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Abstract
Caused by the mutation of methyl-CpG binding protein 2 (MeCP2), Rett syn-
drome leads to a battery of severe neural dysfunctions including the regression of 
motor coordination and motor learning. Current understanding has revealed the 
motor cortex as the critical region mediating voluntary movement. In this review 
article, we will summarize major findings from human patients and animal 
models regarding the cortical synaptic plasticity under the regulation of MeCP2. 
We will also discuss how mutation of MeCP2 leads to the disruption of cortical 
circuitry homeostasis to cause motor deficits. Lastly, potential values of physical 
exercise and neuromodulation approaches to recover neural plasticity and motor 
function will be evaluated. All of this evidence may help to accelerate timely 
diagnosis and effective interventions for Rett syndrome patients.
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Core Tip: In this mini-review, Zhang WJ summarized current findings for the synaptic 
plasticity in the cortex and related motor learning functions under the scenario of Rett 
syndrome. The discussion of neuropathological mechanisms can help us to better 
understand the disease progression and more importantly to develop more effective 
measures to counteract motor deficits.
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INTRODUCTION
Rett syndrome is one neurodevelopmental disorder that is caused by the genetic mutation of methyl-
CpG binding protein 2 (MeCP2)[1]. Predominantly found in females with about a 0.01% incidence[2], 
Rett syndrome has been recognized as one of the major genetic conditions that affects neurodevel-
opment. As clinical features, about 61% of Rett syndrome patients developed autism spectrum disorder 
(ASD)-like symptoms[3], making it one major genetic contribution to autistic syndromes. Other 
behavioral features of Rett syndrome include cognitive and verbal disabilities[4] as well as the 
retardation of general development[5]. Among various clinical manifestations, deficits of motor function 
can be found in early stages of disease progression (around 12-18 mo in patients), as displayed by the 
gradual deterioration of normal motor functions and the occurrence of repetitive movements[6]. As a 
result, the gradual loss of acquired motor skill has been recognized as one prominent feature of Rett 
syndrome[7], further highlighting the relationship between motor functions and MeCP2. In this mini-
review, we will summarize current major findings regarding motor dysfunctions in Rett syndrome and 
discuss their correlation with MeCP2-mediated synaptic plasticity of motor circuits, especially those in 
the motor cortex. In addition, we will also explore the possibility of non-drug intervention strategies 
including noninvasive neuromodulation and physical exercise in relieving these motor syndromes.

DYSREGULATED CORTICAL SYNAPTIC PLASTICITY IN RETT SYNDROME
Recent studies have demonstrated the pleiotropic functions of MeCP2 in mediating early events of 
neurodevelopment including neurogenesis, migration and patterning[8-10]. Deficits of neural network 
formation frequently lead to abnormal functions. In the cortical region, MeCP2 mutation disrupts the 
normal excitatory-inhibitory (E/I) balance,  resulting in altered synaptic computation[4,7,11-13]. In 
specific studies, MeCP2-null knockout mice presented elevated GABAA and N-methyl-D-aspartic acid 
(NMDA) receptors in the barrel cortex[13]. However, using MeCP2-mutant mice, both excitatory and 
inhibitory conductance were reduced in vivo while the E/I ratio was increased[11]. In another study 
using MeCP2-mutant mice, cortical pyramidal neurons (PNs) displayed decreased spontaneous activity 
probably due to the reduced miniature excitatory postsynaptic currents (mEPSCs) amplitude while the 
inhibitory input did not change[12]. Those seemingly contradictory results further suggested the 
complicated mechanism of MeCP2 in mediating cortical network. A possible approach for further 
investigation can be achieved via cell type-specific study of MeCP2 function. For example, parvalbumin 
(PV)-specific MeCP2 deletion recapitulated reduced cortical excitability by global MeCP2 deletion[11]. 
Multiple mechanisms including ion permeability, neurotransmitter receptor or synaptic structural 
proteins can be further interrogated, as MeCP2 works as a transcriptional regulatory factor to 
potentially affect their gene expression. Since the neural plasticity of the cortical network is closely 
correlated with motor learning[14,15], the dysregulated function of MeCP2 may confer motor deficits. 
Further interrogation of MeCP2-dependent synaptic regulation can help to reveal the pathological 
process of related motor impairments in order to provide diagnostic and treatment targets.

When examining the neural mechanism of Rett syndrome-associated behavioral symptoms, it is 
suggested that MeCP2 works as one methyl-DNA binding protein[16]. The loss-of-function mutation of 
MeCP2 in Rett syndrome thus can be generalized as the deprivation of transcription repression, 
although recent studies are suggesting its multifaceted roles including activation or suppression of 
specific genes[17]. Across different brain regions, MeCP2 mediates the gene expressional network in a 
similar pattern[18], suggesting the brain-wide effect. When examining the transcriptional regulatory 
mechanism, a recent study identified the prominent role of MeCP2 in suppressing the initiation of gene 
regions with high CG-methylation levels[19]. For those non-CG methylated gene regions, MeCP2 also 
exerts a suppressor role via repressing enhancer activity[20]. In the exploration of MeCP2-targeted 
molecules, key modulators of neural plasticity have been recovered. For example, MeCP2 affects the 
transcription of BDNF to affect myelination and remyelination[21]. An early study further showed that 
MeCP2 associated with the transcriptional activator CREB1 to mediate a wide range of brain genes[17]. 
Moreover, MeCP2 interacts with a lot of neuronal genes in positive or negative manners. The transcrip-
tional factor forkhead box protein O3 (FOXO3) has been found to be positively regulated by MeCP2 via 
deacetylation[22]. Those effects on transcriptional factors highlight the role of MeCP in the top layer of 
the gene regulatory network. Besides those transcriptional factors and neurotrophic molecules, MeCP2 
also affects the post-translational modification of neuronal genes. For example, the histone modification 
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has been shown to be mediated by MeCP2 via recognizing H3K27me3[23]. Furthermore, the 
phosphorylation of MeCP2 itself adds further layers onto its regulatory network. The brain-specific 
phosphorylation of MeCP2 is known to regulate BDNF expression, contributing to neuronal growth and 
maturation[24]. In a broad sense, activity-dependent MeCP2 phosphorylation affects its interaction with 
transcriptional repressors[25], providing an epigenetic mechanism. During neurodevelopment, cell 
cycle-associated MeCP2 phosphorylation modulates adult neurogenesis[26] and nervous system 
functions[27]. Combining all these results, MeCP2 regulates the expression of neuronal genes via 
different pathways at transcriptional and post-transcriptional levels (Figure 1).

In neural tissues, gene transcription plays a critical role in various forms of synaptic plasticity such as 
the long-term potentiation (LTP) and long-term depression (LTD)[28]. People are thus beginning to 
dissect the neuropathological mechanism of Rett syndrome from the synaptic perspective[29]. Current 
knowledge has observed the disruption of normal synaptic plasticity under MeCP2 loss-of-function 
mutation across different brain regions including the hippocampus[30], the cerebellum[31], the visual 
pathway[32] and the amygdala nuclei[33]. As the critical region for high-order cognitive and mental 
regulation, the cortical region is also affected by MeCP2 mutations. For example, MeCP2 insufficiency in 
mouse auditory cortex affected the local network and disrupted maternal pup-retrieval behaviors[34]. In 
mouse primary visual cortex (V1), MeCP2 deficiency remarkably disrupted the early-stage development 
of neural plasticity during the so-called “critical period”[35,36]. The abnormal synaptic development 
resulted in the morphological deficits of synapse, including decreased spine density[37], altered spine 
morphology or dendritic complexity[38], shorter dendritic lengths[39] and alternation of synaptic 
protein expression in primary motor cortex (M1)[40,41]. Furthermore, the reduced neuronal size can be 
observed in layer V PNs of M1 in Rett syndrome model mice[42]. These findings provide the first-hand 
evidence for the disruption of structural and functional plasticity in the cortical region upon MeCP2 
deprivation, highlighting the necessity and importance to elaborate the cortical neuropathology of Rett 
syndrome.

It is important to notice that both cell autonomous and non-autonomous mechanisms reside in 
MeCP2-mediated cell plasticity. For example, the loss of MeCP2 affects the autocrine brain derived 
neurotrophic factor (BDNF) signaling in excitatory neurons to affect neural plasticity, as wildtype 
neurons cannot rescue mutant cells in the area[43]. Such results provide further clues for clinical 
manifestations as mosaic patterns of mutations frequently occurs in Rett syndrome patients[44]. 
Although the primary cause of Rett syndrome is believed to be cell autonomous, non-autonomous 
mechanism has been revealed as the culture medium from MeCP2-mutated astrocytes disrupted 
dendritic morphology of wildtype hippocampal neurons[45]. Therefore, MeCP2 affects neural function 
via a complex network and further elaborations are required to study the cell-specific effect.

To attribute the factors for disrupted cortical synaptic plasticity under MeCP2 mutation, recent 
advances are highlighting the role of local inhibitory transmissions. In the mouse auditory cortex, 
independent lines of evidence are suggesting that the abolishment or insufficiency of MeCP2 suppresses 
normal activity of PV-interneurons, resulting in failures of maternal caring behaviors[34,46]. In primary 
somatosensory cortex (S1) and M1, the learning-associated modulation of plasticity of PV-interneurons 
was impaired in MeCP2 knockout mice as well as under heterogenous mutation of MeCP2[47]. In the 
barrel region, the loss of MeCP2 also enhanced glutamatergic transmission[13]. Such interruption of 
normal cortical network homeostasis might be explained by MeCP2 influence on synaptic plasticity 
during the critical period in early-stage development[36]. Such opinions were further supported by the 
conditional knockout of MeCP2 in PV-interneurons resulting in the absence of neural plasticity of V1 
during the critical time[35]. To figure out the molecular mechanism, current studies are suggesting the 
role of neurotrophic factors. For example, BDNF was downregulated under MeCP2 deficiency[48]. As 
an intervention trial, insulin-like growth factor-1 (IGF-1) partially relieved such neurodevelopmental 
deficits under MeCP2 deficiency[49] and recovered cortical plasticity[50]. An alternative explanation 
exists in the cortical perineuronal nets (PNNs) whose formation is dependent on MeCP2[51]. Since 
PNNs are known to mainly surround PV-interneurons[52], the extracellular modulation may provide a 
model to explain how pan-neuronal mutation of MeCP2 leads to PV-interneuron specific defects.

The converging evidence of deficient GABAergic transmission upon MeCP2 mutation implies the 
hyper-excitation of the cortical network. In Rett syndrome patients, clinical recording supported such 
hypothesis by displaying significant increases of the excitation index of M1 in association with reduced 
short-interval inhibition[53] plus decreased inhibitory motor control[54]. Mouse model studies also 
suggested aberrantly high cortical excitability upon MeCP2 deficiency[49], probably due to diminished 
extracellular GABA transporter activity[55] or under-development of dendritic spines[40]. However, 
other studies supported the enhanced GABA transmission under MeCP2 knockout[13]. In a short 
summary, both presynaptic function such as GABA transporter and postsynaptic mechanism including 
spine formation and synaptic transmission are involved in MeCP2-mediated cortical plasticity. To better 
dissect the molecular pathway, cell-specific genetic manipulation and functional studies can be 
performed. For example, PV-specific MeCP2 deletion mimics the effect of global gene knockout[11]. In 
the future, MeCP2 can be studied in other neuronal and glial cell subpopulations in the cortex.

Based on these facts of disrupted cortical E/I balance, the application of neuromodulator drugs or 
neuromodulation stimulus may provide a promising future for region-specific intervention of motor 
symptoms under MeCP2 deficiency. In the last part of this article, we will summarize major findings 
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Figure 1 Graphic illustration for methyl-CpG binding protein 2-mediated pathway of neuronal gene transcription. The activity of methyl-CpG 
binding protein 2 (MeCP2) is mediated by phosphorylation, which can response to cell cycle or cellular activity. MeCP2 exerts pluripotent functions at genetic and 
epigenetic layers, including directly or indirectly affecting gene transcription, or modifying chromatin structures. Such modulatory network eventually affects both 
structure and function of neurons[17-20,23,26].

and prospective regarding the neuromodulation approaches for alleviating motor symptoms of Rett 
syndrome.

SYNAPTIC DYSFUNCTION IN MOTOR CORTEX IN RETT SYNDROME AND RELATED 
MOTOR DYSFUNCTIONS
Among the major clinical features of Rett syndrome, motor deficits occur early during the disease 
development and persist across the whole disease process: The motor delay becomes apparent among 
1.5-years-old and 3-years-old, after a seemingly normal early postnatal period[4]. During the adolescent 
and adulthood period, the progressively declined motor function can be presented as Parkinsonism-like 
features[56]. Such progression of motor symptoms usually develops into severe ataxia and deprives the 
patients of the ability to walk or stand during the teenage period[7]. These clinical manifestations can be 
replicated in mouse models: In MeCP2-null knockout mice, early-onset motor abnormalities were found 
to induce higher lethal rates[57]. In addition, these model animals presented regression of acquired 
psychomotor skills under a social interaction scenario[58]. These behavioral deficits clearly suggested 
the involvement of the motor system in Rett syndrome pathology.

Distinct brain regions and neural ensembles regulate voluntary movement, including the forebrain 
sensorimotor region, the midbrain nuclei such as the thalamus and basal ganglia, as well as the 
hindbrain regions plus the cerebellum. The motor cortex is innervated by distinct neuromodulator 
systems including dopamine, noradrenaline and serotonin. The brain-wide deficiency of MeCP2 thus 
may affect motor cortical plasticity via disruption of subcortical inputs. For example, the ablation of 
MeCP2 in aminergic neurons produced cell autonomous effects resulting in behavioral abnormalities
[59]. The pharmaceutical potentiation of the serotonergic pathway improved cortical microcircuits and 
recovered motor learning behaviors[60]. Another study further revealed that striatal MeCP2 was critical 
for maintaining dopaminergic transmission of psychomotor regulation[61]. These findings supported 
the indispensable role of MeCP2 in the neural network related with cortical activity.

Although the site-specific gene knockout study has suggested the role of MeCP2 in mediating motor 
behaviors across different neural networks such as the noradrenergic transmission, the motor cortex 
remains as the prominent brain region in which fine motor control is regulated. Within the motor cortex, 
both excitatory PNs and GABAergic interneurons form the local network to drive the voluntary 
movement. PNs were once believed to be the principal projecting neurons in the cortical region and 
their structural and functional plasticity largely affects motor functions[62,63]. MeCP2 was known to 
mediate synaptic structures in the motor cortex as it can regulate the dosage of gene expression via 
homeostatic control of DNA methylation. The over-expression of MeCP2, for instance, resulted in 
altered structural plasticity of cortical dendritic spines[64]. On the other hand, the deficiency of MeCP2 
led to remarkably shorter dendrites of PNs in the motor cortex in human patients across different age 
groups[38]. Similar phenotypes were observed in mouse models, which presented reduced spine 
density, shorter dendrite lengths[37], irregular spine clustering or shapes[65] and reduced dendritic 
complexity[39]. Such evidence clearly demonstrates the relationship between MeCP2 and synaptic 
plasticity and implies the participation of MeCP2-mediated synaptic defects in Rett syndrome.

Besides the excitatory neurons, GABAergic inhibitory neurons in the motor cortex also tightly 
regulates motor coordination and motor learning functions, as they can provide both inhibitory synaptic 
inputs and subthreshold oscillation wave onto excitatory neurons. For example, the somatostatin (SST)-
interneuron is found to actively participate in the acquisition and retrieval of complex motor skills as 
suggested by an in vivo recording study[66], and our recent work has revealed the abnormally 
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suppressed activity of those SST-interneurons under a Parkinson’s disease (PD) mouse model, leading 
to pathologically over-excitation of pyramidal cells[67]. Such phenomena revealed cortical dysfunctions 
due to the loss of normal inhibitory inputs onto the pyramidal projecting neurons, leading to their 
hyperactivation and related neural symptoms. Besides the local regulation of cortical inhibition, 
GABAergic neurons received inputs from subcortical nuclei which consisted of multiple monoaminergic 
systems. For instance, the α2A -adrenoceptor was found to suppress the activity of cortical inhibitory 
neurons[68]. The dopamine receptor D1 and D2 have been known to affect the density of cortical 
inhibitory neurons, including PV- and SST-interneurons[69]. In the human motor cortex, serotonin was 
also reported to enhance GABAergic transmission[70]. No direct study, however, has investigated the 
modulation of cortical inhibitory neurons by the monoaminergic system under MeCP2 deficiency. 
Further work thus can be performed to dissect the circuitry pathway of MeCP2 in affecting motor 
learning functions.

When one broadens their scope of neurological diseases, it is interesting to find that the “cortical 
disinhibition” model can be found across different neurological disease models such as Alzheimer’s 
disease (AD)[71], amyotrophic lateral sclerosis (ALS)[72] and Huntington’s disease (HD)[73]. In a 
primate model of Rett syndrome, MeCP2 is expressed in both excitatory and inhibitory neurons in 
cortical regions[74], implying the possible role for mediating glutamatergic and GABAergic 
transmission. In specific, the conditional knockout of MeCP2 in cortical vasoactive intestinal peptide 
(VIP)-interneurons resulted in the deficits of social and mental functions[75]. It thus seems that the 
abovementioned correlation between MeCP2 and motor function may reside in the inhibitory neurons 
of the motor cortex. In fact, the cellular pathological studies have also attributed motor dysfunction to 
MeCP2 deficiency in PV-interneurons in the motor cortex as suggested by a conditional gene knockout 
model[76]. In a similar manner, the deletion of MeCP2 in SST-interneurons resulted in stereotypic and 
repetitive behaviors, highlighting the distinct functions of interneuron subtypes in fine motor control
[76]. On the other hand, PNs may also be affected under MeCP2 deficits which can impair the structural 
or functional integrity of the excitatory synapse[11,38,42]. For example, MeCP2 deletion in glutama-
tergic neurons resulted in much more severe symptoms than those from inhibitory neuron-specific 
deletion[77]. As the restoration of MeCP2 in GABAergic neurons only partially rescued symptoms in 
null knockout mice[78], the integrity of local E/I homeostasis is of critical importance for relieving 
cortical neuropathology in Rett syndrome. Combining all data, it is promising that targeting the E/I 
balance in the motor cortex, especially by potentiating the inhibitory transmission, may aid in retarding 
or alleviating the motor syndrome in patients.

THE POTENCY OF EXERCISE TRAINING AND NEUROMODULATION IN FUNCTIONAL 
REHABILITATION
Based on motor deficits and dysregulated neural plasticity of motor circuits upon MeCP2 dysfunction as 
aforementioned, it is possible that certain neuromodulation approaches targeting circuitry function 
might help to ameliorate those motor symptoms. As supporting evidence, environmental enrichment 
helped to relieve the behavioral deficits including motor learning functions in MeCP2 null knockout 
mice, in addition to the rescue of cortical LTP function[31]. In a clinical trial of Rett syndrome patients 
under the age of 6 years, the 6-mo environmental enrichment training paradigm improved motor 
functions[79]. These examples clearly suggested the possibility of environmental intervention in 
relieving Rett syndrome symptoms.

Physical training, as one widely accepted life-style intervention to facilitate neurogenesis and 
cognitive functions[80], has been recently demonstrated by our group to improve motor learning 
abilities via stimulating structural and functional plasticity of synapses in mouse motor cortex[81]. 
Therefore, exercise training may work as one promising approach to relieve motor deficits of Rett 
syndrome patients. Such a proposal was supported by several clinical reports in which daily activities 
and rehabilitation helped to maintain motor abilities[82,83] or to prevent functional deterioration[84]. 
Specifically, a recently published case report found that periodic exercise rehabilitation at 2 years of age 
helped to maintain normal motor function[82]. Another study recruited 4 girls under the age of 11 years 
and found that 2-mo treadmill training helped to improve the general body fitness and behavioral 
scores[84]. Although these preliminary studies only included a small cohort of patients, the potency of 
physical exercise in early intervention of Rett syndrome-related motor dysfunction can be tested by 
large-scale clinical trials in the future.

To provide neurobiological evidence for physical exercise, Zoghbi et al[85] recently reported the 
effectiveness of pre-symptomatic training in the mitigation of specific motor impairments using a mouse 
Rett syndrome model. In particular, exercise training repeatedly activated a specific population of 
neurons that developed more dendritic arbors and higher excitability to enhance motor function[85]. 
These data suggested a possibly new intervention strategy by which endurance exercise works to retard 
the deterioration of motor dysfunctions. When examining the molecular mechanism underlying exercise 
intervention on Rett syndrome, BDNF upregulation has been reported upon exercise paradigm in both 
rodent models[86] and human cohorts[87]. At the downstream of BDNF activation, it is worth noting 
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that physical training boosted the activity of the mechanistic target of rapamycin (mTOR) pathway for 
improving structural and functional plasticity of dendritic spines in the motor cortex[81]. Since previous 
knowledge has established the role of mTOR down-regulation upon Mecp2 mutation[88,89] to generate 
the phenotypes of Rett syndrome[90], it is highly likely that exercise may help to relieve neural 
dysfunctions via moderately stimulating mTOR pathways. As functional evidence, both in vitro and in 
vivo data have proved the down-sized neurons across multiple brain regions in mice carrying the A140V 
mutation of Mecp2, in association with mTOR activity inhibition[88]. On the other hand, human brain 
samples presented abnormally upregulated mTOR activity under Rett syndrome[91]. Such discrepancy 
between human patients and animal models may arise from the different mutational sites or distinct 
disease stages. Nevertheless, the critical role of the mTOR pathway in MeCP2-related dysfunction and 
the modulatory role of mTOR by exercise training cannot be neglected. This further highlights the 
promising future of using endurance training for alleviating cellular and behavioral deficits of Rett 
syndrome.

Currently, few available intervention strategies have been adopted to benefit Rett syndrome patients. 
Besides the potential usage of exercise training at early stages as aforementioned, non-invasive 
neuromodulation approaches provide alternative choices for alleviating behavioral deficits. Various 
methods including electric, magnetic and ultrasound stimulations have been approved as safe means to 
modulate neural functions, mainly focusing on the cortical region. The application of transcranial 
magnetic stimulation (TMS) has been accepted to evaluate the excitability and E/I balance of the M1 
neural network[53,54], despite relatively small sample sizes. As an alternative neuromodulation 
approach, transcranial direct current stimulation (tDCS) has recently been tested on Rett syndrome 
patients. In one study recruiting 31 patients, tDCS effectively improved attention and verbal functions
[92]. A second study also reported enhancement of language skills by tDCS[93]. These neuromodulation 
approaches thus may have potential values in improving neural functions. Due to the early-onset and 
persistency of motor deficits, the targeted intervention on the motor cortex may be worth further testing 
by employing large-scale and multi-centered clinical trials. When considering neuromodulation in large 
cohorts of patients, however, some concerns may arise as it may result in episodes of epilepsy[94], 
whose susceptibility rises in Rett syndrome patients[95]. These safety issues also remind that environ-
mental intervention such as exercise training might be a more preferrable and safer way in treating Rett 
syndrome.

CONCLUSION
In summary, MeCP2 mediates the synaptic plasticity and neural circuitry in the motor cortex and its 
genetic mutation leads to the disruption of neural transmission, thereby causing the dysfunction of fine 
motor coordination and motor learning abilities in Rett syndrome. Targeting the motor cortex by either 
physical training or neuromodulation approaches thus have become accessible and promising strategies 
for alleviating motor symptoms in Rett syndrome and is worth of more investigations from both basic 
science and the clinical fields.
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