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Abstract
BACKGROUND 
Emerging evidence links gut microbiota to various human diseases including 
colorectal cancer (CRC) initiation and development. However, gut microbiota 
profiles associated with CRC recurrence and patient prognosis are not completely 
understood yet, especially in a Chinese cohort.

AIM 
To investigate the relationship between gut mucosal microbiota profiles and CRC 
recurrence and patient prognosis.

METHODS 
We obtained the composition and structure of gut microbiota collected from 75 
patients diagnosed with CRC and 26 healthy controls. The patients were followed 
up by regular examination to determine whether tumors recurred. Triplet-paired 
samples from on-tumor, adjacent-tumor and off-tumor sites of patients diagnosed 
with/without CRC recurrence were analyzed to assess spatial-specific patterns of 
gut mucosal microbiota by 16S ribosomal RNA sequencing. Next, we carried out 
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bioinformatic analyses, Kaplan-Meier survival analyses and Cox regression analyses to determine 
the relationship between gut mucosal microbiota profiles and CRC recurrence and patient 
prognosis.

RESULTS 
We observed spatial-specific patterns of gut mucosal microbiota profiles linked to CRC recurrence 
and patient prognosis. A total of 17 bacterial genera/families were identified as potential 
biomarkers for CRC recurrence and patient prognosis, including Anaerotruncus, Bacteroidales, 
Coriobacteriaceae, Dialister, Eubacterium, Fusobacterium, Filifactor, Gemella, Haemophilus, Mogibac-
teriazeae, Pyramidobacter, Parvimonas, Porphyromonadaceae, Slackia, Schwartzia, TG5 and Treponema.

CONCLUSION 
Our work suggests that intestinal microbiota can serve as biomarkers to predict the risk of CRC 
recurrence and patient death.

Key Words: Gut microbiota; Colorectal cancer; Prognosis; Colorectal cancer recurrence; Biomarker; 16S 
rRNA sequencing analysis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Emerging evidence indicates that besides genetic and epigenetic factors, the gut microbiota is 
capable of driving colorectal cancer (CRC) progression. Here, we analyzed the gut mucosal microbiota of 
75 triplet-paired samples collected from on-tumor, adjacent-tumor and off-tumor sites of patients 
diagnosed with/without CRC recurrence and 26 healthy controls. After a long-term follow-up, we 
identified spatial-specific bacterial taxa whose abundances are associated with overall survival and 
disease-free survival. Our data reveal the profiles of gut mucosal microbiota that increase risk of CRC 
recurrence and affect patient prognosis, which may serve as potential new biomarkers for CRC diagnosis.

Citation: Huo RX, Wang YJ, Hou SB, Wang W, Zhang CZ, Wan XH. Gut mucosal microbiota profiles linked to 
colorectal cancer recurrence. World J Gastroenterol 2022; 28(18): 1946-1964
URL: https://www.wjgnet.com/1007-9327/full/v28/i18/1946.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i18.1946

INTRODUCTION
Colorectal cancer (CRC) is a major cause of cancer-related deaths with the third highest mortality and 
the fourth highest incidence worldwide, according to GLOBOCAN 2020 (global cancer statistics)[1], 
which indicates a public health issue. Although many new treatment options of CRC have doubled, 
survival prognosis for early-stage patients with non-metastasized disease is still better than that for 
advanced-stage patients[2]. Currently, treatment of CRC mainly depends upon tumor-node-metastasis 
(TNM) stage of disease, and the patient’s physical fitness and intent. However, previous studies showed 
that disease recurrence was observed in 40% of treated patients with stage Ι-II CRC (lymph node 
negative postoperative) and 70% of those with stage ΙΙΙ CRC[3], which is proposed to be related to rat 
sarcoma viral oncogene and microsatellite status[4]. Thus, treatment strategy merely depending on CRC 
TNM stage may cause over-treatment or under-treatment, leading to CRC recurrence. Moreover, the 
molecular mechanisms behind CRC recurrence are not yet completely understood. Therefore, we still 
need to explore more suitable biomarkers for assessing prognosis of CRC patients in order to achieve 
optimal personalized treatment.

In addition to hereditary and lifestyle factors, the human gut microbiota is considered as an 
important risk factor for CRC initiation as well as development. With the continuous development of 
high-throughput sequencing, the compositional structure of the human gut microbiota is revealed to be 
closely involved in CRC initiation, development and treatment[5]. Moreover, pathogenic bacteria have 
been identified from the human gut microbiota and their procarcinogenic properties have been 
demonstrated to play a role in causing gut microbial dysbiosis in the complex environment of the 
human intestinal tract. Certain bacterial species, including Bacteroides fragilis (B. fragilis), Clostridium 
septicum, Enterococcus faecalis, Escherichia coli, Fusobacterium spp., Helicobacter pylori and Streptococcus bovis 
have been identified to play a role in driving colorectal carcinogenesis[6]. The mechanisms behind these 
pathogenic bacteria involve bacterial-derived genotoxicity and other virulence factors that regulate host 
defense systems, metabolism, oxidative stress and antioxidative defense modulation[6].

https://www.wjgnet.com/1007-9327/full/v28/i18/1946.htm
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Evidence has linked gut microbiota to prognosis of CRC. A pilot study has shown that high 
abundance of Fusobacterium nucleatum (F. nucleatum) and B. fragilis were independent indicators for poor 
patient survival, while high abundance of Faecalibacterium prausnitzii predicted improved survival rate
[7]. In addition, most studies supported that increased relative abundance of B. fragilis and F. nucleatum 
were associated with short-term survival and late stage of CRC[8]. Enterotoxigenic B. fragilis (ETBF) and 
Fusobacterium spp. levels were significantly higher in late stage (III/IV) CRC than those in early stage 
(I/II) CRC, and high abundance of Fusobacterium was reported to be associated with high microsatellite 
instability (MSI)[9,10]. Compared to F. nucleatum-negative cases, multivariable hazard ratio for CRC-
specific mortality in F. nucleatum-high cases was 1.58[9]. After neoadjuvant chemoradiotherapy, F. 
nucleatum persistence was associated with high relapse rates in locally advanced CRC[11]. CRC patients 
with low levels of F. nucleatum had significantly longer overall survival (OS) and disease-free survival 
(DFS) than patients with moderate and high levels of F. nucleatum that were obvious in late-stage CRC 
patients[12-15]. However, extensive bacterial taxa associated with prognosis of CRC are unclear, 
especially in a Chinese cohort.

To investigate the profiles of gut mucosal microbiota associated with CRC recurrence and survival of 
CRC patients, we collected gut mucosal microbiota from CRC patients when they received radical 
resection or palliative surgery in Tianjin Union Medical Center, China. For each patient, triplet-paired 
CRC samples were collected from on-tumor, adjacent-tumor and off-tumor sites. Additional samples 
were collected from 26 healthy controls. We performed 16S ribosomal RNA (rRNA) gene sequencing 
and analyses on these gut mucosal microbiota. Next, we carried out Kaplan-Meier survival curve 
analyses for OS and DFS. Our data suggest that a number of bacterial genera/families, including 
Anaerotruncus, Bacteroidales, Coriobacteriaceae, Dialister, Eubacterium, Fusobacterium, Filifactor, Gemella, 
Haemophilus, Mogibacteriazeae, Pyramidobacter, Parvimonas, Porphyromonadaceae, Slackia, Schwartzia, TG5 
and Treponema, are associated with survival of CRC patients and CRC recurrence. We further performed 
the univariate and multivariate Cox regression analyses. Our data reveal that high abundance of Anaero-
truncus, Bacteroidales, Coriobacteriaceae, Dialister, Eubacterium, Filifactor, Haemophilus, Mogibacteriazeae, 
Pyramidobacter, Slackia, Treponema and TG5 are associated with worse OS or DFS.

MATERIALS AND METHODS
Patients and sample collection procedures
This study analyzed 69 pathologically confirmed CRC patients, who received radical or palliative 
surgeries at Tianjin Union Medical Center, Tianjin, China from December 2016 to September 2017. These 
patients were followed up by regular examination or telephone survey. DFS was defined as the time 
period from the date of surgery to the time of tumor recurrence, and OS was defined as the time period 
from the date of surgery to the time of death. Our study was conducted in accordance with the 
Declaration of Helsinki. Every patient provided written informed consent for the collection of samples 
and subsequent analysis when required, and the study was approved by the Ethics Committee of 
Tianjin Union Medical Center. The TNM staging was determined according to the American Joint 
Committee on Cancer staging handbook (8th edition). Whether a patient received chemotherapy or not 
depended on his/her TNM stage, physical state score and intention. Imaging examination was arranged 
for every 2-6 mo or when a patient’s condition changed to determine whether the disease recurrence 
occurred.

DNA library preparation and 16S rRNA sequencing
ZR Fungal/Bacterial DNA kit (Zymo Research, Irvine, CA, United States) was used to isolate bacterial 
DNA from intestinal microbiota samples according to the manufacturer’s instructions. Quant-iT 
PicoGreen dsDNA assay kit (Thermo Fisher, Sunnyvale, CA, United States) was used to quantify the 
DNA amounts. The hypervariable regions of 16S rRNA gene amplicon libraries targeting the V3-V4 
regions were prepared according to the Illumina manufacturer’s manual. The amplification primers 
were used according to the Illumina manufacturer’s manual. The forward and reverse primers were 
used as follows: 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 
and 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC. The 
products of polymerase chain reaction were examined using agarose gel electrophoresis (1% concen-
tration of agarose gel; 100 V; 40 min electrophoresis time). The AMPure XP beads (Beckman Coulter, 
Fullerton, CA, United States) were used to purify the amplified DNA libraries, and Quant-iT PicoGreen 
dsDNA assay kit (Thermo Fisher, Sunnyvale, CA, United States) was used to quantify the DNA library 
amounts. All the DNA samples were stored at -20 °C until used.

Quality control, operational taxonomic unit picking and diversity analyses of 16S rRNA amplicons
The 16S rRNA amplicon libraries were sequenced for 2 × 300 bp on Illumina MiSeq platform. The read 
information was listed in Supplementary Table 1. The FastQC program was used to perform quality 
control and filtering of raw paired-end reads (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/, accessed on 5 June 2019). Next, PandaSeq v2.10 was used to assemble paired-end reads 

https://f6publishing.blob.core.windows.net/c428374d-da89-435b-9646-619d49aa5887/WJG-28-1946-supplementary-material.pdf
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with default parameters[16]. The QIIME pipeline v1.9.1 (http://qiime.org/home_static/dataFiles.html, 
accessed on June 5, 2019) and Greengenes database v13.8 were used for de novo operational taxonomic 
unit (OTU) picking and taxonomic assignment[17]. Briefly, we generated the mapping file that contains 
all the information about the sequencing samples including sample ID, barcode sequences and sample 
types. The python command, pick_otus.py, was used to pick OTUs based on sequence similarity 
(threshold of 97%) of the assembled reads, which is commonly used to define bacterial species. The 
python command, pick_rep_set.py, was used to pick the representative sequences for each OTU. 
USEARCH 6.1 was used for chimera detection and filtering. The python command, assign_ 
taxonomy.py, was used to assign taxonomy to OTU representative sequences. The python command, 
make_rarefaction_plots.py and online MicrobiomeAnalyst (https://dev.microbiomeanalyst.ca/Microbi-
omeAnalyst/home.xhtml, accessed on 28 August 2021) were used to calculate alpha diversities within 
the samples[18,19]. The 16S rRNA paired-end reads have been submitted to the Sequence Read Archive 
database at the National Center for Biotechnology Information website under accession number 
PRJNA606879.

Bioinformatic analyses of gut mucosal microbiota for CRC patients
The beta diversity of gut mucosal microbiota among the samples collected from CRC patients with and 
without recurrence was calculated using principal component analysis on MicrobiomeAnalyst website
[18,19]. The linear discriminant analysis (LDA) effect size was analyzed using online Microbio-
meAnalyst[18,19].

Statistical analysis
Statistical analyses were performed using SPSS Version 23. The statistical significance of multiple 
sample comparisons were calculated using one-way analysis of variance with Kruskal-Wallis test. The 
Kaplan-Meier survival curves for OS and DFS and the optimal cutoff value of RiskScore were calculated 
using R software package maxstat (maximally selected rank statistics with several P value approxim-
ations version: 0.7-25)[20]. We set the minimum number of samples in the grouping to be greater than 
25% and the maximum number of samples in the grouping to be less than 75% and finally obtained the 
optimal cutoff value of each bacterial taxa. Based on this cutoff threshold, the patients were divided into 
groups with high and low abundance of the bacterial taxa. Furthermore, the survivfit function of R 
software was used to analyze the prognostic differences between the two groups, and the significance of 
prognostic differences between the two groups was evaluated by logrank test. According to the cutoff 
value of each bacterial taxon, we divided the patients into groups with high and low abundance of the 
bacterial taxa and then conducted Cox regression analyses. The Cox regression analyses based on the 
proportional hazards model were carried out using SPSS v. 23 program.

RESULTS
Clinicopathological features of CRC patients
We summarized the patients’ clinicopathological data in Table 1. The median age of 75 patients was 63.4 
years, and 60% of them were males. The pathological type of all patients was categorized as adenocar-
cinoma, and most of the tumor cells were poorly differentiated. Most patients were diagnosed as 
microsatellite stable based on immunohistochemical evaluation of components of the mismatch repair 
machinery, including MLH1, MSH2, MSH6 and PMS2. All patients did not receive chemotherapy or 
other antitumor therapy before surgery. After surgery, 44 of 75 patients received chemotherapy based 
on FOLFOX (CapeOX) or FOLFIRI regimen, 4 of them received radiotherapy, and 6 of them received 
targeted therapy. The median follow-up duration for all cases after surgery was 51.2 mo (2.90-57.03 mo). 
There were 6 patients who failed to be followed up. Until August 23, 2021, a total of 17 patients 
diagnosed with Ι-ΙΙΙ stages had relapsed and 20 patients had died.

Altered alpha-diversity of gut mucosal microbiota at adjacent-tumor sites for CRC recurrence
Although tumor tissues can be removed by surgery, the microbiota residing in the tumor surrounding 
tissues, e.g., those at the adjacent-tumor sites as well as those in the remaining intestinal tissues where 
tumors are removed, may retain pathogenic bacteria that have the capabilities to drive CRC, leading to 
CRC recurrence. Therefore, we hypothesize that gut mucosal microbiota profiles at on-tumor or 
adjacent-tumor sites may be linked to CRC recurrence. To examine this, we assessed microbial alpha-
diversities of biopsy samples collected from on-tumor, adjacent-tumor and off-tumor sites of patients 
with and without CRC recurrence. The 16S rRNA gene hypervariable V3-V4 regions were sequenced 
and analyzed for five α-diversity indices including Chao1, Fisher, Observed OTU, Shannon and 
Simpson (Figure 1). Analyses of species variations based on these five metrics consistently indicated that 
species diversities at on-tumor or off-tumor sites of patients with and without CRC recurrence showed 
no significant differences (Student t-test, P < 0.05) (Figure 1). Analyses of species variations based on 
Chao1 (Student t-test, P = 0.0092), Fisher (Student t-test, P = 0.0092) and observed OTU (Student t-test, P 

http://qiime.org/home_static/dataFiles.html
http://qiime.org/home_static/dataFiles.html
https://dev.microbiomeanalyst.ca/MicrobiomeAnalyst/home.xhtml
https://dev.microbiomeanalyst.ca/MicrobiomeAnalyst/home.xhtml
https://dev.microbiomeanalyst.ca/MicrobiomeAnalyst/home.xhtml
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Table 1 Summary of clinicopathological factors of colorectal cancer patients

Characteristics n % Characteristics n %

Age, yr Sex

Mean 63.4 ± 11.0 Male 45 60.0

Range 29-82 Female 30 40.0

AJCC stage T stage

Ι-ΙΙ 38 50.7 1-2 11 14.7

ΙΙΙ-ΙV 37 49.3 3-4 64 85.3

Location Lymph node metastasis

Left colon 21 28.0 Present 36 48.0

Right colon 11 14.7 Absent 39 52.0

Rectum 43 57.3 Distant metastasis

History of alcohol use Present 11 14.7

Nondrinker 50 66.7 Absent 64 85.3

Drinker 25 33.3 Smoking history 

Differentiation Nonsmoker 43 57.3

High 1 1.3 Smoker 32 42.7

High-moderately 3 4.0 Microsatellite status

Moderately 38 50.7 Stability (MSS) 46 61.3

Low-moderately 21 28.0 Instability (MSI) 24 32.0

Low 12 16.0 Unclear 5 6.7

AJCC: American Joint Committee on Cancer; MSS: Microsatellite stable; MSI: Microsatellite instability.

= 0.0092), but not Shannon (Student t-test, P = 0.1314) and Simpson (Student t-test, P = 0.2513), showed 
significant differences at adjacent-tumor sites of patients with and without CRC recurrence (Figure 1). 
Although Shannon and Simpson metrics did not show statistical significance, analyses of the α-
diversities based on the five metrics suggested that at adjacent-tumor sites, those from patients with 
CRC recurrence were higher than those from patients without recurrence (Figure 1). These data suggest 
that there is no significant difference of composition of gut mucosal species at on-tumor and off-tumor 
sites between patients with and without CRC recurrence. However, compositions of internal species 
showed differences at adjacent-tumor sites between patients with and without CRC recurrence.

Microbiota profiles linked to CRC recurrence
To assess whether the structure diversities (beta-diversity) of gut microbiota show differences between 
patients with and without CRC recurrence, we performed principal component analysis for abundance 
of genera identified at on-tumor, adjacent tumor and off-tumor sites of CRC patients diagnosed with 
and without disease recurrence. The microbiota structure diversities at on-tumor, adjacent tumor and 
off-tumor sites of CRC patients diagnosed with and without disease recurrence showed differences 
(Figure 2), suggesting that the structures of gut microbiota were different at these sites in patients with 
and without CRC recurrence.

We next compared the differential relative abundance of bacterial taxa at the phylum level between 
patients with and without CRC recurrence. Among all the samples, Firmicutes, Proteobacteria, 
Bacteroidetes and Fusobacteria showed the top relative abundance (Figure 3). Firmicutes, Bacteroidetes and 
Fusobacteria showed higher relative abundance at on-tumor sites of patients diagnosed with CRC 
recurrence than those at on-tumor sites of patients diagnosed without CRC recurrence (Figure 3). At 
adjacent-tumor sites, the relative abundance of Fusobacteria in patients with CRC recurrence were 
dramatically higher than those in patients without CRC recurrence (Figure 3). By contrast, the relative 
abundance of Fusobacteria at off-tumor sites showed no differences between patients with and without 
CRC recurrence (Figure 3). The relative abundance of Firmicutes and Bacteroidetes at off-tumor sites of 
patients with CRC recurrence were lower than those of patients without CRC recurrence (Figure 3). 
Collectively, these data suggest that species from Fusobacteria, Bacteroidetes and Firmicutes may play roles 
in worsening or improving the patient prognosis.
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Figure 1 Microbial alpha-diversities showing significant differences at adjacent-tumor site. A: Alpha diversity evaluated using Chao1 index; B: 
Alpha diversity evaluated using Fisher index; C: Alpha diversity evaluated using observed operational taxonomic unit index; D: Alpha diversity evaluated using 
Shannon index; E: Alpha diversity evaluated using Simpson index. health: Healthy control; nn: Off-tumor site of patient without colorectal cancer (CRC) recurrence; 
nr: Off-tumor site of patient with CRC recurrence; pn: Adjacent-tumor site of patient without CRC recurrence; pr: Adjacent-tumor site of patient with CRC recurrence; 
tn: On-tumor site of patient without CRC recurrence; tr: On-tumor site of patient with CRC recurrence. Alpha-diversity differences were compared using student’s t-
test.

Altered gut mucosal microbiota signatures in CRC recurrence
We next carried out the linear discriminant analysis effect size to predict site-specific biomarkers that 
are associated with CRC recurrence. By setting LDA score > 3.0 [false discovery rate (FDR) adjusted P 
value < 0.1], a total of 100 genera were identified to show significant differences of relative abundance 
between patients with and without CRC recurrence (Figure 4, Supplementary Table 2). The top 10 
genera/families with the highest LDA scores were Fusobacterium (LDAscore = 5.56, FDR adjusted P = 
0.0026), Faecalibacterium (LDAscore = 5.29, FDR adjusted P = 0.0176), Peptostreptococcus (LDAscore = 5.13, 
FDR adjusted P = 0.0026), Streptococcus (LDAscore = 5.08, FDR adjusted P = 0.0639), Parvimonas 
(LDAscore = 5.04, FDR adjusted P = 0.0072), Burkholderiales (LDAscore = 5.03, FDR adjusted P = 0.0018), 
Pseudomonas (LDAscore = 4.82, FDR adjusted P = 0.0301), Caulobacteraceae (LDAscore = 4.77, FDR 
adjusted P = 0.0043), Mitsuokelia (LDAscore = 4.77, FDR adjusted P = 0.0011) and Pseudomonadales 

https://f6publishing.blob.core.windows.net/c428374d-da89-435b-9646-619d49aa5887/WJG-28-1946-supplementary-material.pdf
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Figure 2 Principal component analysis showed spatial- and recurrence-specific patterns of microbiota profiles. health: Healthy control; nn: Off-
tumor site of patient without colorectal cancer (CRC) recurrence; nr: Off-tumor site of patient with CRC recurrence; pn: Adjacent-tumor site of patient without CRC 
recurrence; pr: Adjacent-tumor site of patient with CRC recurrence; tn: On-tumor site of patient without CRC recurrence; tr: On-tumor site of patient with CRC 
recurrence.

Figure 3 Patterns of bacterial taxonomy at the phylum level collected from spatial-specific sites of patients with or without colorectal 
cancer recurrence. health: Healthy control; nn: Off-tumor site of patient without colorectal cancer (CRC) recurrence; nr: Off-tumor site of patient with CRC 
recurrence; pn: Adjacent-tumor site of patient without CRC recurrence; pr: Adjacent-tumor site of patient with CRC recurrence; tn: On-tumor site of patient without 
CRC recurrence; tr: On-tumor site of patient with CRC recurrence.

(LDAscore = 4.76, FDR adjusted P = 0.0106) (Supplementary Table 2). Seven genera/families, including 
Fusobacterium, Pyramidobacter, Mogibacteriaceae, Coriobacteriaceae, Anaerotruncus, Slackia and Bacteroidales, 
showed higher abundance at on-tumor and adjacent-tumor sites (but not off-tumor sites of patients with 
CRC recurrence than those without CRC recurrence and healthy controls (Supplementary Table 2). Four 
genera, including Dialister, Selenomonas, TG5 and Schwartzia, showed higher abundance at on-tumor, 
adjacent-tumor and off-tumor sites of patients with CRC recurrence than those without CRC recurrence 
and healthy controls (Supplementary Table 2). By contrast, some well-recognized CRC drivers, e.g., 
Peptostreptococcus and Streptococcus, showed lower abundance at on-tumor sites of patients with CRC 
recurrence than those without CRC recurrence. These CRC-recurrence-associated genera may play roles 

https://f6publishing.blob.core.windows.net/c428374d-da89-435b-9646-619d49aa5887/WJG-28-1946-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/c428374d-da89-435b-9646-619d49aa5887/WJG-28-1946-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/c428374d-da89-435b-9646-619d49aa5887/WJG-28-1946-supplementary-material.pdf
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Figure 4 Linear discriminant analysis effect size analysis showed the genera or families with unknown genus with significant differential 
abundances at off-tumor, adjacent-tumor or on-tumor sites of patients with and without colorectal cancer recurrence. The colors in the 



Huo RX et al. Colorectal cancer and gut mucosal microbiota

WJG https://www.wjgnet.com 1954 May 14, 2022 Volume 28 Issue 18

heatmap represent the abundance of genera/families with unknown genus. Red: High abundance; Blue: low abundance. health: Healthy control; nn: Off-tumor site of 
patient without colorectal cancer (CRC) recurrence; nr: Off-tumor site of patient with CRC recurrence; pn: Adjacent-tumor site of patient without CRC recurrence; pr: 
Adjacent-tumor site of patient with CRC recurrence; tn: On-tumor site of patient without CRC recurrence; tr: On-tumor site of patient with CRC recurrence; LDA: The 
linear discriminant analysis.

in interacting with host cells and worsening patient prognosis.

Gut mucosal microbiota profiles associated with prognosis and survival of CRC patients
Next, we selected those genera/families that were significantly associated with CRC recurrence based 
on LDA effect size analysis and used their abundance to evaluate their effects on prognosis and patient 
survival. The Kaplan-Meier survival analysis curves showed that seven bacterial genera at on-tumor 
sites and nine bacterial genera at adjacent-tumor sites were capable of significantly predicting the OS of 
patients (P < 0.05) (Figure 5). High abundance of Anaerotruncus, Bacteroidales, Fusobacterium, 
Pyramidobacter, Pseudoramibacter_Eubacterium and TG5 at on-tumor sites predicted shorter OS, whereas 
high abundance of Parvimonas was associated with longer OS (Figure 5A). At adjacent-tumor sites, high 
abundance of Anaerotruncus, Coriobacteriaceae, Dialister, Filifactor, Mogibacteriazeae, Pyramidobacter and 
Treponema predicted shorter OS, whereas high abundance of Haemophilus and Bacteroidales indicated 
longer OS (Figure 5B). The cutoff values were shown in Supplementary Table 3.

We next performed Kaplan-Meier survival analyses to analyze DFS between patients with high and 
low abundance of specific bacterial taxa. A total of eleven genera at on-tumor sites and eight genera at 
adjacent-tumor sites were capable of predicting DFS obviously (P < 0.05) (Figure 6). High abundance of 
Anaerotruncus, Bacteroidales, Erysipelotrichaceae_Eubacterium, Filifactor, Mogibacteriazeae, Pyramidobacter, 
Pseudoramibacter_Eubacterium, Porphyromonadaceae, Slackia and TG5 at on-tumor sites were associated 
with shorter DFS, whereas high abundance of Gemella was associated with longer DFS (Figure 6A). At 
the adjacent-tumor sites, high abundance of Anaerotruncus, Coriobacteriaceae, Dialister, Filifactor, 
Pyramidobacter and Schwartzia showed shorter DFS, while high abundance of Haemophilus and Bacter-
oidales were associated with longer DFS (Figure 6B).

According to the abundance cutoff value of each genus calculated by Kaplan-Meier survival analyses 
(Supplementary Table 3), we divided the patients into two groups with high or low abundance of each 
genus. Then, we investigated the survival risk associated with the abundance of each genus/family and 
other clinicopathological features via univariate and multivariate COX regression analyses. According to 
the univariate Cox regression analysis results, we chose bacterium or clinicopathological feature with 
significance (P < 0.1) and additional bacterium with significance in Kaplan-Meier analysis (P < 0.05) to 
further perform multivariate Cox regression analysis.

Interestingly, although gender, age, differentiation, smoking and drinking histories showed no 
significance (P > 0.05) in univariate DFS or OS Cox regression analyses (Supplementary Tables 4 and 5), 
the TNM stage and location of tumor in intestine showed significant influences on patient survival 
based on multivariate OS Cox regression analysis (P < 0.05) (Supplementary Figures 1 and 2). CRC 
ΙΙΙ/ΙV stage and CRC located in the right colon revealed shorter OS than CRC Ι/ΙΙ stage and CRC 
located in the left colon or rectum, respectively. Moreover, only CRC ΙΙΙ/ΙV stage showed shorter DFS 
than CRC I/II stage (Supplementary Figure 2). In addition, MSI was associated with improved DFS 
rates in all patients based on multivariate Cox regression analysis (Supplementary Figure 3). Univariate 
Cox regression OS analysis indicated patients with high abundance of Anaerotruncus, Bacteroidales, 
Pyramidobacter, Pseudoramibacter_Eubacterium and TG5 at on-tumor sites were associated with shorter OS 
rates (Supplementary Figure 1). However, no significant differences were found between these bacteria 
and OS in multivariate analysis (Supplementary Figure 1). At adjacent-tumor sites, univariate analysis 
showed high abundance of Anaerotruncus, Coriobacteriaceae, Dialister, Filifactor, Mogibacteriazeae, 
Pyramidobacter and Treponema and low abundance of Bacteroidales were associated with shorter OS rates. 
In multivariate analysis, high abundance of Anaerotruncus and low abundance of Haemophilus were 
associated with shorter OS rates (Supplementary Figure 2).

High abundance of Anaerotruncus, Bacteroidales, Erysipelotrichaceae_Eubacterium, Mogibacteriazeae, 
Pyramidobacter and Pseudoramibacter_Eubacterium at on-tumor sites predicted shorter DFS rates in 
univariate analysis, whereas high abundance of Mogibacteriazeae and Slackia were associated with 
shorter DFS rates in multivariate analysis (Supplementary Figure 3). In univariate analysis of bacterial 
taxa at adjacent-tumor sites, high abundance of Anaerotruncus, Coriobacteriaceae, Dialister, Filifactor, 
Pyramidobacter and Schwartzia indicated shorter DFS rates (Supplementary Figure 4). Meanwhile, low 
abundance of Bacteroidales was associated with shorter DFS rates (Supplementary Figure 4). In 
multivariate analysis, there was no correlation between these bacteria and DFS rates (Supplementary
Figure 4).
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https://f6publishing.blob.core.windows.net/c428374d-da89-435b-9646-619d49aa5887/WJG-28-1946-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/c428374d-da89-435b-9646-619d49aa5887/WJG-28-1946-supplementary-material.pdf
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Figure 5 The relationship between bacterial abundance and overall survival. A: Kaplan-Meier curves of bacteria at on-tumor site and overall survival 
(OS); B: Kaplan-Meier curves of bacteria at adjacent-tumor site and OS. aP < 0.05; bP < 0.01; cP < 0.001; dP < 0.0001. X-axis: OS (mo), Y-axis: Survival probability.

DISCUSSION
Emerging evidence indicates that the gut microbiota plays pivotal roles in CRC incidence and 
progression[21]. Most previous studies have focused on identifying gut microbiota profiles linked to 
CRC carcinogenesis and revealing the physiological roles of specific species, e.g., F. nucleatum, 
Peptostreptococcus anaerobius, B. fragilis and Eubacterium rectale, in CRC tumorigenesis and development
[22-25]. However, few reports have fully screened the gut microbiota profiles linked to prognosis and 
survival of CRC patients[7]. Up to date, only F. nucleatum and B. fragilis were evaluated for their impacts 
on patient prognosis[7,8,13,14]. Therefore, our understanding of bacterial taxa associated with clinical 
outcomes of CRC is incomplete. Profiling these bacterial taxa will pave a way for further understanding 
their functional roles in impairing clinical outcome of CRC and development of novel strategies for 
prevention of CRC recurrence. In this study, we explored large-scale screening of gut mucosal 
microbiota of triplet-paired biopsy samples collected from on-tumor, adjacent-tumor and off-tumor sites 
of CRC patients and identified critical bacterial taxa that were linked to prognosis and survival of CRC 
patients.

Our data revealed that a number of bacterial genera/families at on-tumor and adjacent-tumor sites 
are capable of influencing DFS and OS rates. High abundance of Anaerotruncus and Pyramidobacter 
indicated shorter DFS and OS rates in Kaplan-Meier survival analyses and increased the risk of CRC 
recurrence and patient death according to our Cox regression analyses (P < 0.05). High abundance of 
Coriobacteriaceae, Dialister and Filifactor at adjacent-tumor sites and high abundance of Bacteroidales, 
Pseudoramibacter_Eubacterium and TG5 at on-tumor sites indicated shorter DFS and OS rates and 
increased the risk of CRC recurrence and patient death (P < 0.05). Conversely, high abundance of 
Parvimonas at on-tumor sites showed longer OS rates. Meanwhile, high abundances of Bacteroidales and 
Haemophilus at adjacent-tumor sites indicated longer DFS and OS rates, but only Haemophilus decreased 
the risk of death in multivariate Cox regression analysis (P < 0.05). High abundances of Fusobacterium at 
on-tumor sites and Treponema at adjacent-tumor sites indicated shorter OS rates, but only Treponema 
increased the risk of death (P < 0.05). High abundance of Erysipelotrichaceae_Eubacterium, Gemella, 
Porphyromonadaceae and Slackia at on-tumor sites and Coriobacteriaceae at adjacent-tumor sites indicated 
shorter DFS rates, and Erysipelotrichaceae_Eubacterium, Gemella, Slackia and Schwartzia increased the risk 
of recurrence (P < 0.05). In multivariate regression analysis, Haemophilus showed a protective effect and 
Anaerotruncus showed a detrimental effect when referred to death (P < 0.05), and Mogibacteriazeae and 
Slackia showed obvious detrimental effects when referred to recurrence (P < 0.05).

As well-recognized oral pathogens, F. nucleatum, Parvimonas micra and Gemella morbillorum were 
significantly enriched in both right- and left-sided CRC tumors[26]. F. nucleatum in tumor samples was 
reported to be associated with worse outcomes in terms of OS, DFS or cancer-specific survival, with 
hazard ratios ranging from 1.58 to 19.96[27]. However, our data showed that the abundance of F. 
nucleatum only affected OS but not DFS rates. This observation is consistent with two previous studies. 
Wei et al[7] reported that high abundance of F. nucleatum or B. fragilis was associated with poor OS rates 
after surgery. A meta-analysis found that enrichment of F. nucleatum in tumor tissue was associated 
with worse OS among CRC patients (n = 5 studies, HR = 1.87; 95%CI: 1.12–3.11; I2 = 60.6%) but was not 
associated with DFS (n = 3 studies, HR = 1.48; 95%CI: 0.84–2.59; I2 = 88.5%)[28].

F. nucleatum may contribute to CRC progression in an established tumor microenvironment due to its 
highly adherent, invasive and proinflammatory nature that can take advantage of a compromised 
colonic epithelial cell layer. Moreover, F. nucleatum is an asaccharolytic bacterium that will not compete 
for glucose, a preferred substrate in tumor metabolism, and F. nucleatum can tolerate the hypoxic tumor 
environment[26,29]. In addition, F. nucleatum is capable of functioning as a bridge-forming bacterium to 
interact with other bacterial colonizers, leading to a complex biofilm formation in the human body[30,
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Figure 6 The relationship between bacterial abundance and disease-free survival. A: Kaplan-Meier curves of bacteria at on-tumor site and disease-
free survival (DFS); B: Kaplan-Meier curves of bacteria at adjacent-tumor site and DFS. aP < 0.05; bP < 0.01; cP < 0.001; dP < 0.0001.

31]. The increases in F. nucleatum abundance were observed in both biopsy site and saliva samples of 
CRC[32].

Flynn et al[33] proposed a polymicrobial synergy model that certain oral pathogens may cooperate to 
fight off the host immune system for survival and be able to establish a niche containing mixed species 
in the gut. The intestinal mucosa and epithelium are falling off and replaced constantly, which provide 
available nutrients and binding sites for adhesive bacteria. Intestinal and oral environments share 
similar pH, which is conducive for bacteria to form biofilm and persist in the host. Initiation or 
progression of tumorigenesis benefit these bacteria for proliferation because local inflammatory 
responses during tumorigenesis increase available nutrients in the niche[33]. Polymicrobial colonization 
at the tumor site by bacterial species that are phylogenetically related to those classified as oral 
pathogens (e.g., Fusobacterium, Anaerococcus and Parvimonas) could promote tumorigenesis by modifying 
the tumor microenvironment and eliciting an elevated response of T helper 17 cells, which is linked to a 
poor prognosis of CRC patients[34].

The order Bacteroidales contains more than 35 species, including the best studied genus Bacteroides, 
which is highly abundant in gut microbiota of a healthy human[35-39]. Due to its high density, it is 
proposed that the species in this order may form mutualistic relationships with the host gut and play a 
role in stabilizing the compositional structure of the gut microbiota. However, certain species from this 
order are pathogenic and considered as potential driver bacteria for CRC. For example, ETBF secretes a 
zinc metalloprotease toxin, known as B. fragilis toxin, that is associated with inflammatory bowel disease 
and CRC[40]. ETBF can induce production of reactive oxygen species in host cells that cause oxidative 
DNA damage, induce inflammation and disrupt the integrity of the epithelial barrier. In addition, ETBF 
is able to activate the β-catenin nuclear signaling cascade and induce proliferation of host cells[41]. 
Although B. fragilis may enhance the efficiency of immune checkpoint inhibitor therapy[42], ETBF has 
been reported to decrease OS and DFS of CRC patients[27,42].

Unexpectedly, our data showed that Bacteroides at on-tumor and adjacent-tumor sites displayed 
distinguishable effects on OS and DFS (Figures 5 and 6). High abundance of Bacteroides at on-tumor sites 
manifested worse OS and DFS, whereas those at adjacent-tumor sites showed better OS and DFS. It was 
reported that high levels of defined chemokines (e.g., CCL5 and CCL17) in CRC tissues may attract 
beneficial T cells [cytotoxic T lymphocytes, T-helper (Th) 1 cells, interleukin-17-producing Th cells and 
regulatory T cells] and lead to improved patient survival. Titers of Bacteroidales were positively 
correlated with expression levels of individual chemokines and the extent of T cell infiltration[43]. 
Loading Bacteroidales to tumor xenografts recruited T cells, indicating that Bacteroidales is capable of 
controlling the extent of tumor infiltration by beneficial immune cells[43]. However, CRC tissue was 
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infiltrated by more “not effector” T cells (Th2/Th0/regulatory T cells/Tnull) with regulatory or anergic 
properties, which are unable to kill CRC cells and may contribute to CRC promotion[44]. Therefore, 
Bacteroidales at off-tumor sites here may play a protective role in recruiting beneficial T cells (e.g., Th1, 
Th17, etc), leading to improved prognosis of CRC patients. On the other hand, Bacteroidales at on-tumor 
sites may contribute to CRC recurrence as pathogens or thrive as passenger bacteria.

In our Kaplan-Meier survival analyses, high abundance of Anaerotruncus at either on-tumor sites or 
adjacent-tumor sites was associated with shorter OS and DFS, suggesting that the genus increases the 
risk of CRC recurrence and patient death. The genus Anaerotruncus contains only one validly published 
species, namely Anaerotruncus colihominis. Anaerotruncus colihominis was first identified as a Gram-
positive, anaerobic bacillus that was isolated from the stool specimens of two children[45]. Moreover, 
this species was isolated from the blood culture of humans with nosocomial bacteremia[45]. Significant 
enrichment of Anaerotruncus was found in the endometrium of patients with endometrial cancer, 
suggesting that this bacterium promotes inflammation and tumorigenesis[46]. High fat diets are 
generally considered as a high risk factor for CRC. Abundance of Anaerotruncus is considered to be 
linked to consumption of saturated fatty acids in both men and women[47]. In mouse model 
experiments, high fat diets and high sucrose diets led to conditional pathogenic bacterial growth, such 
as Anaerotruncus and Bacteroides. These bacteria played a proinflammatory role in disrupting the 
integrity of epithelial barrier function[48-50].

Several genera, including Pyramidobacter and Mogibacteriaceae, are sulfidogenic and associated with 
CRC[51-55]. Pyramidobacter is mainly isolated from the human oral cavity, upper gastrointestinal tract 
and bile[56,57]. The genus Pyramidobacter contains anaerobic, Gram-negative bacilli that produce acetic, 
isovaleric acids and many other trace chemicals as metabolism products[51]. Abundance of 
Pyramidobacter was found to be higher in older adults and was positively correlated with proinflam-
matory cytokine interleukin-6 that promotes CRC development[58]. In addition, the family Mogibac-
teriaceae was reported to be associated with CRC and observed to co-occur with F. nucleatum[53,59]. Our 
previous study also reported that Mogibacterium from the family Mogibacteriaceae was associated with 
Peptostreptococcus in gut microbiota isolated from CRC patients[60].

Several genera identified in this study were reported to be associated with CRC previously. The role 
of Eubacterium in CRC initiation was underestimated for a long time. Recently, we identified Eubacterium 
as a potential driver bacteria contributing to CRC and experimentally showed that the lipopolysac-
charide of Eubacterium rectale activates the transcription factor NF-кB, which regulates innate and 
adaptive immune responses in normal colon epithelial cells[22]. The genus Dialister was detected in the 
blood of patients with oral infections that cause bacteremia[61]. A meta-analysis based on 26 studies that 
used next-generation sequencing to analyze microbiota showed that the relative abundance of Dialister 
was significantly higher in cancer patients than those in control samples[62]. The metabolism end 
products of Dialister include acetate, lactate and propionate that may cause carcinogenesis[62]. 
Treponema denticola is an oral pathogen and associated with an increased risk of CRC[63]. The genus 
Schwartzia is linked to CRC carcinogenesis-related gene methylation[64]. The family Coriobacteriaceae is 
considered a commensal or probiotic bacteria residing in the human gut[65]. Their roles in driving CRC 
recurrence are unknown.

Unlike other critical genera analyzed in this study, low abundance of Haemophilus at adjacent-tumor 
sites indicated longer OS and DFS than those with high abundance in our Kaplan-Meier analyses. 
Haemophilus is a commensal microorganism, which belongs to the phylum Proteobacteria. It is an 
opportunistic pathogen that may lead to infections such as endocarditis and pneumonia. Haemophilus in 
stool samples showed significantly higher proportions in the CRC group than in the control group[66]. 
The proportions of Haemophilus decreased after tumor removal via surgery, indicating it is a carcino-
genesis pathogen indirectly[67]. However, decreased abundance of Haemophilus was observed in stage 
I/II CRC compared to stage 0 (earliest) CRC, which may be due to overgrowth of other harmful bacteria 
that acted as competitors during the transition from precancerous lesions to late-stage CRC[68].

According to our COX regression analysis, location (right/left colon or rectum) is another risk factor 
for patient death. Compared to left colon or rectum, right colon obviously increased risk of death. 
Consistent with our results, a study showed that the 10-year OS of patients with CRC at the right-sided 
colon was shorter than that of patients with CRC at the left-sided colon[68]. There is a more abundant 
blood supply in the right-sided colon than other parts of colon, which benefits tumor growth and results 
in common clinical symptoms including anemia, emaciation, fever and dyscrasia. Tight-sided CRC 
exhibits more mucinous and advanced TNM stage[69]. Obviously different patterns of microbiota 
structures and abundances were found between left-sided and right-sided colons of CRC patients[69]. 
Moreover, invasive bacterial biofilms were found in 89% of right-sided CRC cases but in only 12% of 
left-sided CRC cases[69]. Therefore, right-sided CRC specific bacterial species with concomitant procar-
cinogenic epithelial responses may contribute to the development of right-sided CRC[70].

We further identified that TNM stage showed an obvious impact on survival of CRC patients. 
Patients with stage ΙΙΙ/ΙV CRC had a higher risk of death and disease recurrence, which is consistent 
with previously reported results[71]. At the same time, microsatellite status was another factor that 
influenced patient survival in our study. MSI may decrease the risk of CRC recurrence compared to 
microsatellite stable patients. Moreover, it was reported that MSI shows stage-specific impacts on the 
prognosis of CRC patients[70]. In stages II and III CRC, high MSI tumors had superior prognosis 
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compared with high microsatellite stable tumors. In stage IV CRC, although 4% of tumors were 
identified as high MSI tumors, these tumors were recognized to be associated with inferior survival[70]. 
Sequencing paired colon tumor and normal-adjacent tissue and mucosa samples revealed significant 
enrichment of B. fragilis and F. nucleatum in deficient mismatch repair CRC but not in proficient 
mismatch repair CRC[72].

CONCLUSION
In this work, we identified critical bacterial taxa that are associated with prognosis and survival of CRC 
patients. Our work suggests that intestinal microbiota can serve as biomarkers to predict the risk of CRC 
recurrence and patient death. Unexpectedly, most of these identified genera have not been investigated 
for their physiological roles in interacting with host intestinal cells. On the other hand, some well-
recognized CRC drivers, e.g., Peptostreptococcus and Streptococcus, are not associated with CRC 
recurrence according to our observations. Thus, the mechanism behind bacteria-driving CRC recurrence 
may be different from those proposed for bacteria-driving CRC development. The activities of complex 
immune cells, e.g., various types of T cells (e.g., Th1, Th2 and Th17) and macrophages, in response to 
these bacterial activities may need to be considered. Further functional analyses of physiological roles of 
these bacteria in patient prognosis and CRC recurrence will shed light on developing novel strategies 
for CRC treatment and prevention.

ARTICLE HIGHLIGHTS
Research background
Colorectal cancer (CRC) is one of the most common malignant tumors. Gut mucosal microbiota is 
considered to be one of the key factors promoting CRC. There is evidence that certain gut bacteria are 
linked to the prognosis (recurrence, overall survival and disease-free survival) of CRC, but there is a 
lack of research on the relationship between large-scale intestinal microbiota profiles and CRC 
recurrence/patient prognosis.

Research motivation
Our study focused on the relationship between the abundance of intestinal microbiota at different 
positions and CRC recurrence/patient prognosis. This study provides novel potential biomarkers for 
patient prognosis in the future.

Research objectives
The main objective of this study was to evaluate whether the abundance of intestinal microbiota at on-
tumor or adjacent-tumor sites can predict CRC recurrence and patient prognosis. Our study has prelim-
inarily suggested that some gut bacteria may have predictive values for CRC recurrence and patient 
prognosis. These results can provide new biomarkers for prediction of CRC recurrence in the future.

Research methods
We collected intestinal bacteria from different locations of the intestinal mucosa of patients and healthy 
controls. The bacterial taxa and abundance were determined by high-throughput 16S ribosomal RNA 
sequencing. The relationship between gut mucosal microbiota profiles and CRC recurrence and patient 
prognosis was explored by bioinformatics analysis, Kaplan-Meier survival analysis and Cox regression 
analysis. These methods have been well established in the field.

Research results
Through analysis, gut mucosal microbiota profiles are associated with CRC recurrence and patient 
prognosis. Abundance of some bacterial genera/families, e.g., Anaerotruncus, Bacteroidales and Fusobac-
terium, may have prognostic value for CRC recurrence and patient prognosis. The mechanism studies 
exploring the roles of gut mucosal microbiota in CRC recurrence and patient prognosis need to be 
carried out in the future.

Research conclusions
This study provides new potential biomarkers identified from gut mucosal microbiota for CRC 
recurrence and patient prognosis.

Research perspectives
In the future, it is necessary to explore the mechanism of how gut mucosal bacteria affect CRC 
recurrence and patient prognosis.
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