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Abstract

Purpose: To develop an accelerated, robust, and accurate diffusion MRI acquisition and 

reconstruction technique for submillimeter whole human brain in-vivo scan on a clinical scanner.

Methods: We extend the ultra-high resolution diffusion MRI acquisition technique, gSlider, by 

allowing under-sampling in q-space and Radio-Frequency (RF)-encoded data, thereby accelerating 

the total acquisition time of conventional gSlider. The novel method, termed gSlider-SR, 

compensates for the lack of acquired information by exploiting redundancy in the dMRI data 

using a basis of Spherical Ridgelets (SR), while simultaneously enhancing the signal-to-noise 

ratio. Using Monte-Carlo simulation with realistic noise levels and several acquisitions of in-vivo 

human brain dMRI data (acquired on a Siemens Prisma 3T scanner), we demonstrate the efficacy 

of our method using several quantitative metrics.

Results: For high-resolution dMRI data with realistic noise levels (synthetically added), we 

show that gSlider-SR can reconstruct high-quality dMRI data at different acceleration factors 

preserving both signal and angular information. With in-vivo data, we demonstrate that gSlider-SR 

can accurately reconstruct 860 μm diffusion MRI data (64 diffusion directions at b = 2000 s/mm2), 

at comparable quality as that obtained with conventional gSlider with four averages, thereby 

providing an eight-fold reduction in scan time (from 1 h 20 min to 10 min).

Conclusion: gSlider-SR enables whole-brain high angular resolution dMRI at a submillimeter 

spatial resolution with a dramatically reduced acquisition time, making it feasible to use the 

proposed scheme on existing clinical scanners.
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1 Introduction

Diffusion MRI (dMRI) is a non-invasive imaging modality that permits the characterization 

of tissue microstructure as well as the structural connectivity of the human brain (1, 2). As 

it is sensitive to neural architecture, it is increasingly being used in the clinical investigation 

of several brain disorders (3, 4). dMRI holds the promise of being a key tool to explore 

and understand the human brain at an unprecedented level of detail. In the quest for a rich 

and detailed understanding of the human brain, it is the image resolution of dMRI that 

is the main limitation and is the focus of active research of the MRI community. Indeed, 

in clinical settings, diffusion-weighted images (DWI) are typically acquired at an isotropic 

resolution of 2 mm (5, 6). This causes undesirable partial volume effects, especially at the 

interface of different tissue types, such as the gray and white matter boundary. The limited 

resolution also has a significant impact on both white and gray matter studies. For example, 

in the superficial white matter regions, there is an abundance of short cortical association 

fibers (U-fibers) that connect cortical regions between adjacent gyri, which are difficult to 

trace at current resolutions. Increasing the current dMRI resolution will reduce the large 

partial volume effects, and facilitate the analysis of small structures that remain “hidden” at 

isotropic resolution of 2 mm (6).

Unfortunately, increasing the dMRI resolution, or equivalently, reducing the voxel size, is 

challenging since the Signal-to-Noise-Ratio (SNR) is proportional to the size of the voxel 

(7). A 1 mm isotropic dMRI acquisition will have eight times lower SNR compared to a 2 

mm isotropic acquisition. While the SNR can be increased using multiple acquisitions and 

averaging, nevertheless, because the SNR is proportional to the square root of the number 

of averages, at least 64 repetitions would be needed to match the SNR of a 2 mm isotropic 

acquisition (6). Naturally, the total acquisition time of this averaging protocol is prohibitive, 

making this kind of approach impractical for human in-vivo settings.

The trade-off between image resolution, SNR, and acquisition time can be circumvented 

using super-resolution based methods. Super-resolution methods fall in the category of 

reconstruction frameworks where a high-resolution image is estimated from a set of low-

resolution images, each one sampled with different geometric schemes. Formulated as 

the solution of an inverse problem, the restored image (or the super-resolution image), 

suffers less from SNR penalty than a direct isotropic acquisition since the SNR of the 

low-resolution images, normally, thick-slices images, is substantially higher. As the total 

acquisition time of the set of thick-slice images is comparable to that of the direct isotropic 

acquisition, super-resolution based methods effectively break the trade-off between image-

resolution and SNR. Super-resolution was first applied in the context of MRI in (8), and ever 

since has been used in a multitude of cases, e.g, anatomical MRI (9, 10, 11, 12), quantitative 

relaxometry (13), and diffusion MRI (8, 14, 15, 16, 6). All of these super-resolution methods 

have been conceived and tested for resolutions > 1 mm. Recently, a multi-shot and multi-

slab acquisition sequence was proposed in (17, 18) for submillimeter dMRI acquisition. This 

scheme has the advantage of good SNR, but at the cost of long acquisition times (about 30 

min of scan time for only 12 gradient directions) along with complications from inter-slab 

registration due to head motion.
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A turning-point in submillimeter diffusion MRI acquisition was the introduction of Slice 

Dithered Enhanced Resolution (Slider) (19) and recently the Generalized Slice Dithered 

Enhanced Resolution (gSlider) method (5). gSlider is an acquisition framework that 

utilizes a novel radio frequency (RF) encoding basis to excite multiple slabs of the 

whole human brain simultaneously, and then combine them to create a high-resolution 

thin-slice reconstructed volume. Specifically, several RF slab-encoded volumes are acquired 

in consecutive TRs, each volume encoded by a given “component” of what is called an 

RF-encoding basis, i.e., encoded by a particular RF excitation profile selected from a 

group of predefined RF waveforms (the basis). The elements of the RF-encoding basis are 

specifically designed to be highly independent between each other along with having a 

larger slice thickness to allow for increased SNR. When the simultaneously acquired slabs 

are unaliased with blipped-CAIPI, the set of RF-encoded thick-slice diffusion-weighted 

imaging (DWI) volumes are used to reconstruct a super-resolution thin-slice DWI volume 

using standard Tikhonov regularization (5). gSlider has been successfully applied to 

reconstruct diffusion MRI data with spatial isotropic resolution ranging from 660 μm to 

860 μm with b-values between 1500 s/mm2 and 1800 s/mm2 (5, 20, 21).

To obtain high SNR and high angular resolution dMRI data, the current gSlider protocol 

requires long acquisition time. However, the redundancy within the RF-encoding as well 

as the different gradient directions (or q-space points) can be exploited to reduce the 

acquisition time dramatically to make it clinically feasible for whole-brain (submillimeter) 

in-vivo acquisition. In this work, we exploit this redundancy and propose an algorithm 

(termed gSlider-SR) to reconstruct high SNR gSlider data using a basis of spherical ridgelets 

(SR), which has been shown to be a highly sparse basis for dMRI data reconstruction, 

thereby allowing large undersampling factors (22, 23, 24, 25, 26, 27, 28). Specifically, 

for each diffusion direction, we propose to excite the slab-encoded volumes with just a 

subset of the RF-waveforms that constitute the RF-encoding basis of gSlider. Therefore, 

contrary to conventional gSlider, where each slab-encoded DWI volume that is probed at 

a given q-space point is encoded with all of the components of the RF-encoding basis, 

here we only employ a small subset of that basis. To provide complementary diffusion 

information, the subset of RF-encoding components is not static but varies along different 

q-space points. Note that within gSlider-SR, data from the RF-enconding space and the 

q-space is undersampled simultaneously, in a interleaved, synergistic fashion, offering 

more versatility than that achieved when undersampling is performed along a single 

dimension only, i.e., fully-sampled RF-encoding data with undersampled q-space data. 

Reconstructing thin-slice DWI volumes from such an undersampled set of measurements is 

an ill-posed, super-resolution reconstruction problem. However, we can cast this problem 

as that of reconstructing the entire dataset from a sparse set of measurements from 

the now unified RF-q space. Equipped with spherical ridgelets (SR), we recover the 

thin-slice DWI set by solving a constrained l1 minimization problem whose theoretical 

background relies on the theory of Compressed-Sensing. We also accommodate for partial 

Fourier reconstruction and phase modeling in the gSlider-SR framework, which allows 

for estimating the thin-slice DWI set directly from complex thick-slice DWI sets, thereby 

avoiding noise bias that appears when working with magnitude data and high b value (29). 

We devised an optimization algorithm that solves for the l1 minimization and the non-linear 
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phase estimation problem simultaneously, allowing phase inconsistencies between different 

diffusion gradient directions. We validate gSlider-SR both qualitatively and quantitative with 

Monte-Carlo (MC) based simulations and in-vivo human brain data, where we showcase 

an accurate reconstruction of 64 DWI volumes (b = 2000 s/mm2) with 860 μm isotropic 

resolution in a scan time of approximately ten minutes.

An earlier version of the proposed gSlider-SR has been presented as an abstract at ISMRM 

2016 (30). Spherical Ridgelets sparse basis were also used in the context of compressed-

sensing to solve a super-resolution reconstruction problem with multiple overlapping sub-

pixel shifted thick slices (6). In contrast to overlapping sub-pixel thick slices, we employ 

here gSlider slab encoded with different RF-pulses, which excite the sub-slices of the 

slab/thick-slice with different, spatially-variant patterns. We then constructed a substantially 

different forward-model than that of (6), which now accommodates for the particularities of 

the gSlider acquisition as well as phase modeling and partial Fourier reconstruction, which 

are inexistent in the work of (6). Note that unlike gSlider-SR, the work of (6) is designed 

for work with magnitude data only, which may incur in unacceptable noise bias for high b 
value acquisition (29). gSlider-SR then is statistically optimal since the data fidelity term of 

the cost function is adapted to Gaussian distributed data, and complex thick-slices DWI sets 

are coil-combined with the adaptive combine technique (31) which, being a linear operator, 

preserves Gaussian statistics (32). On top of that, gSlider-SR integrates an iterative affine 

registration step for in-vivo human brain data that accounts for eddy-current distortion as 

as well as rigid motion. Finally, the quantitative validation is substantially extended with 

a comprehensive Monte-Carlo based experiments, that includes High Angular Resolution 

Diffusion Imaging (HARDI)-based metrics.

2 Theory

2.1 Conventional gSlider reconstruction

In this section, the basic theory of conventional gSlider-based acquisition and reconstruction 

is covered. We also introduce the mathematical notation that will be used throughout the rest 

of the paper. In what follows, for simplicity, it is assumed that the simultaneously acquired 

gSlider slabs have been unaliased with parallel imaging and transformed into complex 

image space with a given coil combine technique. In a gSlider-based acquisition, each slab 

is encoded with K different Radio-Frequency pulses, whose corresponding slice-selective 

encoding profiles are shown in Fig.1.(a). The set of the K RF-profiles are called here 

a RF-encoding basis, and each of its RF-encoded profiles, the components of the basis. 

Those are designed to probe a thick slab (thickness: ∆z mm) in K different ways, exciting 

the sub-slices that constitute the slab with a distinctive, spatially-variant pattern. From the 

K measurements, i.e., the thick-slices encoded values (Fig.1.(b)), one can resolve the K 
sub-slices that formed the slab by solving a linear equation system (Fig.1.(c)), thereby 

achieving thin-slices with a resolution of ∆z/K mm. We direct the reader to (5) for more 

details about the RF-encoding basis.

By using vector notation, conventional gSlider reconstruction of a whole volume can be 

elegantly formulated in a concise way. Let us call the contiguous concatenation of the 

unaliased slabs along the slice-direction a thick-slice volume. The set of complex thick-slice 
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volumes acquired at given q-space points qj (j = 1, …, Nq) is named here as a thick-slice 

DWI set. The thick-slice DWI set that is encoded with the k-th component of the RF-

encoding basis, i.e., each of the slabs which the volume comprises of is excited with the k-th 

RF-waveform, is denoted as Y k ∈ ℂNLR × Nq. The number NLR stands for the total number 

of voxels in each thick-slice DWI set and is given by NLR = nx × ny × nz-slices, where nx × ny 

is the size of the in-plane matrix, and nz-slices is the number of thick slices that are acquired 

along the slice-encoding direction, z by convention. Such thick-slice DWI sets, Yk, are 

related by means of the gSlider forward-model to an unobserved isotropic, high-resolution 

thin-slice (thickness of ∆z/K mm ) real DWI set that we denote as S ∈ ℝN × Nq, where the 

total number of voxels, N, is defined as N = nx × ny × nz, with nz = Knz-slices.

This forward-model, which connects S to Yk, can be written as:

Y k = M eiPk ⊙ DkS + ηk with k = 1, …, K, [1]

where M ∈ ℂNLR × NLR is the in-plane point-spread-function of a (possible) partial Fourier 

acquisition, Pk ∈ ℝNLR × Nq is the unknown phase information of each measured thick-slab 

acquisition with encoding profile k, Dk ∈ ℂNLR × N is the gSlider downsampling operator 

that corresponds to the k-th RF-encoding basis and the term ηk ∈ ℂNLR × Nq represents 

random noise of the acquisition. They symbol ☉ denotes Hadamard or point-wise product of 

matrices.

Reconstructing S from the low-resolution data Yk is an inverse problem, in particular, 

a super-resolution reconstruction problem. In conventional gSlider, this process is 

accomplished in two-steps. First, Yk are processed with background phase correction 

technique of (33). Next, the real-valued, phase-corrected thick slices, Y k
†, are used to solve 

the following Tikhonov-regularized linear least squares (LLS) problem (5):

min
S

1
2 ∑

k = 1

K
Y k

† − DkS 2
2 + λTik S 2

2 . [2]

2.2 Undersampling gSlider data in both the RF-encoding- and q-space

As mentioned in the introduction, while conventional gSlider is SNR-efficient compared to 

a full isotropic high-resolution acquisition, it, however, requires a relatively long-acquisition 

time. Indeed, let us say that Nq = 64 q-space points are needed for diffusion analysis. This 

implies that one have to acquired a total of KNq = 320 thick-slice DWI sets in order to 

reconstruct Nq = 64 high resolution DWI sets (Fig.2.(a)). To shorten this long acquisition 

time, a straightforward action is either reducing the the number of RF-components, i.e., 

undersampling in the RF-space, or reducing the number of q-space points, in other words, 

undersampling in q-space. Reconstructing a thin-slice DWI volume with an incomplete 

RF-encoding basis is an ill-posed problem that cannot be solved if no information a priori 

is incorporated. On the other hand, it is possible to apply undersampling in q-space, 
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and attempt to recover the diffusion signal at missing q-space points with a plethora of 

techniques (see (34) for a comprehensive review). In the context of gSlider, this modus 

operandi would constitute a three-step, sequential, process: 1) background-phase correction 

for Yk, 2) Tikhonov-based gSlider reconstruction (Eq. 2), and 3) voxel-wise application 

of undersampled diffusion signal recovery methods. A downside of this approach is that, 

being a serial application, the last step will suffer from modeling-errors propagation (e.g., 

cost function of the dMRI signal recovery algorithm will not match the generation of input 

data) and modification of noise statistics will make the last step statistically suboptimal. 

Nevertheless, it has sense to combine the best of both worlds, and apply q-space and 

RF-encoding data under-sampling simultaneously and, importantly, in a complementary 

fashion. Further, to fully exploit the gSlider acquisition forward-model, the novel gSlider 

reconstruction scheme should be formulated as a unified, global, reconstruction approach.

The basic idea is to exploit the expected diffusion MR signal redundancy to alleviate the 

ill-posed nature of the super-resolution thin slice problem for an incomplete RF-encoding 

basis. To gain insight into the problem, let us focus on the diagram shown in Fig.2.(b).

Let us suppose that an incomplete RF-encoding bases that comprises of three components 

(first, third, and fifth RF-waveform) is used for 32 of the 64 q-space points (red dots in the 

sphere of Fig.2.(b)), whereas the second and the fourth RF-wave form encode thick-slices 

of the remaining 32 q-space points (blue points). One one hand, for a fixed q-space point, 

this represents undersampling in the RF-space (acceleration of 5/3 or 5/2 X ). On the other 

hand, for a fixed RF-encoding component, k, this implies only Nqk = 32 DWI volumes are 

excited, e.g., a 2X undersampling factor in the q-space. Seen as a integrated, undersampling 

scheme in the joint RF and q-space, an acceleration factor of 2 X is achieved, as a total of 

only ∑k = 1
K Nqk = 160 DWI volumes are acquired, instead of 320 in conventional gSlider. 

Note that, in contrast to a 2 X acceleration factor application of q-space under-sampling after 

gSlider reconstruction, here all the diffusion directions are acquired at least once, gaining 

additional information.

The benefit of this interleaved, under-sampling in the joint RF-q space is that the missing 

RF-encoded information in the reconstruction problem of thin-slice DWI set, let us say 

probed at q-space point q1, can be complemented with the acquired RF-encoded information 

corresponding to q-space point q4, provided dMRI signal at points q1 and q4 shares 

“redundant” information. While an unformalized observation, it is, however, key to motivate 

the use of a dMRI signal representation that rigorously captures this redundancy and hence 

help solving the ill-posed super-resolution problem. Next subsection is devoted to this topic, 

but first, we present the complete, undersampled gSlider global forward model, which is 

written as,

Y k = M eiPk ⊙ DkSΩk + ηk with k = 1, …, K, [3]

where Ωk Nq × Nqk  is a sampling mask Nqk < Nq  which determines whether a 

given diffusion direction has been encoded by the k-th RF profile, and where now 
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Pk ∈ ℝNLR × Nqk and ηk ∈ ℂNLR × Nqk and hence Y k ∈ ℂNLR × Nqk. As noted earlier, 

recovering S ∈ ℝN × Nq from Yk, k = 1, …, K, in Eq. 3 is an ill-posed, super-resolution 

reconstruction problem, where many solutions exist. It, however, becomes tractable if prior 

knowledge about the structure of S is incorporated into the reconstruction framework. In this 

work, such a prior knowledge comes in form of spherical ridgelet (SR) basis (22), that we 

present briefly below.

2.3 Spherical ridgelets basis for diffusion signal recovery

Spherical ridgelets (SR) were proposed originally in (22), and have been successfully 

applied for diffusion signal recovery in many scenarios (22, 23, 24, 25, 26, 27, 28). In a 

nutshell, spherical ridgelets are functions defined on the unit sphere, Ψ q q ∈ S2 , that are 

designed to represent any dMRI signal. Given a collection of spherical ridgelets, Ψm m = 1
M , 

any function s(q) with q ∈ S2 can be written as

s q = ∑
m = 1

M
cmΨm q , [4]

where cm, m = 1, …, M, are the SR coefficients. The number of SR functions, M, is 

defined as M = ∑j = − 1
J 2j + 1m0 + 1 2

, where J is the highest level of desired “resolution” 

and m0 the minimum spherical order that fulfills a given error constraint (see construction 

of Spherical Ridgelets function in (24) for more details). We followed the recommendations 

of (24) and chose three resolution levels (J = 1) and m0 = 4, giving a total of M = 395 SR 

functions. Let the column vector sn ∈ ℝNq denote the diffusion signal observed at voxel n of 

the high-resolution DWI set S, i.e., S = [s1, s2, · · ·, sN ]T. It is then possible to write sn = 

Acn, with

A =

Ψ11 Ψ12 ⋯ Ψ1M
Ψ21 Ψ22 ⋯ Ψ2M

⋮ ⋮ ⋮ ⋮
ΨNq1 ΨNq2 ⋯ ΨNqM

, [5]

and where Ψjm is the m-th spherical-ridgelet function evaluated at q-space point qj, and 

cn ∈ ℝM is the vector of SR coefficients at voxel n. It should be noted that the spherical 

ridgelets form an over-complete basis. As noted earlier, the dMRI signal can be represented 

in a sparse manner in the SR domain, thereby satisfying the theoretical guarantees for robust 

signal recovery from sparse measurements (35). Compressed-sensing theory asserts that, 

even with a very low number of measurements, accurate estimation of cn, and hence S, is 

possible if cn is sparse and if the spherical ridgelets representation matrix A is incoherent 

with respect to the diffusion sampling operator Ωk. Robust signal recovery is obtained by 

solving an l1 norm-based minimization approach to estimate cn as described in the next 

section.
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3 Methods

3.1 gSlider-SR: accelerated gSlider-Spherical Ridgelets reconstruction

3.1.1 gSlider-SR as a constrained, l1-minimization problem—In this work, we 

propose to estimate the super-resolution DWI set S and the unknown thick-slice phase 

information Pk simultaneously, solving the following joint, phase-regularized, constrained 

l1-minimization problem:

min
S, Pk, cn n = 1

N
1
2 ∑

k = 1

K
Y k − M eiPk ⊙ DkSΩk 2

2 + λpℎase ∑
k = 1

K
FeiPk 2

2 + λl1 ∑
n = 1

N
cn 1

subject to S
= Ac1, Ac2, ⋯, AcN

T ,

[6]

where F is the matrix representation of a 2D finite difference operator (4 in-plane neighbors 

pixels are considered) that imposes smoothness on eiPk, and hence regularizes Pk, thereby 

avoiding problems with phase-wrapping that occur when smoothness is directly imposed 

over Pk (36). Note that discrepancy for phase between different diffusion direction is 

allowed since smoothness is only enforced within slab. The phase penalty parameter λphase 

controls the influence of the phase-regularization term over the data fidelity whereas the 

sparsity regularization term is weighted by λl1.

The constrained problem of Eq. 6 can be efficiently solved using the Alternating 

Direction Method of Multipliers (ADMM) algorithm (37, 6). First, the so-called augmented 

Lagrangian function is constructed:

1
2 ∑

k = 1

K
Y k − M eiPk ⊙ DkSΩk 2

2 + λpℎase ∑
k = 1

K
FeiPk 2

2 + λl1 ∑
n = 1

N
cn 1

+ ρ
2 ∑

n = 1

N
sn + Λn − Acn 2

2,
[7]

where Λn is an auxiliary variable and ρ a regularization parameter intrinsic to the ADMM 

algorithm. Minimizing the Lagrangian (Eq. 7) for S, Pk and cn n = 1
N  is equivalent to 

minimizing the following subproblems. Given an estimate of the SR coefficients cn
t

n = 1
N

at iteration (t), S(t+1) and Pk
t + 1  can be obtained as the solution of:

min
S, Pk

1
2 ∑

k = 1

K
Y k − M eiPk ⊙ DkSΩk 2

2 + λpℎase ∑
k = 1

K
FeiPk 2

2

+ ρ
2 ∑

n = 1

N
sn + Λn

t − Acn
t

2
2 .

[8]

We use a coordinate-descent algorithm to iterate between estimation of S and estimation of 

Pk. For fixed Pk, the minimum w.r.t. S is the LLS estimate of the cost function, which turns 

out to be linear. However, estimating Pk is a non-linear optimization problem. We employ 
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the non-linear conjugate gradient (NLCG) algorithm to get a solution of this problem, with 

gradient in analytical form (formula is given in supplementary file) (36). Once we have 

estimates S(t+1) and Pk
t + 1 , the estimation of the spherical ridgelets coefficients become 

decoupled,

min
cn n = 1

N
ρ
2 ∑

n = 1

N
sn

t + 1 + Λn
t − Acn 2

2 + λ ∑
n = 1

N
cn 1 . [9]

Eq. 9 is the classical basis pursuit l1 optimization problem that can be efficiently solved with 

the FISTA algorithm in a voxel-wise fashion. After solving Eq. 9, the auxiliary variable is 

updated as follows:

Λn
t + 1 = Λn

t + sn
t + 1 − Acn

t + 1 . [10]

In summary, the final optimization algorithm consists of a inner loop that corresponds to 

the minimization of Eq. 8 and an outer loop (iteration variable t). In practice, we only 

iterate once in Eq. 8, whereas the outer loop is repeated until the relative l2 norm between 

consecutive iterations is below a given tolerance, ϵ, or the number of iteration exceeds a 

given maximum number, Niter.

It should be noted that the ADMM algorithm guarantees monotically decrease of the cost-

function of Eq. 6 even if the cost-function to be minimized is nonconvex (38). Though 

we only iterate once in Eq. 8, that step guarantees a monotonically decrease of Eq. 8, 

which does not compromise the overall convergence of the ADMM algorithm to a local 

minimum (at least). In cases where there is lack of proof for convergence to a global 

minimum, a common guide of action is to provide a reasonably well-chosen initialization 

(6). We adopted that approach, initializing gSlider-SR with a a Tikhonov regularization-

based solution, providing satisfactory results both in simulated and in-vivo data experiments.

Computational complexity: gSlider-SR was implemented in Matlab with some specific 

parts developed in C++, e.g.., the FISTA algorithm of Eq. 9. This l1 optimization problem is 

separable for every voxel, and was implemented in parallel making use of multi-threading. 

For a super-resolution DWI set with N = 256 × 256 × 190 voxels and Nq = 64 q-space 

points, and a mask considering brain-tissue only, the computation time was about Tl1 = 15

min in a computer with CPU: Intel Xeon Silver 4210 Processor with 20 cores at 2.2 GHz 

and 525 GB of RAM. Estimating S in Eq. 8 is a LLS problem that can be implemented 

very efficiently, about TS = 10 min in Matlab code. The most computational demanding part 

was the non-linear estimation of thick-slice phase information Pk in Eq. 8. It took around 

TPk = 60 min with a Matlab implementation of the NLCG method with Polak-Ribiere step. 

Solving the non-linear problem with quasi-Newton method would have perhaps converged 

faster, however, the memory requirements to estimate the Hessian would have rendered the 

problem unfeasible. Total time of the gSlider-SR algorithm is then the number of iterations 
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multiplied by TS + TPk + Tl1 = 85min. In the experiment section, we provide specific times 

for each experiment that is run with simulation and in-vivo data.

3.2 Experimental validation

The proposed super-resolution reconstruction framework was validated with simulated and 

in-vivo human brain data, both quantitatively and qualitatively.

3.2.1 Simulation experiments—Our goal with the simulation-based validation was to 

rigorously analyze, within a controlled scenario, the ability of gSlider-SR to reconstruct 

high resolution DWI for different grades of RF-encoded and q-space undersampled data. 

In order to isolate the effect of undersampled data from motion and phase estimation 

effects, which could lead to misleading interpretations, we assume that images were free 

from motion and that there was no need to estimate the thick-slice phase information, 

mimicking, for example, the case when thick-slices have already been corrected with 

background phase correction, thereby producing real-valued thick-slices. To do so, for 

a variety of undersampling scenarios, thick-slice DWI sets Yk, k = 1, …, K = 5, were 

simulated following the forward-model of Eq. 3 selecting Pk = 0 and M = I where I is the 

identity matrix. The term ηk represents uncorrelated zero-mean Gaussian noise, a reasonably 

assumption when the acquired thick-slices coil images are combined with a linear operation, 

e.g., adaptive combined technique (31, 32), and the coil-combined complex thick-slice 

images are transformed into real-valued thick-slices with background phase correction (33).

The ground-truth (GT) high resolution DWI set S was created as described below.

Ground-Truth (GT) creation:  Whole human brain gSlider-SMS data was collected from a 

healthy male volunteer with a Siemens 3T Prisma scanner. Four scans of the full brain (FOV 

= 220 × 220 × 163 mm3) were obtained using the following parameters. With a single-shot 

EPI sequence, 38 thick axial slices (slice thickness ∆z = 4.3 mm) were acquired with matrix 

size = 256 × 256 and 860 μm in-plane isotropic resolution, K = 5 RF-encodings, Multi Band 

(MB) = 2, phase-encoding with undersampling factor Rin‐plane = 3, partial Fourier = 6/8, 

TR / TE = 3500 / 81 ms, Nq = 64 diffusion directions (b = 2000 s/mm2) and 8 b0 images 

(non-diffusion weighted images). The Nq = 64 diffusion directions were approximately 

equally distributed over the hemisphere, x, y, z ∈ S2 with y > 0. The total acquisition time 

was about 1 h 20 min (20 min per scan). After k-space data reconstruction (slice and in-

plane GRAPPA), all of the coil-combined (with adaptive combine technique (31)) complex 

thick-slice DWI images were transformed into real-valued images with background phase 

correction method of (33). Then, real-valued thick-slice DWI images were reconstructed 

using conventional gSlider approach (5), thereby creating high-resolution (860 μm) isotropic 

data. B1
+ and T1 corrections were applied with the method of (39). To account for eddy-

current distortion and head motion, the high-resolution diffusion-weighted images (64 × 4 

= 256 in total) were processed with the FSL tool EDDY_CORRECT. The reference b0-image 

used in EDDY_CORRECT was the last b0-image of the second scan.

Next, the processed four sets of high-resolution DWI were averaged to create a single, 

SNR-enhanced DWI dataset. Then, spherical harmonics were used to re-sample the DWI 
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data so that the new q-space directions are equally spaced along a spherical spiral that covers 

the northern hemisphere of S2 (24). This was done to ensure efficient covering of the sphere 

for different undersampling factors.

Interleaved RF- and q-space undersampling schemes:  Four different interleaved RF-and 

q-space undersampling patterns with several acceleration factors (2 − 5X) were generated to 

assess the ability of the proposed algorithm for signal reconstruction. These schemes, which 

we called Scheme 2–5X respectively, are illustrated in Fig.3, and ultimately determine the 

diffusion sampling mask Ωk that is used in Eq. 3 for k = 1, …, NRF = 5 and for every 

acceleration factor.

The standard deviation of the noise term ηk was defined so as to produce a spatially-

averaged SNR of 20 in the mean of the K b0 reference thick-slices images (34). For 

the proposed gSlider-SR algorithm, the following parameters were used: λl1 = 0.02, ρ = 1, 

ϵ = 10−4, and Niter = 16. These values were chosen heuristically (after exhaustive search) 

to provide best results. The reconstruction algorithm took about nine iterations to converge, 

with a total time of three hours.

For each under-sampling case (Scheme 2X to Scheme 5X ), a Monte-Carlo (MC) 

experiment was run. NMC = 20 realizations of the forward-model of Eq. 3 were generated 

(e.g., NMC = 20 different statistical noise realizations of ηk). For comparison purposes, we 

complement these results with a direct, high-resolution (HR) case with isotropic resolution 

of 860 μm, i.e., no gSlider downsampling operator. The SNR for the HR case in the b0 

image was ∆z = 4.3 times lower (SNR ≈ 4.5) than the SNR of the thick-slice DWI sets Yk.

Metrics for quantitative validation:  Different performance measures were employed to 

assess the quality of the reconstructed high-resolution data S in comparison to the ground-

truth S. In particular, we were interested in evaluating the performance of gSlider-SR with 

respect to:

1. Quality of signal reconstruction. For each voxel n, we calculated the normalized 

mean-squared error (NMSE) between the estimate S and ground truth S:

NMSE =
sn − sn 2

2

sn 2
2 . [11]

2. Accuracy and precision for diffusion-tensor imaging (DTI). We fit a DTI model 

to the reconstructed high-resolution dMRI data S with LLS fitting (FSL dtifit). 

Note that, while a high b-value (2000 s/mm2), the expected noise bias introduced 

in FA estimation (29) is avoided since noise follows a Gaussian distribution. For 

each voxel n, we assessed the accuracy and precision in estimating the fractional 

anisotropy (FA) with respect to the ground-truth FA (that derived from S). To 

assess accuracy, we use the relative sample bias, which is defined as
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FA − FAGT
FAGT

, [12]

where FA is the sample mean (over MC = 20 realizations) of the estimated 

FA, FA, and FAGT stands for the ground-truth FA. Precision is assessed by 

calculating the standard deviation of the MC = 20 estimates of the FA, FA .

Furthermore, the angular error (in degrees), ∆θ, between the principal diffusion 

directions was also computed:

Δθ = 180
π arccos u ⋅ u , [13]

where u is the main eigenvector of the tensor that is estimated from S and u is 

that of the diffusion tensor estimated from S.

3. Quality of orientation distribution function (ODF) reconstruction. For each voxel 

n within the white-matter, the ODF S was estimated using SR fitting, which was 

then compared to the ODF from the ground-truth data S. The principal diffusion 

directions and the number of fiber crossings (fiber peaks) were calculated. For a 

chosen peak in the ground-truth ODF, the angular error (in degrees) between the 

direction of that peak, u, and the corresponding direction from the reconstructed 

ODF u, was calculated as in Eq. 13. Next, a single average angular error per 

voxel ∆θ was computed by averaging all errors from each of the ODF peaks in 

that voxel. We also calculated the percentage of false peaks Pfalse-peaks in the 

white matter region.

3.2.2 Experiments with in-vivo human brain data—The proposed gSlider-SR 

framework was also validated with in-vivo human brain data. In this experiment, we tried 

to assess how well gSlider-SR performs in a real scenario with undersampled gSlider 

data, in comparison to the fully-sampled case (Nq = 64 directions × 5 RF-encodings 

= 320 acquisitions). While not a ground-truth per se (due to the presence of spatially 

varying noise), the fully-sampled, averaged and hence SNR-enhanced DWI set was used as 

reference, and the high-resolution data reconstructed with gSlider-SR were compared to this 

set. For gSlider-SR, we used complex-valued thick slices Yk, acquired as described in the 

GT creation section. No background phase correction was applied, but phase data Pk was 

jointly estimated as proposed in Eq. 6. Note that Gaussian noise assumption is still valid in 

the in-vivo experiment (32). To obtain the undersampled data, q-space points were removed 

from the original acquisition in such way as to obtain uniform coverage of the hemisphere. 

The following parameter settings were used λl1 = 0.06, λphase = 102, ρ = 3, ϵ = 10−4, and 

Niter = 16.

Accounting for subject motion and eddy-current distortions:  In-vivo real data typically 

suffer from subject motion and eddy current distortions, as mentioned in the simulation 

experiment section. In that setting, rigid motion and eddy distortions were corrected by 
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registering S with affine transformations to a reference b0 image with the popular FSL 

tool EDDY_CORRECT. Therefore, the synthetically generated thick-slice DWI sets Yk were 

free from motion and eddy distortions. In the real scenario, correcting for motion and 

eddy current distortion directly in the acquired Yk is not advisable, since the RF-encoding 

information along slice direction can get mixed-up. An elegant (but computationally 

involved) solution to this problem was proposed in (20), which accounted for motion 

between RF-encodings, diffusion directions, and slab acquisitions.

In this work, we use a simpler iterative solution. We assume that there exist misalignment 

(affine deformations) between diffusion volumes only, and that relatively small or negligible 

motion exists between RF-encoding volumes of the same diffusion-weighted direction. 

Since the LLS problem for estimating S in Eq. 8 is separable along diffusion directions, 

the reconstruction of each high-resolution diffusion image is then free from motion artifacts. 

Nevertheless, the estimate DWI set S(t+1) should be volume-wise registered before solving 

problem for Eq. 9, as spherical-ridgelets fitting requires the DWI data to be aligned. 

Coefficients cn
t + 1

n = 1
N

 are then estimated from a registered DWI dataset, ℛ S t + 1 , 

where registration is performed with the FSL tool FLIRT (40). Next, the synthetically 

generated image defined by Acn
t + 1 , n = 1,… N, (third summand in Eq. 8) is “unregistered” 

with the inverse transformation of ℛ, as the solution S in Eq. 8 is assumed to be affected 

by inter-volume motion, and voxel-wise correspondence is required. After iterating through 

this process, head motion and eddy-current distortion can be corrected using ℛ S tend

where tend denotes the last iteration of the algorithm. The reference image for registration 

is the same b0 image that was used to account for eddy-current distortions and motion in 

the ground-truth dataset. With motion compensation incorporated (20 minutes per iteration 

approx.), gSlider-SR took about 14 h to converge in eight iterations with the desired 

tolerance ϵ.

4 Results

4.1 Simulation experiments

Fig. 4 shows an axial, coronal, and sagittal slice of a DWI volume from the fully-sampled 

ground-truth data S, as well as DWI volumes reconstructed with Tikhonov regularization 

and with gSlider-SR methods respectively (undersampling of 2 X). From Fig. 4, it is clear 

that Tikhonov regularization is not enough to reconstruct an accurate, high-resolution dMRI 

dataset with half of the q-space samples. Nevertheless, gSlider-SR is able to restore a highly 

detailed, artifact-free diffusion-weighted image, allowing the possibility of decreasing the 

acquisition time significantly without sacrificing image quality. This can be quantitatively 

confirmed from the NMSE maps of Fig. 5, where errors of about 2% are seen for whole 

brain (excluding CSF and ventricles) using gSlider-SR, but much higher errors are seen for a 

simple Tikhonov method.

In Fig.6 we report quantitative metrics to evaluate the performance of gSlider-SR for 

various undersampling (and thereby acceleration) factors as well as the results with the 

fully sampled HR case. As expected, as the undersampling ratio increases, the performance 
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of the gSlider-SR degrades. However, it is interesting to note that even for substantially high 

acceleration factors (4 X), more accurate and precise DTI parameters can be estimated from 

the high-resolution diffusion-weighted images reconstructed with the gSlider-SR method 

in comparison to those directly estimated from an isotropic, high-resolution (860 μm) 

acquisition, see results with label HR in Fig. 6.(b–c). Similar conclusions can be drawn 

for the angular error in estimating the principal diffusion direction from DTI as well as 

the directions of the peaks of the ODF, along with false/missing peaks results (Fig.6.(d–

f)). Reconstructed high-resolution DWI sets as well as diffusion-metrics maps for all the 

acceleration factors are shown in Fig. 1–4 of the supplementary file.

4.2 Experiments with in-vivo real data

An axial, coronal, and sagittal slice from a reconstructed high-resolution DWI volume is 

shown in Fig.7 for the reference set as well as different implementations of conventional 

gSlider and gSlider-SR. Moreover, the total time to acquire the thick-slice data to reconstruct 

such DWI sets is also reported. Estimated thick-slice phase images Pk are shown in Fig. 5 

of the supplementary file. It can be seen that conventional gSlider reconstruction from one 

thick-slice DWI set (scan one in this case) suffers from severe noise. The SNR is enhanced 

if the alloted scan time is doubled to 40 min, and two DWI volumes reconstructed with 

gSlider are averaged (see gSlider two averages). The SNR-enhancing effect of the spherical 

ridgelets-based regularization seems evident in this experiment. In the unaccelerated case, 

gSlider-SR 1X, the reconstructed DWI volume is substantially less noisy than that obtained 

with conventional gSlider reconstruction, and even with the gSlider two averages case. 

Interestingly, the reconstructed volume with gSlider-SR 2X seems to present similar visual 

quality than the non-accelerated case, suggesting that 10 min may be enough to obtain, an 

artifact-free, SNR-enhanced, structure-preserving DWI volume that matches well with the 

reference data. Finally, as expected, averaging the four reconstructed scans with gSlider-SR 

2X (40 min) produces the best results in terms of structural preservation and noise reduction 

(see zoomed-in area).

Quantitative NMSE maps presented in Fig.8 support the claims made above. Evidently, 

the reconstruction quality can be further improved if several thick-slice DWI sets are 

reconstructed with gSlider-SR, and averaged afterward. With a scan time-limit of 20 min, 

the gSlider-SR 1X method provides substantially better reconstruction than conventional 

gSlider (note the reduction of NMSE in white and grey matter). Reconstruction errors for 

different undersampling (and different scan times) are also shown in Fig.8. We note that, the 

data quality in the white matter from a 10-minute gSlider-SR method is quite comparable to 

that of the 80-minute gSlider four averages. Thus, if one were to account for the improved 

SNR, the proposed gSlider-SR 10-minute scan provides an 8-fold reduction in acquisition 

time, thereby making the method much more clinically practical. Color-encoded FA maps 

estimated with the DWI volumes obtained with gSlider-SR (2 X) also present similar visual 

quality as that obtained with the gSlider four-averages (Fig.9).

Finally, we assess the ability of gSlider-SR to recover angular information from the four 

reconstructed in-vivo gSlider data scans. The angular error for DTI as well as the directions 
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of the ODF peaks were computed, where the reference set was the gSlider four averages 

method. Results are shown in Tab. 1.

Although not a direct comparison on the same datasets, angular errors using gSlider-SR 

are consistently lower than those reported in (41), and comparable to those obtained with 

simulations (2 X).

5 Discussion

In this work, we proposed an accelerated gSlider reconstruction framework (gSlider-SR) 

which, by means of complementary sampling in the q- and RF-encoded space, robustly 

reconstructs whole human brain dMRI data at submillimeter isotropic resolution (860 μm) 

within a scan time frame that is substantially shorter than that required for conventional 

gSlider (4-averages). It is important to note that such high resolution data comes at an 

SNR that is comparable to four averages of standard gSlider data, i.e., the proposed method 

presents an 8-fold acceleration in acquisition time without compromising signal quality.

Using Monte-Carlo simulations, we demonstrated that gSlider-SR is able to accurately 

reconstruct, structure-preserving, artifact-free, high-resolution DWI datasets. While an 

acceleration of 2X gives the best performance in terms of normalized mean-square error, 

angular error as well as DTI-derived measure of FA, the performance is quite stable even 

for much higher acceleration factors. Comparison of gSlider-SR with conventional gSlider 

on realistic in-vivo human brain data demonstrated dramatically improved image quality, 

with significantly reduced scan time of two (gSlider-SR four averages) to eight (gSlider-SR) 

times shorter than the reference gSlider four averages dataset.

Below, we also discuss the limitations as well as future directions of this work. In-vivo 

real data that was used in the experiment section required a motion correction scheme, 

which we smoothly integrated in the gSlider-SR as an iterative registration step with the 

popular FLIRT algorithm (40). While this approach provided very good results, motion 

and eddy correction can be explicitly modeled within the forward-model of Eq. 3 as is 

done in (14, 42, 43, 20). This will ensure that the super-resolution DWI dataset and the 

motion parameters, which vary not only for each diffusion direction but also along with 

RF-encoding profiles, can be simultaneously estimated within an integrated framework, 

improving the performance of gSlider-SR (44, 42).

In this work, for simplicity, λ was kept constant all over the brain. A spatially varying λ 
could provide a more accurate reconstruction, especially one that can account for spatially 

varying noise in the image. Indeed, while spherical-ridgelets can model any dMRI signal, 

the level of sparsity in the gray matter is different than that in white matter. It makes sense 

then to have a different value of λ in gray matter tissue. Interestingly, gSlider-SR can easily 

include other constrained conditions on the diffusion signal as well as other regularizations 

terms in the cost function of Eq. 6. In particular, we envisage an improved image quality 

reconstruction due to further noise reduction when spherical ridgelets modeling is combined 

with low-rank matrix denoising approaches (45, 46, 47, 48) and more complex spatial 

smoothness functionals than simple TV regularization (49). This research line will be 
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developed in our group in the near future. It should be noted as well that the proposed 

gSlider-SR reconstruction framework is not confined to single shell but can accommodate 

multi-shell schemes as well, as spherical-ridgelets have been properly modified for multi-

shell diffusion MRI data recovery (25). Finally, the regularization parameters currently 

have to be chosen manually using a heuristic approach. Our future work entails developing 

algorithms that do not require manual parameter selection.

6 Conclusion

In this work, we have shown that in-vivo diffusion MRI (64 directions with b = 2000 

s/mm2) of a whole-brain at isotropic resolution of 860 μm can be obtained in a clinically 

feasible scan time with our novel gSlider-SR method. gSlider-SR extends conventional 

gSlider by allowing both undersampled RF-encoding and q-space data, thereby substantially 

accelerating the acquisition time of the traditional gSlider protocol. The method allows 

submillimeter dMRI acquisitions within a clinically feasible scan time, allowing to probe 

anatomical details not possible with existing methods.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
In gSlider, a slab of thickness ∆z is encoded with K (five in this case) RF profiles, each 

one exciting the sub-slices of the slab with a distinctive spatially-variant pattern (a). This 

generates five different measurements, the voxels of the so-called thick-slices (b), that can be 

used to resolved the thin-slice voxels by solving a linear equation system (c).
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Figure 2: 
In a conventional dMRI gSlider acquisition (a) all the thick-slice DWI sets Yk probed at 

the Nq = 64 q-space points (dark points) are encoded with the five RF-encoding profiles 

(vertical axis). However, in the undersampled gSlider acquisition in the RF and q-space 

(b), an incomplete RF-encoding basis is used to encode the thick-slices DWI volumes. In 

this example, DWI volumes that correspond to “red” q-space points, e.g., q1, are encoded 

only with the first, third, and fifth RF-encoding profile, whereas DWI volumes probed with 

“blue” q-space points, e.g., q4, are encoded with the second and fourth RF-encoding profile. 

This represents an undersampling scheme by a factor of 2. Therefore, the total acquisition 

time is reduced by half.
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Figure 3: 
Undersampled RF and q-space schemes that are used in the MC-based simulation 

experiment. (a) 2 X: DWI volumes probed with red q-space points are encoded with the 

first, the third and the fifth RF-profile, whereas blue q-space points are encoded with the 

second and the fourth. (b) 3 X: red, blue and green q-space points are encoded with the first 

and the fourth, the second and the fifth, and the third RF-encoding profile, respectively. (c) 4 

X: red, blue, green, and magenta q-points are encoded with the first and the fifth, the second, 

the third, and the fourth RF-encoding profile, respectively. (d) 5 X: red, blue, green, magenta 

and black q-space points are encoded with the first, the second, the third, the fourth, and the 

fifth RF-encoding profile, respectively.
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Figure 4: 
Simulation experiment with an acceleration factor of 2 X. A middle axial, coronal and 

sagittal slice of the NMSE maps from the reconstructed volumes are shown for the 

Tikhonov-based reconstruction (top row) and gSlider-SR -based reconstruction (bottom 

row).
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Figure 5: 
Simulation experiment with an acceleration factor of 2X. An axial, coronal and sagittal 

slice of the NMSE maps from the reconstructed volumes are shown for the Tikhonov-based 

reconstruction (top row) and gSlider-SR -based reconstruction (bottom row)
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Figure 6: 
Quantitative validation of gSlider-SR reconstruction based on a MC-based simulation 

experiment for different undersampling schemes (2-5X). Results for the direct, 860 μm 

isotropic resolution acquisition (HR) are also shown
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Figure 7: 
In vivo data experiment with an acceleration factor of 2X. An axial, coronal and sagittal 

slice of the same diffusion-weighted volume are shown for gSlider, and gSlider-SR based 

reconstruction, respectively
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Figure 8: 
In vivo data experiment with an acceleration factor of 2X. An axial, coronal and sagittal 

slice of the NMSE maps from the reconstructed DWI volumes are shown for the gSlider, and 

gSlider-SR based reconstruction, respectively
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Figure 9: 
In-vivo data experiment with an acceleration factor of 2 X. A middle axial, coronal and 

sagittal slice of the color-encoded FA maps estimated from the reconstructed DWI volumes 

with gSlider (four averages) and gSlider-SR are shown.
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Table 1:

Quantitative validation of gSlider-SR reconstruction with in-vivo data (acceleration factor of 2 X). The gSlider 

four averages set was used as reference set.

Metric Scan 1 Scan 2 Scan 3 Scan 4

WM GM WM GM WM GM WM GM

NMSE 10.6 % 11.4 % 11.1 % 12.0 % 10.4 % 11.2 % 10.4 % 11.3 %

WM WM WM WM

∆θ: tensor 17.8° 18.4° 17.0° 17.2°

∆θ: ODF peaks 17.8° 17.4° 16.7° 16.8°

Pf : ODF 32.4 % 33.9% 31.9% 31.9%
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