjuvants. Adjuvants which are
licenced to use in vaccines include alum (aluminium salts), MF59
(a squalene-based emulsion adjuvant), AS01 (a liposome-based
adjuvant), AS03 (a squalene-based emulsion adjuvant), AF03 (a
squalene-based emulsion adjuvant), AS04 (consist of TLR4 agonist
MPL (3-O-desacyl-40-monophosphoryl lipid A) and aum) and viro-
somes. MF59 is a nanoadjuvant and showed good adjuvant activity
includes humoral and T helper type 1 immune responses [97].
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Alum is used in licenced vaccines such as DTap, Hib, hepatitis A
and hepatitis B. Virosomes is used in Inflexal� V and Invivac� influ-
enza vaccine and hepatitis A vaccine (Epaxal�). AS04 is licenced to
use in human papilloma virus vaccine (CervarixTM) and hepatitis B
virus vaccine (Fendrix�) [98]. MF59 and AS03 has licenced for
influenza vaccines used for the geriatric populations [99]. AS01
has licenced for herpes zoster subunit vaccine for the geriatric pop-
ulation of 70 years or above [100].

Virus like particles, PLGA NPs, cationic liposomes, nanoemul-
sion and cholesterol bearing nanogel are also studied for their
adjuvant properties. Some nanomaterials alone perform adjuvant
activity by increasing antigen presentation and through their
inherent immunoactivation properties. Cyclic dinucleotides (CDNs)
have vaccine adjuvants property. Cyclic di-GMP (cdGMP) loaded
PEGylated lipid NPs (NP-cgGMP) delivered CDNs to the draining
lymph nodes and increased the adjuvant activity of CDNs [101].
Hamdy et al., used PLGA NPs to co-deliver antigen ovalbumin along
with monophosphoryl lipid A as adjuvant to induct CD4+ and CD8+

T cell responses [102]. In another study, Toll-like receptors ligands
and antigen hemagglutinin loaded calcium phosphate NPs induced
both innate and adaptive immunities by activating dendritic cells
[103]. In the case of SARs-CoV-2, adjuvants could be useful for
patients with impaired immunological functions and patients with
other comorbidities which results in immune dysfunctions [13].
Vaccine adjuvants are expected to reduce the antigen dose
required for COVID-19. A SARS-CoV-2 recombinant spike protein
NPs vaccine with Matrix-M adjuvant (a saponin-based adjuvant)
is in phase I clinical trial to evaluate its safety and immunogenicity
[104]. Hence, it is believed that a combination of vaccine and adju-
vants play an important role especially in the case of old age people
and immune compromised patients.
8. Future perspectives

Nanomedicines such as NPs, lipid NPs and VLPs have been
attracted the researches as delivery carriers for drug molecules/-
vaccines as they increase the antigen stability, antigen processing
and immunogenicity, and also the sustained and targeted delivery
of antigens. But the reproducibility and large-scale industrial pro-
duction of drug/vaccine loaded target-specific ligand conjugated
nanomedicines are a major challenge [105]. Introducing new
antiviral drugs and their availability for the general public requires
years as many regulatory steps are required to prove the efficacy
and safety of the drugs and vaccines. The search for new drugs,
repurposing of existing drugs as well as developing of new drug
molecules for COVID-19 either from synthetic or natural origin,
necessitates a thorough understanding of molecular mechanisms
of SARS-CoV-2 infection and further consequences in cellular and
molecular level. Most importantly antiviral drugs and vaccines
generally target a particular viral species/strains, hence may not
be effective on other species/strains as well as mutated genes
[106]. Therefore, it is imperative to come up with new drug mole-
cules and vaccines which are effective against various strains
including the mutant ones of SARS-CoV-2. Nanomedicines such
as NPs, liposomes, monoclonal antibodies and virus like particles
can be utilized to target drugs, which are effective against
COVID-19, in cellular and molecular levels as the nanomedicine-
based novel drug delivery systems have shown their effectiveness
to target anticancer drugs into the cancerous cells. Hence, nanome-
dicine is expected as a powerful platform for repurposing of exist-
ing antiviral drugs to improve COVID-19 treatment. But the safety
aspects of the nanomedicines should be studied properly in order
to produce a biocompatible and safe product. It has been reported
that artificial intelligence enabled nanomedicines can be used to
treat advanced cancer [107]. Hence, it is believed that a combina-
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tion of nanomedicines and artificial intelligence would be very
effective for the early detection of SARS-CoV-2 infection, repurpos-
ing of existing antiviral drugs and introducing new antiviral drug
moieties for treating COVID-19.
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