
Comparing Bayesian early stopping boundaries for phase II 
clinical trials

Liyun Jiang1,2, Fangrong Yan1, Peter F. Thall2, Xuelin Huang2

1Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, 
Nanjing, China

2Department of Biostatistics, The University of Texas MD, Anderson Cancer Center, Houston, 
Texas

Summary

When designing phase II clinical trials, it is important to construct interim monitoring rules 

that achieve a balance between reliable early stopping for futility or safety and maintaining 

a high true positive probability (TPP), which is the probability of not stopping if the new 

treatment is truly safe and effective. We define and compare several methods for specifying 

early stopping boundaries as functions of interim sample size, rather than as fixed cut-offs, 

using Bayesian posterior probabilities as decision criteria. We consider boundaries with constant, 

linear, or exponential shapes. For design optimization criteria, we use the TPP and mean number 

of patients enrolled in the trial. Simulations to evaluate and compare the designs’ operating 

characteristics under a range of scenarios show that, while there is no uniformly optimal boundary, 

an appropriately calibrated exponential shape maintains high TPP while limiting the number of 

patients assigned to a treatment with an inferior response rate or an excessive toxicity rate.
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1 | INTRODUCTION

Before proceeding to a large-scale confirmatory phase III trial to compare a potential 

new anti-disease agent or combination treatment regimen, E, to standard treatment, S, 

pharmaceutical companies and medical research institutes usually conduct one or more 

single-agent phase II trials. The aim of phase II is to screen new treatments and identify 

promising candidates before investing the resources required by a phase III trial. In about 

two-thirds of phase II trials, E fails to achieve a pre-specified minimum level of efficacy. In 

many settings, a maximum tolerable dose (MTD) of a new agent first is chosen in a small 

phase I trial, hence at the start of phase II any estimate of the probability of toxicity has 
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low reliability, and excessive toxicity at the MTD is not unlikely.1 Phase II trial designs 

thus require carefully constructed monitoring rules for early stopping due to either futility 

or excessive toxicity.2,3 There always is a tension between the goals of avoiding the waste 

of human and financial resources by continuing to give patients a new treatment E that 

is either ineffective or excessively toxic, and incorrectly discarding a truly effective and 

acceptably safe new treatment. Futility and safety stopping rules are especially important 

in phase oncology II trials, which may have small sample sizes of about 30 to 80 patients 

and slow patient accrual rates, often one to two patients per month. It is not uncommon 

for a single-arm phase II oncology trial to take 2 to 3 years to complete. Ethical concerns 

may make early stopping rules for futility especially important if fatal outcomes are likely 

for cancer patients who do not achieve early response because they are given an ineffective 

experimental treatment. Efficient monitoring rules can (a) reduce the number of patients who 

receive ineffective or unsafe treatments, (b) reduce the financial cost of the trial, and (c) save 

patients for enrollment in other competing trials.

Any early stopping rules for futility or safety unavoidably cause some reduction of the true 

positive probability (TPP), which is the probability that a design’s monitoring rules do not 

stop a trial of an agent E that is truly both effective and safe. A design’s TPP quantifies 

its potential benefit to future patients. A well-designed phase II trial should achieve a 

balance between reliably monitoring futility and safety, and retaining reasonably high TPP. 

While a phase II design’s TPP sometimes is referred to as its “power,” here we do not test 

hypotheses, and thus we will refer to TPP rather than abusing the conventional definition of 

power used in frequentist hypothesis testing.

Bayesian designs for phase II clinical trials facilitate formally incorporating historical 

data and expert experience, easy sequential updating, and they are practical with small 

sample sizes. These features make them useful in many settings, including early phase 

oncology trials with frequent monitoring. There is a rich literature on Bayesian clinical 

trial designs. Thall et al,2,4–7 proposed a variety of Bayesian designs using posterior 

probabilities as criteria for interim monitoring of one or more outcomes. Tan and Machin8 

proposed a Bayesian two-stage design in which the parameters are calibrated on the 

basis of posterior probabilities. Sambucini9 accounted for the uncertainty of future data. 

Heitjan10 developed flexible Bayesian phase II designs with continuous monitoring based on 

predictive probabilities. Wathen and Thall11 proposed a Bayesian adaptive model selection 

method for optimizing the stopping boundary of a phase III group sequential trial with 

a time-to-event endpoint. There are numerous other publications dealing with Bayesian 

clinical trial designs,12–14 that include early stopping rules.

As an illustrative example, we consider a single-arm phase II trial designed using the 

method of Thall et al,4 to construct futility and safety monitoring rules. This study15 aims to 

investigate the dose-adjusted EPOCH regimen in combination with ofatumumab as therapy 

for patients with newly diagnosed or relapsed/refractory Burkitt leukemia. The maximum 

sample size is 30, with monitoring done for cohorts of 5 patients. The trial will be stopped 

early if, with posterior probability 0.95 or higher, the response rate with the new treatment 

is not at least 14% higher than the historical response rate. The historical response rate 

was assumed to be beta(73, 27) based on historical data, and the prior distribution for 
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the new treatment response rate was assumed to be beta(1.46, 0.54), which has the same 

mean as the historical response rate, but a much larger variance, so it may be considered 

non-informative. For toxicity monitoring, the trial will be stopped early if, with posterior 

probability 0.90 or higher, the toxicity rate with the experimental treatment is very likely to 

exceed 30%, based on a beta (0.6, 1.4) prior distribution. This Bayesian monitoring method 

gives the following stopping rules: stop for futility if [number of patients who respond to 

the new treatment]/[number of patients evaluated] is less than or equal to 2/5, 6/10, 10/15, 

14/20 or 17/25; and stop for unacceptably high toxicity if [number of patients with toxicity]/

[number of patients evaluated] is greater than or equal to 3/5, 5/10, 7/15, 9/20, or 11/25. This 

general methodology has been applied to design many other single-arm phase II trials.16,17

In this paper, we consider designs for a single-arm phase II trial of E with frequent futility 

and toxicity monitoring, after successive cohorts of m = 1 or 5 patients. We characterize 

anti-disease effect by a binary “efficacy” variable, sometimes called response, and also 

characterize one or more severe adverse treatment effects collectively as a binary “toxicity” 

variable. Our primary aims are to compare early stopping boundaries for efficacy and 

toxicity monitoring that have different shapes as functions of interim sample size, n, and 

identify nearly optimal boundaries for use in practice. We use posterior probabilities as 

stopping criteria, and explore four different futility stopping rules, each defined in terms 

of boundary shape and starting point. The first rule uses a constant cutoff for all interim 

analyzes and the final analysis (constant stopping boundary, CSB). Motivated by the concern 

that applying a stopping rule based on a very small early sample has an unacceptably 

high risk of incorrectly stopping an effective treatment,18 the second monitoring rule is a 

modification of CSB that does the first interim analysis at 10 patients, rather than at m = 1 

or m = 5 (constant stopping boundary with first analysis at n = 10, CSB10). The third rule 

uses a linearly increasing function of n, (linear stopping boundary, LSB). The fourth rule 

uses an exponential function of n (exponential stopping boundary, ESB). We do not include 

versions of LSB or ESB that are constrained to do the first interim analysis at 10 patients 

because these boundaries are highly unlikely to stop a trial before at least 10 patients have 

been evaluated. In order to focus on comparison of the three shapes CSB, LSB, and ESB, 

we use constant stopping boundaries for toxicity throughout. We consider two optimality 

criteria, TPP and the number of patients enrolled in the trial, which are both ethical and 

practical considerations.

There are several different types of ESBs, which at one extreme consists of no interim 

futility monitoring. We will show, by simulation, that the particular ESB we choose as best 

yields effective interim monitoring by stopping the trial with high probability if the agent 

is ineffective while maintaining good TPP, that is, minimizing loss due to early stopping 

for futility when an agent is truly effective and safe. The ethical goals are to maximize 

benefit for both the trial participants and future patients, in terms of TPP. To quantify how 

well a design performs for the trial participants, we also calculate the mean number of 

patients and percent responders for each stopping boundary. Our simulations will show that 

CSB, CSB10, LSB, and ESB yield designs with substantively different properties, especially 

compared with designs that have no futility monitoring.
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To consider optimization of futility monitoring rules, one may define, for example, a 

quantitative risk-benefit trade-off between TPP and the False Positive Probability (FPP), 

which is the probability of not stopping a trial early for an E that does not provide 

an improvement over standard treatment, S. One also may evaluate designs in terms of 

the number of patients who receive an ineffective treatment. Unavoidably, defining and 

quantifying such a trade-off is subjective. A thorough exploration of this issue might 

consider the total number of future patients who may benefit from the current trial, the 

total number of competing new treatments, and distributions of the efficacy and toxicity 

probabilities of these new treatments. All of these factors change over time with ongoing 

medical advances. Despite these challenges, optimization of futility monitoring rule shapes, 

per se, still is a very important issue, considering the potential impact on clinical trials in 

oncology and other areas of medical research. Based on our simulations, we conclude that 

some of our newly proposed futility stopping boundaries are close to optimal, with small 

room for further improvement. However, an exact answer to the question of which design 

may be considered optimal still depends on the specific criteria listed above.

The rest of the paper is organized as follows. In section 2, we introduce Bayesian trial 

designs, including notation, posterior probabilities, and choice of prior distributions. In 

section 3, we consider futility monitoring only. We first propose phase II designs with 

futility stopping boundaries based on a Bayesian posterior probability as a function of the 

trial’s current sample size. We then show how to calibrate design parameters and compare 

the operating characteristics (OCs) of different futility stopping boundaries under a range of 

different practical scenarios, using simulation as a design tool. In section 4, we compare the 

OCs of the different boundaries in trials with both futility and toxicity monitoring. We close 

with a discussion in section 5.

2 | BAYESIAN PHASE II TRIAL DESIGNS

The primary endpoint of a phase II trial is often a binary indicator of a “response” event, 

R, that corresponds to early treatment success (efficacy). To provide an initial efficacy 

assessment, a phase II trial often is designed as a single-arm, open-label study. Multi-stage 

designs with one or more monitoring rules applied after successive cohorts often are used 

so that the trial will be stopped early if the interim data show that the study drug is either 

inefficacious or too toxic. We compare E with a standard, S, using historical data to specify 

prior distributions for the response and toxicity probabilities of S.

Patients are enrolled into the trial sequentially, and we denote responses to E by YR, 1, YR, 2, 

…, where each YR, i = 1 if subject i has a response and 0 if not. Similarly, YT, i = 1 or 

0 indicates whether or not subject i experiences severe toxicity, T. Denote the maximum 

number of patients by N. For the interim analysis after the n-th patient (n < N), the total 

number of responses is XR, n = YR, 1 + … + YR, n, and the total number of toxicities is XT, n 

= YT, 1 + … + YT, n. Denote treatment by Tr = E or S, and denote the joint probability θk, ab 

= Pr(YR = a, YT = b| Tr = k), for a, b ∈ {0, 1} and k ∈ {E, S}. The marginal probabilities of 

R and T for treatment k are
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πk, R = θk, 10 + θk, 11 and πk, T = θk, 01 + θk, 11 .

We use the following posterior probabilities as interim monitoring criteria, with Datan 

denoting all observed data up to the n-th subject enrolled in the trial,

ϕn, R = Pr πE, R > πS, R + δ ∣ Datan , (1)

ϕn, T = Pr πE, T > πS, T ∣ Datan , (2)

where, δ is the targeted improvement in response probability for E over S. In our 

simulations, we use fixed δ = 0.2. We stop the trial for futility if ϕn, R is unacceptably 

small, specifically, if ϕn, R < b(n), where b(n) is a boundary function of one of the four forms 

CSB, CSB10, LSB, or ESB. In section 4, we also will include a rule to stop the trial if E 
is too toxic, specifically, if ϕn, T > t(n), where t(n) is a second boundary function used for 

toxicity monitoring. When two boundaries are used, the relevant OCs represent how these 

two rules work together.

Suppose that a historical data set of nh patients is available, with nh, R responders, and 

nh, T experiencing severe toxicity. We specify distributions of πS, R and πS, T empirically as 

follows:

πS, R beta nℎ, R
κ , nℎ − nℎ, R

κ , (3)

πS, T beta nℎ, T
κ , nℎ − nℎ, T

κ , (4)

where the parameter κ ≥ 1 may be used to discount the historical information. This is based 

on the consideration that, over time, the patient population may have changed, so if S were 

administered to the current patient population, it may have somewhat different efficacy and 

toxicity profiles than seen in the historical data. Consequently, the parameter κ is used to 

decrease the amount of information by increasing the variances in the above distributions. 

Using κ = 2 discounts the historical data by 50%, while κ = 1 does not do any discountimg. 

Because larger κ reduces the informativeness of the distributions of πS, R and πS, T, it affects 

how the stopping rules behave.

In the next Section, we define and compare different boundaries for futility monitoring only. 

In section 4, we consider monitoring for both futility and toxicity.

3 | COMPARING STOPPING BOUNDARIES FOR FUTILITY

3.1 | Different shapes of futility stopping boundaries

We assume prior distribution πE, R~ beta(α, β) having the same mean as πS, R, but with a 

much smaller amount of information. To specify this, we set α/(α + β) = nh, R/nh, and α + β 
= 1, that is, a prior effective sample size of 1. After observing XR, n = xR, n successes out of 
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the first n patients, the posterior of πE, R is beta(α + xR, n, β + n − xR, n), which is used to 

compute the decision criterion

ϕn, R = Pr πE, R > πS, R + δ ∣ Datan

with the distribution of πS, R specified in (3).

A very commonly used early stopping criterion for futility is a CSB (“Method I”). This 

futility monitoring rule stops patient accrual at the n-th patient if

ϕn, R < C1, with n = m, 2m, 3m, …, N, (5)

where C1 is a fixed small number, usually in the range 0.01 to 0.20. In practice, the value 

of C1 is calibrated by preliminary computer simulations to achieve a specified small false 

positive probability, FPP = probability of not stopping the trial early, if E does not provide 

an improvement over S. For example, in our simulation study given below, we consider a 

trial with πS, R ~ beta(30, 70) and δ = 0.20, maximum sample size N = 40, and interim 

analyzes conducted after the outcomes of each cohort of m = 5 patients have been evaluated. 

We study the sensitivity of this rule to values of C1 from 0.001 to 0.20 in increments of 

0.001, and do 10,000 simulations for each value of C1 in the setting where the fixed value 

πE, R
true = E πS, R = p0, to estimate the FPP with each C1. We found that C1 = 0.092 achieves 

FPP =0.05 when πE, R
true = p0 = 0.30. With this value C1 = 0.092, the futility rule resulting from 

Equation (5) is to stop the trial if [number of successes]/[number of patients evaluated] is 

≤1/5, 3/10, 4/15, 7/20, 9/25, 11/30, 13/35 or 15/40. This is shown as the thin solid line in 

Figure 1. R code to find C1 (as well as C2 to C5, below) and accompanying documentation 

are provided as supplementary materials. If the trial is not stopped at any interim analyzes, 

E is regarded as promising, and the trial’s result is nominally “positive.” Otherwise, E is 

discarded and the trial is “negative.” We use these definitions of positive and negative trials 

in the calculations of the true positive and false positive probabilities, TPP and FPP, in the 

simulations, presented in the next Section. In addition, for practical application, we give the 

futility rules of each type of stopping boundary in terms of [number of successes]/[number 

of patients] in supplementary materials (Tables S1 and S2).

A major problem with the CSB futility monitoring rule is that it may be too likely to stop the 

trial early, when ϕn, R is most variable, resulting in a substantial loss of TPP. A simple way to 

address this problem is to do the first interim analysis at 10 patients, that is, change CSB to 

CSB10 (“Method II”), which stops the trial if

ϕn, R < C2, for n = 10, 10 + m, …, N, (6)

where C2 is calibrated in the same way as C1.

A general way to re-define the stopping rules is to define boundaries that change over time 

as functions of current sample size, n, making it harder to stop at early stages and easier to 

stop at later stages. Our goal is to improve the design’s TPP, while still reliably stopping 

accrual for truly inefficacious or unsafe E. Motivated by these considerations, we propose 
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two new designs, “Method III” and “Method IV”. Method III uses LSB, with a monitoring 

rule that stops accrual for futility if

ϕn, R < n
N C3, for n = m, 2m, 3m, …, N, (7)

where C3 is calibrated similarly to C1 and C2. The LSB is less likely to stop at the early 

stages than the later stages of a trial, shown by the dashed line in Figure 1. This reduces the 

probability that the trial will be stopped prematurely based on limited information from only 

a few patients.

For Method IV, we define an ESB, which behaves more strictly at the early stages and more 

loosely at the later stages compared to the LSB. The ESB stops accrual for futility if

ϕn, R < exp 5n
N C4, for n = m, 2m, 3m, …, N, (8)

where C4 is calibrated in the same way as C1, C2, and C3. The ESB is represented by the 

dotted line in Figure 1.

We also consider a design without an early stopping rule. Since the interim stopping 

boundary is zero in this case, we call it the “zero stopping boundary (ZSB)” design. The 

ZSB is Method V, an extreme case where the trial will never be stopped early, and at the end 

one concludes futility if

ϕN, R < C5, (9)

with C5 calibrated to achieve a pre-specified FPP. The ZSB is represented by the dot-dashed 

line in Figure 1.

3.2 | Comparisons between the stopping boundaries

We first calibrated the parameters C1, C2, C3, C4 and C5 to achieve the same FPP (denoted 

by α) for all designs, to ensure comparability. The resulting designs were used to simulate 

trials under a range of scenarios to estimate and compare the TPPs of CSB, CSB10, LSB, 

ESB and ZSB. We evaluated the futility rules under three scenarios for different values of N, 

m, α, and πS, R, with TPP for given πE, R the main quantity of interest used for comparison. 

We considered α = 0.05 and 0.10 in all three scenarios. In Scenario 1, we set N = 40 or 

80, with fixed cohort size m = 5 and πS, R = 0.3. In Scenario 2, we set m = 1 (continuous 

monitoring) or m = 5, with fixed N = 40 and πS, R = 0.3. In scenario 3, we set πS, R = 0.3 

or 0.5, with fixed N = 40 and m = 5. We conducted 10,000 simulations of each case in each 

scenario. The results are displayed in Figures 2–4. In all of these plots, the TPP of the LSB 

is always substantially larger than that of CSB and CSB10, while the TPP levels of ESB and 

ZSB are slightly better than those of LSB. Although ZSB does not suffer from TPP loss due 

to early stopping, it can be seen from the plots that its gain in TPP over ESB is negligible. 

This indicates that the room for improvement over ESB on TPP is small. Thus, we conclude 

that ESB successfully maintains high TPP, with only a small TPP loss due to early futility 

stopping.
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The simulations show that, as the stopping boundary curve gets closer to the ZSB, that is, 

the stopping boundary becomes tighter, more TPP is gained. However, we also note that 

ZSB, which has no interim futility stopping, is a very undesirable design, because it provides 

no protection in the cases where E is not more efficacious than S, or has lower efficacy.

To provide some background, it is useful to consider what often occurs when evaluating 

new drugs. In practice, it very often turns out that a new E is no better than S, or has a 

lower response rate. To compare the five boundary shapes with this in mind, we performed 

simulations to examine the mean number of patients enrolled for different true πE, R. In 

these simulations, we set N = 40 or 80, πS, R = 0.30 or 0.5, m = 5 and control FPP = 0.05. 

In each simulated trial, we recorded the number of patients enrolled. Based on all simulated 

trials, we used the mean number of patients enrolled to compare the performances of the 

different futility stopping boundaries. In each case considered, πE, R
true might be less than, equal 

to, or larger than πS, R. Thus, this simulation study shows how reliably each design either 

correctly stops the trial when it should stop, that is, when (πE, R
true ≤ πS, R), or correctly does 

not stop the trial when it should not stop, that is, when (πE, R
true > πS, R), with performance 

evaluated in terms of the mean number of patients enrolled. The simulations show that, when 

E is worse than S (eg, πE, R
true = 0.20), as expected the ZSB (no interim futility stopping) gives 

the highest mean number of patients enrolled (see Figure 5). The other four designs, that 

include interim futility monitoring, result in substantially lower mean numbers of patients 

enrolled. For example, when N = 80, πS, R = 0.3, πE, R = 0.2, ZSB always enrolls all 80 

patients, while all of the other four designs enroll less than 30 patients, on average, and thus 

prevent more than 50 patients from receiving an inferior treatment. This is a compelling 

reason for using futility monitoring rules. In all of the four scenarios in Figure 5, when the 

new drug is less efficacious than the standard drug by .10, ESB always enrolls on average 

about 20 patients, while the other three designs, CSB, CSB10, and LSB, may enroll about 

only 10 patients.

There are many other considerations when conducting a phase II trial, including patient 

heterogeneity, and comparability between current and historical patient populations. While 

more elaborate designs may address these issues, as the phase II design of Wathen et 

al11 that accommodates heterogeneous patients, in general a trial should enroll a sufficient 

number of patients to reliably prevent premature early stopping. With this consideration in 

mind, the comparatively larger number of patients enrolled by ESB in such scenarios should 

be regarded as reasonably conservative and acceptable. In addition, we also calculated the 

percentage of responders for different true πS, R, shown in supplementary materials (Table 

S3).

Considering the above simulations together shows that there is no uniformly optimal early 

stopping boundary. In general, if E has a higher true response rate than S, then LSB, ESB 

and ZSB have higher TPP than CSB and CSB10. On the other hand, if E has a lower true 

response rate than S, then CSB, CSB10, LSB, and ESB all are likely to stop assigning 

patients to such an ineffective treatment, and they all result in much lower numbers of 

patients enrolled than ZSB. Considering these optimistic and pessimistic cases together, we 

believe that both LSB and ESB provide a good balance between retaining large TPP and still 
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preventing assignment of an unacceptably large number of patients to an inferior E. Overall, 

they are more ethically more desirable than ZSB. If one wishes to choose which of the two 

is closer to being optimal, it appears ESB is slightly better than LSB, considering all of the 

simulations.

To further evaluate the performance of ESB, we compared it with Simon’s optimal 

and minimax two-stage designs. The comparisons are summarized in Table 1. In the 

null scenario, where πE, R
true = πS, R, calibrating the designs to have the same FPP for 

comparability, ESB has mean number of patients enrolled, E(N), very similar to Simon’s 

Optimal and MiniMax designs (25.2 vs 23.6 and 25.7), but ESB has a much higher 

probability of early termination (PET) (.875 vs .713 and .666), and a slightly higher TPP 

(.82 vs .80 and .80). These results demonstrate that the main advantage of ESB over Simon’s 

two-stage designs is its much larger PET when πE, R
true = πS, R). This is due mainly to the 

fact that ESB has multiple interim analyzes while the Simon designs have only one interim 

analysis.

4 | MONITORING FUTILITY AND TOXICITY SIMULTANEOUSLY

In this section, we consider designs with two monitoring rules, a safety rule for toxicity and 

a futility rule for efficacy. To focus on comparison of how the different boundary shapes 

behave in this more general setting, we use a CSB for the safety rule. As before, we use 

the priors given in section 3 for the response rates πS, R and πE, R. We also assume that 

prior distributions for the toxicity probabilities used by the different monitoring designs are 

identical, with πS, T~ beta (30, 70) for S and πE, T~ beta(0.30,0.70) for E. Thus, if XT, n = 

xT, n patients out of the first n experience toxicity, then the posterior distribution of πE, T 

is beta(0.30 + xT, n,0.70 + n − xT, n). For the toxicity rule criterion, we use the posterior 

probability ϕn, T = Pr(πE, T > πS, T| Datan). If ϕn, T > CT, then the trial is stopped for toxicity, 

where CT is a constant. We set CT = 0.85, which implies that the trial is stopped for toxicity 

if [the number of toxicities observed]/[number of patients evaluated] ≥ 3/5, 5/10, 7/15, 9/20, 

11/25, 13/30, 14/35, or 16/40. The early toxicity stopping probability is high when the drug 

is excessively toxic, such as pE, T
true = 0.50. Temporarily ignoring the early stopping rule for 

futility, the early stopping probabilities due to toxicity for CT = 0.85 considered per se are 

given in Table 2.

With two monitoring rules, a trial is considered a success only if it is not stopped by 

either the futility rule or the toxicity rule. We consider the previous five futility stopping 

boundaries, CSB, CSB10, LSB, ESB and ZSB, now applied with the above safety rule. We 

compare the five futility rules, each used with the CSB toxicity rule, for each of the three 

assumed true toxicity probabilities pE, T
true = 0.10, 0.30 and 0.50, which may be considered 

slight, moderate, and excessive toxicity. We use the calibrated futility boundaries in section 3 

and toxicity boundary CT = 0.85 in the simulations.

Table 3 shows the OCs of the four designs, evaluated under each of the following four 

scenarios of response and toxicity probabilities:

Jiang et al. Page 9

Pharm Stat. Author manuscript; available in PMC 2022 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• In the first scenario, the response probabilities are low, such as 0.20, and the 

designs CSB, CSB10, LSB, and ESB all have the stopping probabilities above 

.09, regardless of pE, T
true . However, unless E is excessively toxic with pE, T

true = 0.50, 

the probability of stopping under ZSB is very low. This shows the importance of 

including a futility monitoring rule.

• In the second scenario, where pE, T
true  is as high as 0.50, the probabilities of 

stopping are all above .09 for all four designs, regardless of pE, R
true . This illustrates 

the importance of including a safety monitoring rule.

• In the third scenario, E is desirable, with negligible toxicity pE, T
true = 0.10 and high 

pE, R
true = 0.50. The early stopping probabilities decrease in order for CSB, CSB10, 

LSB, ESB, and ZSB. This demonstrates the advantages of using LSB, ESB or 

ZSB over CSB or CSB10 in this scenario.

• In the fourth scenario, where the toxicity probability is relatively high, pT = 0.30, 

and the response probability is low, pE = 0.30, early stopping is desirable. In 

these scenarios, the probabilities of being stopped early by ESB, LSB, CSB10 

or CSB are higher than that by ZSB, demonstrating advantages of these four 

boundaries over the ZSB in this scenario of an unfavorable E.

In summary, considering all of the above scenarios, ESB and LSB have desirable OCs 

in all scenarios, whereas the CSB, CSB10 and ZSB have very undesirable properties 

in some scenarios. Consequently, we recommend that ESB or LSB be used, since the 

differences between them are small. R code for simulating the designs is available at https://

odin.mdacc.tmc.edu/~xhuang/.

5 | DISCUSSION

For futility monitoring in single-arm phase II clinical trials, in addition to the commonly 

used constant stopping boundary (CSB) and constant stopping boundary with first interim 

look at 10 patients (CSB10), we have proposed two new Bayesian adaptive phase II designs 

for early futility stopping, using either a linear stopping boundary (LSB) or exponential 

stopping boundary (ESB). The LSB and ESB designs define the early stopping boundaries 

as functions of the number of patients enrolled. They are conservative in that they are 

unlikely to stop the trial in the early stages, but gradually relax as more patients are enrolled 

and more treatment outcome data accumulates. The LSB and ESB designs both reduce TPP 

loss due to early stopping compared to CSB or CSB10, and provide a good balance between 

frequently monitoring the trial for futility, and reducing the number of patients who receive 

ineffective treatments.

While we have used Bayesian designs for frequent monitoring, there is a rich literature on 

choosing the shape of futility monitoring boundaries19 for frequentist hypothesis test based 

designs. However, most of these methods are based on p-values derived from large sample 

approximations, which may be inappropriate for phase II trials with small to moderate 
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sample sizes. Bayesian methods offer easy real-time computation for updating posterior 

probabilities, and thus make it easy to implement frequent trial monitoring rules.

Although the proposed designs can be applied to any single-arm phase II clinical trial with 

binary outcomes, they are especially appealing for oncology trials, which often have small 

sample sizes. This is because most cancers are highly heterogeneous, which effectively 

makes each cancer subtype a rare disease. Many cancer trials focus on a particular cancer 

subtype defined by tumor location, stage, number of previous treatments, and possibly 

molecular mutations or other biomarkers. Thus, many cancer trials evaluate a small patient 

subpopulation, and have slow patient accrual rates, which make it feasible to do frequent 

futility monitoring. The need to frequently monitor cancer trials often is motivated by 

potentially fatal outcomes for their participants and the large number of toxic oncology 

drugs with unknown anti-disease activity. Thus, it is ethically appealing to conduct futility 

and safety monitoring frequently, starting early in the trial with reasonably small cohort 

sizes, rather than starting only after a large number of patients have been enrolled. Bayesian 

designs are particularly appealing in such settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

The research of F.Y. was supported in part by National Natural Science Foundation of China(General Program), 
Funding No. 81973145. The research of X.H. was supported in part by USA NIH grants U54 CA096300, 
U01 CA152958 and 5P50 CA100632, and the Dr. Mien-Chie Hung and Mrs. Kinglan Hung Endowed 
Professorship. The research of P.T. was supported by NIH/NCI grants 2P30 CA016672 43, 5P50CA140388-09l, 
and 5P01CA148600-08.

Funding information

National Cancer Institute, Grant/Award Numbers: 5P50 CA100632, U01 CA152958, U54 CA096300; National 
Natural Science Foundation of China (General Program), Grant/Award Number: 81973145

DATA AVAILABILITY STATEMENT

There are no real data used in this article. All results are based on computer-simulated data. 

The R code for simulations is available at https://odin.mdacc.tmc.edu/~xhuang/.

REFERENCES

1. Yuan Y, Nguyen HQ, Thall PF. Bayesian Designs for Phase I-II Clinial Trials. Boca Raton, FL, 
USA: Chapman & Hall; 2016.

2. Thall P, Simon R. Practical guidelines for phase iib clinical trials. Biometrics. 1994;50:337–349. 
[PubMed: 7980801] 

3. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates 
for investigational drugs. Nat Biotechnol. 2014;32(1):40–51. [PubMed: 24406927] 

4. Thall PF, Simon RM, Estey EH. Bayesian sequential monitoring designs for single-arm clinical 
trials with multiple outcomes. Stat Med. 1995;14(4):357–379. [PubMed: 7746977] 

5. Thall PF, Sung HG, Estey EH. Selecting therapeutic strategies based on efficacy and death in 
multicourse clinical trials. J Am Stat Assoc. 2002;97(457):29–39.

Jiang et al. Page 11

Pharm Stat. Author manuscript; available in PMC 2022 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://odin.mdacc.tmc.edu/~xhuang/


6. Thall PF, Wathen JK. Covariate-adjusted adaptive randomization in a sarcoma trial with multi-stage 
treatments. Stat Med. 2005;24(13):1947–1964. [PubMed: 15806621] 

7. Thall PF, Wooten LH, Shpall EJ. A geometric approach to comparing treatments for rapidly fatal 
diseases. Biometrics. 2006;62(1):193–201. [PubMed: 16542246] 

8. Tan S, Machin D, Tai B, Foo K, Tan E. A Bayesian re-assessment of two phase II trials of 
gemcitabine in metastatic nasopharyngeal cancer. Br J Cancer. 2002;86(6):843–850. [PubMed: 
11953813] 

9. Sambucini V A Bayesian predictive two-stage design for phase II clinical trials. Stat Med. 
2008;27(8):1199–1224. [PubMed: 17763528] 

10. Heitjan DF. Bayesian interim analysis of phase II cancer clinical trials. Stat Med. 
1997;16(16):1791–1802. [PubMed: 9280033] 

11. Wathen JK, Thall PF. Bayesian adaptive model selection for optimizing group sequential clinical 
trials. Stat Med. 2008;27(27):5586. [PubMed: 18752257] 

12. Zohar S, Teramukai S, Zhou Y. Bayesian design and conduct of phase II single-arm clinical trials 
with binary outcomes: a tutorial. Contemp Clin Trials. 2008;29(4):608–616. [PubMed: 18201945] 

13. Cai C, Liu S, Yuan Y. A Bayesian design for phase II clinical trials with delayed responses based 
on multiple imputation. Stat Med. 2014;33(23):4017–4028. [PubMed: 24817556] 

14. Cheung Y, Thall PF. Monitoring the rates of composite events with censored data in phase II 
clinical trials. Biometrics. 2002;58(1):89–97. [PubMed: 11890331] 

15. Jabbour E URL https://clinicaltrials.gov/ct2/show/NCT02199184

16. Jabbour E, Ravandi F, Kebriaei P, et al. Salvage chemoimmunotherapy with inotuzumab 
ozogamicin combined with mini-hyper-cvd for patients with relapsed or refractory philadelphia 
chromosome-negative acute lymphoblastic leukemia: a phase 2 clinical trial. JAMA Oncol. 
2018;4(2):230–234. 10.1001/jamaoncol.2017.2380. [PubMed: 28859185] 

17. Jabbour E, Short N, Ravandi F, et al. Combination of hyper-cvad with ponatinib as first-line 
therapy for patients with philadelphia chromosome-positive acute lymphoblastic leukaemia: 
long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018;5(12):e618–e627. 
10.1016/S2352-3026(18)30176-5. [PubMed: 30501869] 

18. Berry SM, Broglio KR, Groshen S, Berry DA. Bayesian hierarchical modeling of patient 
subpopulations: efficient designs of phase II oncology clinical trials. Clin Trials. 2013;10(5):720–
734. [PubMed: 23983156] 

19. Jennison C, Turnbull B. Group Sequential Methods with Applications to Clinical Trials. Boca 
Raton and London: Chapman and Hall/CRC; 2000.

Jiang et al. Page 12

Pharm Stat. Author manuscript; available in PMC 2022 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT02199184


FIGURE 1. 
Futility stopping boundaries at each interim analysis (n = 5, 10, …, 40) for the five designs: 

Constant stopping boundary (CSB, thin solid line), Constant stopping boundary with first 

interim at 10 (CSB10, thick solid line), linear stopping boundary (LSB, dashed line), 

exponential stopping boundary (ESB, dotted line), and no early stopping (or Zero Stopping 

Boundary, ZSB, dot-dashed line), respectively, under N = 40, m = 5, πS, R = 0.30, δ = 0.2, α 
= 0.05
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FIGURE 2. 
Plots of TPP for designs with constant stopping boundary (CSB, solid line), constant 

stopping boundary with first interim look at 10 patients (CSB10, longdashed line), linear 

stopping boundary (LSB, dashed line), exponential stopping boundary (ESB, dotted line), 

and zero stopping boundary (ZSB, dot-dashed line), respectively, as functions of true πE, R
true

changing from 0.40 to 0.60, for N = 40 or 80 with m = 5, πS, R
true = 0.30, α = 0.05 or 0.10
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FIGURE 3. 
Plots of TPP for designs with constant stopping boundary (CSB, solid line), constant 

stopping boundary with first interim at 10 (CSB10, longdashed line), linear stopping 

boundary (LSB, dashed line), exponential stopping boundary (ESB, dotted line), and zero 

stopping boundary (ZSB, dot-dashed line), respectively, as functions of true πE, R
true  changing 

from 0.4 to 0.60, for m = 1 or 5 with N = 40, πS, R
true = 0.30, α = 0.05 or 0.10
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FIGURE 4. 
Plots of TPP for designs with constant stopping boundary (CSB, solid line), constant 

stopping boundary with first interim at 10 (CSB10, long dashed line), linear stopping 

boundary (LSB, dashed line), exponential stopping boundary (ESB, dotted line), and zero 

stopping boundary (ZSB, dot-dashed line), respectively, as functions of πE, R
true  changing from 

0.40 to 0.60 or from 0.60 to 0.80, for πS, R
true = 0.30 or 0.50 with N = 40, m = 5, α = 0.05 or 

0.10
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FIGURE 5. 
Plots of mean number of patients enrolled for designs with constant stopping boundary 

(CSB, solid line), constant stopping boundary with first interim at 10 (CSB10, longdashed 

line), linear stopping boundary (LSB, dashed line), exponential stopping boundary (ESB, 

dotted line), and zero stopping boundary (ZSB, dot-dashed line), respectively, as functions 

of true πE, R
true  changing from 0.20 to 0.60 or from 0.40 to 0.80, for N = 40 or 80, πS, R = 0.30 

or 0.50 with m = 5, α = 0.05
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TABLE 1

Comparison between ESB and Simon 2-stage design under null scenario with πS, R
true = 0.30 and πE, R

true = 0.50

Methods FPP TPP N E(N) PET

Simon_Optimal 0.05 0.80 46 23.63 0.71

Simon_MiniMax 0.05 0.80 39 25.69 0.66

ESB 0.05 0.82 40 25.18 0.87
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TABLE 2

Operating characteristics under toxicity stopping boundary CT = 0.85

Toxicity stopping boundary CT = 0.85, N = 40, m = 5

[Number of toxicities observed]/[Number of patients]≥3/5, 5/10, 7/15, 9/20, 11/25, 13/30, 14/35, 16/40

πE, T
true Probability of early toxicity stopping Sample size percentiles (10, 25, 50, 75, 90)

0.10 0.01 40 40 40 40 40

0.20 0.09 40 40 40 40 40

0.30 0.34 5 15 40 40 40

0.40 0.73 5 5 15 40 40

0.50 0.95 5 5 5 15 30
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TABLE 3

Operating characteristics of a design with joint monitoring of futility and toxicity: πE, R
true = 0.2 or 0.3 is too low, 

implying a need to stop

πE, R
true πE, T

true
Probability of stopping

CSB CSB10 LSB ESB ZSB

0.20 0.10 1.00 1.00 1.00 1.00 0.01

0.30 1.00 1.00 1.00 1.00 0.32

0.50 1.00 1.00 1.00 1.00 0.95

0.30 0.10 0.94 0.93 0.91 0.88 0.01

0.30 0.96 0.95 0.94 0.92 0.32

0.50 1.00 1.00 0.99 0.99 0.95

0.40 0.10 0.68 0.65 0.55 0.46 0.01

0.30 0.78 0.76 0.70 0.64 0.32

0.50 0.98 0.98 0.98 0.97 0.95

0.50 0.10 0.34 0.29 0.18 0.11 0.01

0.30 0.55 0.51 0.44 0.39 0.32

0.50 0.96 0.96 0.96 0.95 0.95

Note: πE, R
true = 0.4 or 0.5 is good, implying no need to stop. πE, T

true = 0.5 is too toxic, implying a need to stop. πE, T
true = 0.1 is not bad, 

implying no need to stop. πE, T
true = 0.3 is borderline. Desirable clinical scenarios are highlighted in bold.
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