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Copy number variation (CNV) can cause phenotypic changes. However, in
contrast to amino acid substitutions and cis-regulatory changes, little is
known about the functional categories of genes in which CNV is important
for adaptation to novel environments. It is also unclear whether the same
genes repeatedly change the copy numbers for adapting to similar environ-
ments. Here, we investigate CNV associated with freshwater colonization in
fishes, which was observed multiple times across different lineages. Using 48
ray-finned fishes across diverse orders, we identified 23 genes whose copy
number increases were associated with freshwater colonization. These genes
showed enrichment for peptide receptor activity, hexosyltransferase activity
and unsaturated fatty acid metabolism. We further revealed that three of the
genes showed copy number increases in freshwater populations compared to
marine ancestral populations of the stickleback genus Gasterosteus. These results
indicate that copy number increases of genes involved in fatty acid metabolism
(FADS2), immune function (PSMB8a) and thyroid hormone metabolism
(UGT2) may be important for freshwater colonization at both the inter-order
macroevolutionary scale and at the intra-genus microevolutionary scale.
Further analysis across diverse taxa will help to understand the role of CNV
in the adaptation to novel environments.

This article is part of the theme issue ‘Genetic basis of adaptation and
speciation: from loci to causative mutations’.

1. Introduction

Parallel and convergent evolution of phenotypic traits in independent lineages
that inhabit similar environments is prevalent in nature, indicating the role of
natural selection and the repeatability of evolution at the phenotypic level [1-3].
Recent genetic studies have further revealed that mutations in the same genes
often occur when organisms are adapted to similar environments, which is
called genetic parallelism or genetic convergence [4,5]. There are many striking
examples of amino acid substitutions and cis-regulatory changes in the same
genes for adapting to similar environments [4-9]. Copy number variation
(CNV) is another type of mutation that can lead to phenotypic changes through
a variety of mechanisms such as changes in gene expression levels, reorganization
of chromatin structure, and subsequent mutations at the cis-regulatory regions
and amino acid sequences [10-16]. Several studies have shown that the same
genes show repeated increases of copy numbers in organisms treated with anti-
biotics and pesticides [11] and mammals adapted to starch-rich diets during
domestication by the duplication of amylase genes [17,18]. By contrast, there
are only a few reports of CNV underlying adaptation in natural systems except
for a few cases, such as the adaptation to freshwater habitats by the duplication
of fatty acid desaturase genes in fishes [19] and the evolution of floral
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pigmentation by the duplication of anthocyanin-regulating
transcription factors in plants [20]. Therefore, we do not
know how prevalent parallel and convergent CNV is in nature.

Fishes provide us an excellent opportunity to test whether
any genes exhibit parallel and convergent copy number
changes during transitions from marine to freshwater environ-
ments, because freshwater colonization occurs repeatedly in
multiple independent lineages [21]. Recently, we found that
the copy number increases of the fatty acid desaturase gene
FADS2, a gene that encodes an enzyme for the biosynthesis
of docosahexaenoic acid (DHA), repeatedly underlie fresh-
water colonization in fishes [19]. Freshwater ecosystems are
generally poor in DHA, an omega-3 long-chain polyunsatu-
rated fatty acid (LC-PUFA), which plays crucial roles in
growth, survival and reproduction in animals [22]. An increase
in the copy number of FADS?2 can help fishes overcome DHA
deficiency in freshwater habitats. Importantly, FADS2 amplifi-
cation associated with freshwater colonization was observed
not only at the macroevolutionary scale examining 48 species
across diverse orders of ray-finned fishes, but also at the micro-
evolutionary scale examining inter-population variations
within species. The three-spined stickleback, Gasterosteus
aculeatus, is primarily a marine fish species, but repeatedly
colonized freshwater habitats on multiple continents [23].
Freshwater populations of the three-spined stickleback were
found to have higher FADS2 copy numbers than marine popu-
lations across multiple geographical regions. Since marine and
freshwater habitats differ not only in fatty acid availability, but
also in many other environmental factors, such as salinity,
water flow, pathogens and predators, genes other than
FADS? may also show increased copy numbers in freshwater
fishes compared to marine fishes.

In the present study, we first tested whether any genes
other than FADS2 showed convergent copy number changes
in the freshwater fishes than in the marine fishes across
orders using whole-genome sequences of 48 ray-finned
fishes. Next, we tested whether any of these genes also
showed copy number increases associated with freshwater
colonization within the stickleback genus Gasterosteus in par-
ticular. Previous studies have listed genes showing copy
number increases associated with freshwater colonization in
the three-spined stickleback [24,25]. However, this work
used only North American and European freshwater stickle-
back populations; thus, no Asian freshwater populations
were included in the analyses. Because the genetic basis of
freshwater adaptation often differs across geographical
regions [26-32], we investigated the CNV among Japanese
stickleback populations in the present study and compared
our results with previous studies on the North American
and European stickleback populations [24,25]. Finally, for
the several genes whose copy number increases were associ-
ated with freshwater colonization, we investigated whether
gene amplification occurred by tandem duplication in a
freshwater stickleback population.

2. Methods

(a) Association between copy number and habitat
in the ray-finned fishes

To identify genes that show copy number increases associated
with freshwater colonization, we examined the protein sequence

data of 48 ray-finned fishes, which were available on Ensembl
(https://asia.ensembl.org/index.html) or RefSeq (https://
www.ncbinlm.nih.gov/refseq/). When the gene ID has several
splicing variants, we used a protein sequence from the longest
splice variant, ensuring that the dataset contained one peptide
sequence for each gene ID. The species were first classified into
‘freshwater species” that have freshwater populations (34 species)
and ‘non-freshwater species’ that lack any freshwater popu-
lations (14 species) based on Eschmeyer’s catalog of fishes [33].
Next, we determined the orthologous relationships of all genes
among these species using the SonicParanoid v. 1.2.6 [34]. Sonic-
Paranoid was executed with the ‘default’ mode (ie. the
sensitivity parameter for sequence search was set to 4). To ident-
ify genes whose copy number increases are strongly associated
with freshwater colonization, we selected genes that met the
following three criteria: (i) the average copy number of fresh-
water species is more than twice that of non-freshwater species,
(ii) more than 90% of freshwater species have at least one copy
of the gene and (iii) more than 70% of non-freshwater species
have less than two copies of the gene. Orthologue gene IDs
were assigned in the order of copy number ratio between
freshwater and non-freshwater species (table 1; electronic
supplementary material, table S1; figure 1).

Although the main focus of the present study was to identify
candidate freshwater-adaptive genes that increased their copy
numbers, we also searched for genes with significantly lower
copy numbers in freshwater species than in non-freshwater
species. We selected genes that met the following three criteria:
(i) the average copy number of non-freshwater species is more
than twice that of freshwater species, (i) more than 90% of
non-freshwater species have at least one copy of the gene and
(iii) more than 70% of freshwater species have less than two
copies of the gene (electronic supplementary material, table S2).

To exclude the possibility that the observed associations
between gene copy number and habitat simply reflects their phy-
logenetic relationships [74], we conducted Bayesian inference for a
generalized linear mixed model (GLMM). This accounted for phy-
logeny as a covariate using the MCMCglmm R package [75] with
the published fish phylogenetic tree [73], as described previously
[19]. The estimated copy number of each gene was used as a
response variable, while the habitat type (freshwater versus
non-freshwater species; see above) was used as a predictor.

To investigate what kinds of genes showed CNV, we per-
formed gene ontology (GO) analysis. For the GO term
enrichment test of genes that increased in freshwater species, we
used the stickleback orthologues, because the sticklebacks contain
freshwater populations. By contrast, for the GO term enrichment
test of genes that increased in non-freshwater species, we used
the spiny choromis (Acanthochromis polyacanthus) orthologues,
because the spiny choromis is entirely marine. For genes that
had multiple copies with different gene IDs, we randomly selected
one gene ID to be conservative. The GO enrichment analysis was
performed against all annotated stickleback genes using g: GOSt
in g: Profiler (version el04 _eg5l p15 3922dba) [76]. We listed
GO terms that were significantly enriched (Benjamini-Hochberg
FDR p <0.05) and found in at least two genes in the query.

(b) Analysis of copy number variation between marine
and freshwater sticklebacks

We explored whether the genes whose copy number increases
were found to be associated with freshwater colonization at the
macroevolutionary scale (see above) showed similar copy
number increases in freshwater populations of the three-spined
stickleback compared to marine populations. Previous studies
have reported a list of genes that show copy number increases
associated with freshwater colonization of the three-spined stickle-
back [24,25]. In these studies, whole-genome sequences of 11
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freshwater and 10 marine stickleback populations [77] were ana-
lysed [24,25]. Hirase et al. [25] reported 19 genes, but Lowe et al.
[24], having developed a novel method for detecting CNV,
reported 138 genes, including all 19 genes identified in Hirase
et al. [25]. Thus, we investigated whether any of these 138 genes
overlapped with genes for which we had found increased copy
numbers in freshwater fishes at the macroevolutionary scale.

Because previous studies on sticklebacks did not include fresh-
water populations from Asia [24,25], we investigated whether
Japanese freshwater populations shared copy number increases
with the North American and European freshwater populations.
Furthermore, we analysed multiple individuals per population,
which extends our analytical scope relative to previous studies
that sequenced only one individual per population [24,25]. We
investigated the copy number of candidate genes using our pre-
viously reported whole-genome sequences (WGS) of 75
individuals [19]: two marine populations (five females and five
males of Japan Sea stickleback from Akkeshi, six females and four
males of Pacific Ocean marine population of the three-spined stick-
leback from Akkeshi) and four freshwater populations (five females
and three males from Nishitappu, six females and two males from
Chimikeppu, three females and eight males from Gifu, three
females and six males from Ono). Genomic DNA was isolated
using the Qiagen DNeasy Blood & Tissue Kit (Qiagen, Valencia,
CA, USA). The libraries were constructed using the NEBNext
Ultra DNA Library Prep Kit (NEB, Ipswitch, MA, USA) and run
ina 150 bp-paired end mode of HiSeqX. Sequence data are available
from DDB]J (DRA007515 and DRA001136). The obtained sequence
reads were trimmed and mapped to the BROADSI reference
sequence and cDNA coding sequence of each candidate gene,
which spanned from the first ATG to the stop codon without
introns, using the CLC Genomics Workbench 10.1.1 as described
previously [19].

To test whether similar copy number increases occurred
in the Japanese freshwater populations compared to the North
American and European freshwater populations, we focused
on five genes, FADS2 (ENSGACG00000005442), PSMB8a
(ENSGACG00000000146), UGT2 (ENSGACG00000013874), PTGR1
(ENSGACG00000019130) and USP47 (ENSGACG00000019203),
which possess two or more copies in the BROADSI stickleback
reference genome, which is the sequence of an Alaskan freshwater
population belonging to the same Pacific stickleback lineage [28].
Since each candidate gene has multiple cDNA sequences, we con-
ducted a phylogenetic analysis of cDNA sequences using the CLC
Genomics Workbench and used the cDNA sequence located at the
basal position of the phylogenetic tree for mapping. To calculate
the copy number, the coverage of the cDNA was divided by the
genome-wide coverage for each individual. All statistical analyses
were conducted using the R v. 3.6.2 [78]. To test whether marine
and freshwater populations possess different copy numbers for
each gene, we used GLMM with a gamma distribution with the
glmer function of the Ime4 package in R [79], that account for the
relative copy number of each gene per individual as the dependent
variable, the ecotype (marine or freshwater) and the sex as the
independent variables, and the population as the random effect.

(c) Local genomic similarity analyses around candidate
freshwater-adaptive genes in a freshwater
stickleback population

To investigate whether duplicated copies were tandemly
arrayed, we analysed raw reads of previously generated PacBio
long-read sequencing data of a Gifu freshwater population
(available at DRA007518) [19]. We conducted BLAST searches
to find sequence reads containing FADS2, PSMBS8a and
UGT2, using the CLC Genomics Workbench. The cDNA sequen-
ces used in our search query were as follows: FADS2,

ENSGACG00000005442;  PSMB8a,
UGT2, ENSGACG00000013874. The following parameters were
used: number of threads =1, expect = 10, word size = 11, match =
2, mismatch = -2, and gap cost = Existence 5, Extension 2. Local
pairwise alignment was conducted using the YASS [80]. Repeti-
tive sequences were identified by searching against a database of
known repetitive sequences using the GIRI Repbase in CENSOR
software (http://www.girinst.org/censor/index.php) [81].

3. Results

(a) Genes that show copy number differences between
freshwater and non-freshwater fishes

We first screened for genes that showed increased copy
numbers in freshwater species compared to non-freshwater
species. We identified 58 candidate genes that showed
increased copy numbers associated with freshwater coloniza-
tion (figure 1; electronic supplementary material, table S1).
GO analysis indicated enrichment of genes related to G
protein-coupled receptor activity, immune receptor activity,
cytokine receptor activity, chemotaxis and unsaturated fatty
acid metabolism (electronic supplementary material, table
S3). Of the 58 genes, 23 genes showed statistical significance
even after phylogenetic correction (pMCMC < 0.05; table 1).
The FADS2 gene, which we previously found to increase in
copy number in freshwater fishes [19], was included in this
list. GO analysis of these 23 genes showed enrichment of
genes involved in peptide receptor activity, hexosyltransfer-
ase activity and unsaturated fatty acid metabolism
(electronic supplementary material, table S54).

We identified 18 genes that showed higher copy number in
non-freshwater species compared to freshwater species (elec-
tronic supplementary material, table S2). GO analysis of these
18 genes showed enrichment of genes involved in carboxylic
ester hydrolase activity, catalytic activity, endopeptidase activity
and methyltranferase activity (electronic supplementary
material, table S5). Of these 18 genes, 12 genes exhibited statisti-
cal significance even after phylogenetic correction (pMCMC <
0.05). GO analysis of these 12 genes revealed enrichment of
genes involved in carboxylic ester hydrolase activity (electronic
supplementary material, table S6).

(b) Copy number increase in freshwater sticklebacks
Among the 58 candidate freshwater-adaptive genes described
above (electronic supplementary material, table S1), three
genes, FADS2, GVINP1 and CXCR1, overlapped with those
that were previously reported to show higher copy numbers
in North American and European three-spined stickleback
freshwater populations compared to marine populations
(electronic supplementary material, table S1) [24]. Only the
FADS2 gene was included in the 23 genes showing a
significant difference after phylogenetic correction.

To test whether the copy number increases occurred in
the Japanese freshwater populations, we focused on five
genes, FADS2, PSMB8a, UGT2, PTGR1 and USP4, which
possess two or more copies in the Alaskan freshwater
population belonging to the same Pacific stickleback lineage
[28]. In the Japanese freshwater three-spined stickleback
populations, FADS2, PSMB8a and UGT2 showed signifi-
cantly higher copy numbers compared to marine
populations (GLMM: p=0.026, p=0.012 and p=0.0023,

ENSGACG00000000146; “
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Figure 1. Genes showing increased copy numbers in freshwater ray-finned fishes. The left panel indicates the phylogenetic tree of ray-finned fishes, which is
primarily based on Betancur-R. [73] (see Methods). The light blue and pink letters indicate species with freshwater populations and those that lack freshwater
populations, respectively. Circles at nodes indicate bootstrap support values in Betancur-R. [73]. The right panel shows a heat map of the gene copy numbers.
The light and deep blue squares indicate lower and higher copy numbers, respectively. The orthologous gene IDs at the bottom correspond to the orthologous
gene IDs in table 1 and electronic supplementary material, table S1. The orthologue gene IDs were assigned in the order of copy number ratio between freshwater
and non-freshwater species. The asterisks indicate significant increases in copy numbers in freshwater species compared to non-freshwater species after phylogenetic

correction (pMCMC < 0.05).

respectively; figure 2; electronic supplementary material,
table S7). USP47 and PTGR1 did not show significant differ-
ences between habitats (GLMM: p=0.37 and p=0.35,
respectively), although there are inter-population variations
such that Pacific Ocean marine and Gifu freshwater popu-
lations possessed significantly lower copy numbers of
USP47 and PTGRI, respectively, than other populations
(GLM: p=0.022 and p =0.0021, respectively).

To investigate how the copy number increases have
occurred in the freshwater stickleback populations, we analysed
the long-read sequencing data of a Japanese freshwater stickle-
back (Gifu population). We had already found that the FADS2
gene is tandemly duplicated with many transposons in Japa-
nese and North American populations [19]. We also found
tandem duplication of UGT?2 genes (figure 3). Local genomic
similarity analyses revealed that at least six copies of the
UGT?2 genes were tandemly duplicated. The similarity analyses
also detected accumulation of transposons around the tandemly
duplicated copies (figure 3; electronic supplementary material,
table S8).

4. Discussion

(a) Gene amplification associated with freshwater
colonization across orders of ray-finned fishes

Our screening for genes whose copy number amplification
was associated with freshwater colonization across ray-

finned fish orders identified 58 candidate genes. Twenty-
three genes remained significant even after phylogenetic
correction. Importantly, FADS2, a previously identified gene
that shows a copy number increase in freshwater fishes
[19], was included in these 23 candidate genes, suggesting
that our screening worked well. By contrast, 18 genes
showed higher copy number in non-freshwater species, and
12 genes remained significant after phylogenetic correction.
Therefore, the number of genes that increased the copy num-
bers was almost twice as much as that of those that decreased
in freshwater species.

GO analysis showed that genes involved in unsaturated
fatty acid metabolism and immune functions were enriched
in genes that showed copy number increases in freshwater
fishes. This is consistent with the hypothesis that increased
expression is often beneficial for proteins involved in inter-
action with the environment, such as stress response and
metabolism [14]. Because there is variation in the availability
of omega-3 and omega-6 LC-PUFAs between marine and
freshwater ecosystems [82], increased copy numbers of
PTGR1, which is involved in arachidonic acid metabolism,
may be advantageous in freshwater species, which is also the
case for the FADS2 gene. Furthermore, freshwater fish species
may be exposed to strong selective pressures due to diverse
and abundant parasites and pathogens relative to marine
fishes [83,84]. Therefore, gene duplication of immune system-
related genes may serve as a reservoir from which new genes
constantly arise to protect against diverse pathogens [85].
Gene copy number increases concerned with fatty acid
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metabolism and immune functions may facilitate freshwater
colonization and adaptation in ray-finned fishes.

By contrast, genes involved in carboxylic ester hydrolase
activity were enriched in genes that showed higher copy
number in non-freshwater species. The carboxylic ester
hydrolase, also called bile salt-dependent lipase, can hydro-
lyse wax esters [86,87]. Wax esters are abundant in marine
zooplankton, especially the dominating copepods, but gener-
ally more resistant to hydrolysis by pancreatic lipase, which
can hydrolyse triacylglycerol substrates [87]. Since marine
fishes feed mainly on zooplankton including calanoid cope-
pods enriched with wax esters, copy number increases of
genes related to carboxylic ester hydrolase activity may
help them to use wax esters in marine environments.

(b) Gene amplification associated with freshwater

colonization within the genus Gasterosteus
Three genes (FADS2, GVINP1 and CXCRI) showed copy
number increases in North American and European fresh-
water stickleback populations, whereas FADS2 and two
other genes (PSMBS and UGT2) showed copy number
increases in Japanese freshwater stickleback populations.
Among these, three genes, PSMBS, GVINP1 and CXCRI,
were related to immune functions. PSMB8 encodes a catalytic
subunit of the immunoproteasome responsible for generating
peptides presented by major histocompatibility complex

(MHC) class I molecules [65]. PSMB8 knockout mice show
reduced expression of MHC class I molecules on cell surfaces
[86]. GVINP1 encodes an interferon-induced very large
GTPase 1 [87]. GVINP is known to play a role in immune
reactions against pathogens [88]. In Atlantic salmon, the
GVINP1 gene is located in a QTL region that explains over
20% of the genetic variance in resistance to amoebic gill disease
and is differentially expressed between resistant and suscep-
tible individuals [89]. The CXCRI gene encodes a C-X-C
motif chemokine receptor 1, which is a G protein-coupled
receptor for the CLC chemokine interleukin-8 (IL-8), a major
mediator of immune and inflammatory responses [90]. The
CXCRI1 gene plays a crucial role in the IL-8 signal transduction
pathway of neutrophils [91-93]. A genome-wide association
study revealed that the CXCR1 gene is located at a genomic
region explaining the number of piglets born alive, which is
potentially affected by CXCR1 immune function [94]. There-
fore, high copy numbers of PSMB8a, GVINP1 and CXCR1
genes may contribute to adaptation to the diverse pathogens
in freshwater environments.

UGT2 encodes UDP-glucuronosyltransferase 2, which
metabolizes and inactivates triiodothyronine (T3), an active
form of thyroid hormone found in the liver [55,95,96]. Thyroid
hormones play key roles in the regulation of many physiological
and behavioural processes, such as metabolism, ion homeosta-
sis, basal activity, growth and development. Importantly,
previous studies demonstrated that freshwater sticklebacks
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possess lower plasma concentrations of T3 and T4 than marine
sticklebacks at both juvenile [97] and adult stages [30]. Lower
levels of thyroid hormone are correlated with a lower metabolic
rate which is likely adaptive in oxygen- and nutrient-limited
freshwater environments [30]. Different expression levels of
thyroid stimulating hormone 2 (T'SHf2), which may stimulate
the synthesis and secretion of thyroid hormones, and iodothyro-
nine deiodinase genes, DIO2 and DIO3, which convert T4 to T3
and T3 to T4, respectively, may underlie this divergence in
thyroid hormone levels [30,98]. The higher copy numbers of
UGT2 may also contribute to the lower thyroid hormone
levels in freshwater sticklebacks. Even in teleosts other than
sticklebacks, there are several reports on inter-population and
geographical variation in thyroid hormones at adult stages
[98]. Thyroid hormones are also deposited in egg of teleosts
[99,100]. The eggs of freshwater fishes also contain lower concen-
trations of T3 than those of non-freshwater fishes [101]. Because
freshwater fish larvae have lower metabolic requirements [102],
the higher copy numbers of UGT2 in freshwater fishes may be
responsible for the lower yolk thyroid hormone levels and
lower metabolic activity at the larval stage.

The long-read genome sequencing data revealed tandem
duplication of the UGT2 genes with surrounding transposons.
It is similar to the FADS2 gene in freshwater sticklebacks,
which is tandemly duplicated with many transposons [19].
Because transposons can induce tandem sequence dupli-
cations in plants [103], transposons near the UGT2 gene
might have facilitated these tandem duplications. Because we
did not conduct polishing of PacBio sequences by Illumina
short reads, the currently available sequences are not of high
enough quality for pinpointing the exact breakpoints of the
UGT?2 duplication. Precise identification of the boundaries of
the duplicated regions with the UGT2 gene clusters may
help to understand how adaptive tandem duplication occurs.

(c) Genetic parallelism versus genetic non-parallelism

with regard to copy number variation
Three genes (FADS2, PSMB8 and UGT?2) showed a convergent
increase in copy number during freshwater colonization,

both at the macroevolutionary scale across multiple orders
and at the within-genus microevolutionary scale. However,
there were many genes that did not overlap between them.
Furthermore, even among the stickleback lineages, different
geographical populations showed different patterns. For
example, PSMB8 and UGT2 showed increased copy numbers
only in the Japanese freshwater stickleback populations, not
in the North American and European freshwater stickleback
populations. These results suggest that the genetic basis
for freshwater adaption may differ between lineages and
geographic regions.

Consistent with our findings, previous studies have
reported that the genetic basis of freshwater adaptation
often differs across geographical regions in sticklebacks
[26-32]. Furthermore, a meta-analysis indicated that the prob-
ability of using the same genes for parallel and convergent
phenotypic evolution declines with genetic divergence
[104]. Therefore, it is not surprising that different fish lineages
use different CNV to adapt to similar environments. Further
research regarding CNV underlying repeated adaptation in
natural populations will shed light on the generality and
lineage specificity in recurrent gene copy number increases.

5. Conclusions

We have identified several genes that show convergent
increases in copy numbers during freshwater colonization
by analysing macroevolutionary patterns of gene copy num-
bers across orders of ray-finned fishes. Among freshwater
fishes, candidate genes showing increased copy numbers
are involved in fatty acid metabolism and immune function.
Some of the CNV were also observed even within a genus of
Gasterosteus. Currently, little is known about how the ident-
ified CNV impact phenotypic traits that help fishes colonize
freshwater environments. Further studies on the functional
roles of increased copy number of these candidate genes
will help to understand the genetic mechanisms of freshwater
colonization that occurred repeatedly in fishes.
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