Skip to main content
. 2022 May 16;9:896810. doi: 10.3389/fcvm.2022.896810

Table 2.

Logistic regression analysis to predict severe CAD.

Variables Model 1: No adjustment Model 2: Age and sex-adjusted Model 3: Multivariate
OR (95%CI) P OR (95%CI) P OR (95%CI) P
Age 0.995 (0.978–1.012) 0.546 - - - -
Male vs. Female 2.253 (1.521–3.336) <0.001 - - 1.658 (1.048–2.624) 0.031
Smoking 1.680 (1.169–2.416) 0.005 1.204 (0.791–1.833) 0.385 - -
Diabetes 2.487 (1.706–3.627) <0.001 2.550 (1.733–3.751) <0.001 2.444 (1.509–3.958) <0.001
TG 1.323 (1.101–1.590) 0.003 1.340 (1.109–1.620) 0.002 1.182 (0.947–1.475) 0.139
HDL-C 0.149 (0.069–0.318) <0.001 0.184 (0.082–0.412) <0.001 0.232 (0.091–0.593) 0.002
Scr 1.009 (1.000–1.019) 0.057 1.004 (0.995–1.012) 0.391 - -
FBG 1.126 (1.040–1.219) 0.004 1.146 (1.056–1.243) 0.001 1.002 (0.909–1.104) 0.971
hsTnI 1.004 (1.000–1.008) 0.071 1.000(1.000–1.001) 0.210 - -
hsCRP 0.987 (0.932–1.046) 0.667 0.984 (0.928–1.044) 0.597 - -
IL-4 0.750 (0.607–0.927) 0.008 0.747 (0.605–0.923) 0.007 0.971 (0.750–1.256) 0.820
IL-12p70 0.551 (0.452–0.672) <0.001 0.566 (0.464–0.691) <0.001 0.572 (0.454–0.720) <0.001
IL-17 0.907 (0.870–0.946) <0.001 0.913 (0.876–0.952) <0.001 0.930 (0.886–0.976) 0.003
IFN-α 0.840 (0.750–0.942) 0.003 0.837 (0.746–0.939) 0.002 0.977 (0.848–1.124) 0.741

The dependent variable of logistics regression is whether patients have severe CAD, and the independent variables are age, sex, BMI, smoking, diabetes, TG, HDL-C, Scr, FBG, hsTnI, hsCRP, IL-4, IL-12p70, IL-17, IFN-α.

Model 1: Univariate logistic regression.

Model 2: Logistic regression after adjusted age and gender.

Model 3: Parameters with p <0.05 in Model 2 were subsequently entered into multivariate regression analysis.

Bold values signifies the statistical significance in logistics regression.