Skip to main content
. 2022 May 16;13:909040. doi: 10.3389/fgene.2022.909040

TABLE 2.

Accuracy of the important multi-label classifiers with different features on training and test datasets.

Method Feature Number of Features Accuracy
Training dataset Test dataset
RAKEL_RF Embedding features 702 0.542 0.536
RAKEL_SVM Embedding features 746 0.542 0.537
RAKEL_RF Embedding features 48 0.530 0.530
RAKEL_RF Domain features 26 0.429 0.426
RAKEL_SVM Domain features 27 0.429 0.428
RAKEL_RF Linkage features 233 0.462 0.460
RAKEL_SVM Linkage features 234 0.432 0.424
RAKEL_RF Domain and linkage features 221 0.470 0.462
RAKEL_SVM Domain and linkage features 227 0.449 0.433