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Abstract

Greater understanding of the pathways through which an environmental mixture operates is 

important to design effective interventions. We present new methodology to estimate natural 

direct and indirect effects and controlled direct effects of a complex mixture exposure on 

an outcome through a mediator variable. We implement Bayesian Kernel Machine Regression 

(BKMR) to allow for all possible interactions and nonlinear effects of (1) the co-exposures on 

the mediator, (2) the co-exposures and mediator on the outcome, and (3) selected covariates on 

the mediator and/or outcome. From the posterior predictive distributions of the mediator and 

outcome, we simulate counterfactuals to obtain posterior samples, estimates, and credible intervals 

of the mediation effects. Our simulation study demonstrates that when the exposure-mediator 

and exposure-mediator-outcome relationships are complex, BKMR–Causal Mediation Analysis 

performs better than current mediation methods. We applied our methodology to quantify the 

contribution of birth length as a mediator between in utero co-exposure to arsenic, manganese 

and lead, and children’s neurodevelopmental scores, in a prospective birth cohort in Bangladesh. 

Among younger children, we found a negative (adverse) association between the metal mixture 

and neurodevelopment. We also found evidence that birth length mediates the effect of exposure 
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to the metal mixture on neurodevelopment for younger children. If birth length were fixed to its 

75th percentile value, the harmful effect of the metal mixture on neurodevelopment is attenuated, 

suggesting nutritional interventions to help increase fetal growth, and thus birth length, could 

potentially block the harmful effect of the metal mixture on neurodevelopment.
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1 | INTRODUCTION

The ability to identify pathways through which a complex exposure mixture operates is 

critical for the development of public health policy, as mediation pathways can often be 

influenced via interventions. In addition, exposure to environmental mixtures, as opposed to 

independently acting single agents, represents the real-life exposure scenario. Therefore, 

the National Institute of Environmental Health Sciences (NIEHS) has prioritized the 

development of statistical methods that quantify the effect of environmental mixtures on 

health outcomes.1–3 With this increased priority, new methodology is needed to measure 

mixtures effects and the pathways by which they operate if we are to minimize the burden of 

disease.

Exposure to complex mixtures is ubiquitous, and recent work in toxicology and 

epidemiology now emphasizes assessing mixtures of chemicals. Since elements of a mixture 

have the potential to exhibit complex interactions, it is important to consider the whole 

mixture when evaluating the nature of the relationship of multiple chemicals on a health 

outcome.4–6 Once a relationship between a mixture and outcome is established, questions 

regarding the pathways, or mechanisms, through which the mixture operates arise. Of 

note, in our examples, mechanisms can be biological processes (inflammation, endocrine 

disruption, etc.) or can be markers of biological processes (height, weight, etc.). While we 

recognize that these markers are not explicit mechanisms, they often are useful as they 

represent composites of several biological mechanisms. For example, height (or birth length) 

reflects fetal nutrition, placental health and function, inflammation, and likely genetics. We 

use the term “mechanism” when referring to birth length with the understanding that it is a 

marker of multiple biological mechanisms and not a mechanism itself. It should have all the 

properties of a biological mediator and may yield higher power to detect mediated effects 

since it reflects the sum of multiple mechanisms.

One approach to quantifying biological mechanisms is the use of causal mediation 

analysis.7–10 Causal mediation analysis allows for the decomposition of a total effect (TE) of 

an exposure on an outcome into the pathway that operates indirectly through an intermediate 

(mediator) variable and the pathway that is independent of the intermediate variable, or 

that operates directly from the exposure to the outcome. Researchers’ understanding of the 

pathways operating through intermediate variables may inform policy recommendations 

to reduce the harmful impact of environmental mixtures on health outcomes. For 

example, interventions that increase birth length (which can be monitored in populations) 
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may include nutrition, inflammation reduction or prenatal care that improves placental 

function. The evidence that birth length mediates the effect of prenatal metal exposure on 

neurodevelopment neurodevelopment would point to this factor as a way to measure the 

benefit of interventions on neurodevelopment within populations at birth. Monitoring infant 

anthropometry, such as birth weight and birth length, may serve as an early sentinel for 

possible neurodevelopment effects at a later age.

Few methods exist to estimate mediation effects when the exposure of interest is a mixture 

and exposure-mediator interactions are present. Current methods require specifying an 

outcome and a mediator regression. If the mediator variable is restricted to have a linear 

effect on the outcome, closed form solutions are available to estimate the natural direct effect 

(NDE), natural indirect effect (NIE), and controlled direct effects (CDEs) of a mediator on 

the relationship of a mixture on an outcome.8,10 In the presence of a nonlinear effect of 

the mediator on the outcome, the algorithm presented by Imai, Keele, and Tingley can be 

used to estimate the NDE, NIE, and CDEs through prediction of counterfactuals.11 However, 

both of these available methods require the researcher’s a priori specification of all data 

complexities and assume no model misspecification. Thus, all true existing interactions 

between the individual elements of the mixture, the elements of the exposure mixture and 

mediator, and any nonlinearities need to be included in the models for the mediator and 

outcome to obtain unbiased estimates. As the dimensions of a multi-dimensional exposure 

increase, it becomes exponentially difficult to use current methods to obtain unbiased 

estimates of the mediated effects. To our knowledge, no other methods using a causal 

inference framework currently exist to estimate the NDE, NIE, and CDEs of a potentially 

complex exposure mixture on an outcome through a mediator variable.

In this paper, we present a novel causal mediation method to estimate the NDE, NIE, and 

CDEs for a potentially complex mixture of exposures on an outcome operating through 

an intermediate variable. We allow for highly complex exposure-mediator and exposure-

mediator-response functions, in addition to complex exposure-covariate and exposure-

mediator-covariate relationships with the mediator and outcome respectively, using Bayesian 

Kernel Machine Regression (BKMR). BKMR has been shown to perform well relative to 

other nonparametric techniques and simpler statistical approaches for estimating mixture 

effects.12 BKMR allows for variable selection, which has not been incorporated in other 

nonparametric models and is an important feature when the number of mixture elements is 

large and/or they are highly correlated, as in children’s health research. Additionally, we use 

BKMR for the mediator and outcome regression models since BKMR allows for all possible 

nonlinearities and interactions among the elements included in the kernel with the specified 

outcome, without a priori specification, and credible intervals obtained from a BKMR fit 

inherently control for multiple testing due to the Bayesian nature of the model and the prior 

specification.13,14

We predict counterfactuals using the posterior predictive distributions of the mediator and 

the outcome and present an algorithm for estimation of mediation effects. We also conduct 

a simulation study to compare how our approach performs relative to current mediation 

methods that assume a restrictive linear relationship between the exposure, mediator, and 

outcome.
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We apply our method to analyze data from a prospective birth cohort in Bangladesh. 

Arsenic, manganese, and lead are known neurotoxicants15–20 that are abundant in the 

Bangladeshi environment, including in drinking water,21 and the relationship between 

arsenic, manganese and lead on child neurodevelopment has been shown to be 

complex.4–6,22–28 In our data application, we estimate the NDE and NIE to bring light 

to the relationship of this metal mixture on child neurodevelopment operating through in 
utero growth, specifically birth length. Also, we estimate the CDE of the metal mixture 

on neurodevelopment at different quantiles of birth length to assess if adequate in utero 
growth could potentially block some of the harmful effects of the metal mixture on 

neurodevelopment. Since the persistence of the effect of in utero metal exposure is unknown, 

that is, younger children might exhibit stronger associations with in utero metal exposure 

than older children, we estimate these effects for different aged children.

2 | MATERIALS AND METHODS

2.1 | Bayesian kernel machine regression

We first review BKMR presented by Bobb et al. as a framework to estimate the effect of a 

complex mixture on a health outcome.12 For each subject i = 1, … , n, we assume:

Y i = ℎ Zi + Ci
Tβ + ϵi, (1)

where Yi is a continuous health outcome, Zi = (Z1i, … , ZLi)T is a vector of length 

L containing continuous exposure variables (e.g. metals) and other continuous variables 

that may have a complex relationship with these exposures and outcome (e.g. effect 

modifiers), Ci = (C1i, … , CPi)T is a vector of additional covariates assumed to have a linear 

effect on the outcome, and ϵi ∼iid N 0, σ2 . Model (1) relates the outcome to the exposure 

mixture through a flexible function, h(·), which accommodates nonlinear associations and/or 

interactions among the variables in Z with the outcome Y.

Identifying a set of basis functions to represent h(·) can be difficult, thus, we employ a kernel 

machine representation.29 The unknown function h(·) can be specified in two ways. One 

can either use basis functions or a positive-definite kernel function K(·, ·) to identify h(·). 

Mercer’s theorem29 established that the kernel function K(·, ·) implicitly specifies a unique 

function space spanned by a particular set of orthogonal basis functions, under regularity 

conditions. Therefore, any h(·) in this function space can be represented by a set of basis 

functions or by the dual representation kernel function K(·, ·). Liu, Lin and Ghosh showed 

that model (1) can be expressed as the mixed model (2)30:

Y i ∼ N(ℎi + Ci
Tβ, σ2) independent, i = 1, …n,

h = ℎi, …, ℎn
T ∼ N(0, τK),

(2)

where K, the kernel matrix, has (i, j)-th element K(Zi, Zj).

The kernel function K(·, ·) uses a metric of similarity to establish how close exposure 

profiles Zi, and Zj are for subjects i and j. We will focus on the Gaussian kernel, which 
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uses Euclidean distance as a means to quantify this similarity. Under the Gaussian kernel, 

we assume corr(ℎi, ℎj) = exp −(1/ρ) ℓ 1
L (ziℓ zjℓ)2  , where ρ is a tuning parameter that 

regulates the smoothness of the dose-response function. Intuitively, this assumption means 

subjects with similar exposure profiles (Zi, close to Zj) will have more similar risks (hi will 

be close to hj).

When the exposure mixture contains more than a few variables, (1) can be fit with 

component-wise variable selection to add an additional layer of shrinkage above and beyond 

the smoothing induced by (2). This results in a more parsimonious representation of the 

mixture effect. To allow for variable selection within a Bayesian paradigm, the kernel 

function K(·, ·) is augmented. In the case of the Gaussian kernel, the kernel function is 

expanded as:

K(Zi, Zj; r) = exp −
ℓ 1

L
rℓ(Ziℓ Zjℓ)2 , (3)

where r = (r1, … , rℓ)T, and we assume a “spike-and-slab” prior for the auxiliary parameters,

rℓ ∣ δℓ ∼ δℓf1(rℓ) + (1 − δℓ)P0, ℓ = 1, …, L,
δℓ ∼ Bernoulli(π), (4)

where δℓ is an indicator that element ℓ is included in the kernel, f1(·) denotes a probability 

density function with support on ℝ+ , and P0 is the density with a point mass at 0.

To fit (1), we use a Markov chain Monte Carlo (MCMC) sampler. The prior specifications 

we used in our simulation study (Section 3) and data analysis (Section 4) as well as a 

summary of the BKMR model are included in Section A.1 of the Supplementary Materials. 

For additional details regarding BKMR, see Bobb et al.12,14

2.2 | Causal mediation analysis

In order to define causal contrasts in a mediation context, we first define our notation. 

Let Yam denote the counterfactual outcome Y if the exposure A was set to level a and 

mediator M was set to level m. Let Ma be the counterfactual mediator M that would have 

been observed if the exposure A was set to level a. Accordingly, YaMa* represents the 

counterfactual outcome Y if the exposure A was set to level a and the mediator M was set to 

the level it would have taken if the exposure A was set to level a*.

The mediated effects of interest, the total effect (TE), the natural direct effect (NDE), the 

natural indirect effect (NIE), and the controlled direct effects (CDEs), are formally defined 

as:

TE = E Y a − Y a∗ , (5)

NDE = E Y aMa∗ − Y a∗Ma∗ , (6)

Devick et al. Page 5

Stat Med. Author manuscript; available in PMC 2022 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NIE = E Y aMa − Y aMa∗ , (7)

CDE(m) = E Y am − Y a∗m . (8)

The NDE captures the average difference in the counterfactual outcomes for a change in 

exposure level a* to a, while fixing the mediator to the level it would have taken if the 

exposure was set to a*. The NIE measures the average difference in counterfactual outcomes 

when fixing the exposure to level a, while the mediator varies from the level it would have 

taken if the exposure was set to a compared to a*. The CDE quantifies the average difference 

in the counterfactual outcomes for a change in exposure level from a* to a, while intervening 

to fix the mediator to a specified level, m.

2.3 | Bayesian kernel machine regression–causal mediation analysis

For BKMR–Causal Mediation Analysis (BKMR-CMA), we consider a single normally 

distributed health outcome Y, single normally distributed mediator variable M, continuous 

exposure mixture A, continuous effect modifiers EM that may have a complex relationship 

with the exposures on the mediator, and continuous effect modifiers EY that may have a 

complex relationship with the exposures and mediator on the outcome. Let ZM = (A, EM) 

and ZY = (A, EY) be matrices containing all of the exposure variables (e.g. metals) and the 

effect modifiers to include in the prospective kernel functions. Although ZM and ZY might 

be the same sets of variables, our framework allows for them to differ. Additionally, one or 

both of the sets of variables EM or Ey could be empty (i.e. there are no effect modifiers 

that interact with the exposures and/or have a nonlinear relationship with the mediator or 

outcome). Lastly, let C be a matrix of confounders assumed to have a linear effect on the 

outcome. To allow for potentially complex relationships between the elements in ZM, we 

model the mediator variable using the BMKR model (9):

Mi = ℎM ZMi + Ci
Tβ + ϵMi, (9)

where ϵMi ∼iid N(0, σM
2 ). Since accounting for exposure-mediator interactions is important to 

obtain unbiased effect estimates, we include the mediator variable along with ZY in the 

kernel function when modeling the health outcome in (10):

Y i = ℎY (ZY i, Mi) + Ci
Tθ + ϵY i, (10)

where ϵY i ∼iid N(0, σY
2 ). By fitting the models separately, we assume ϵMi and ϵYi are 

independent. To model the total effect of the exposure mixture on the outcome, we consider 

BKMR model (11):

Y i = ℎTE(ZY i) + Ci
Tγ + ϵTEi, (11)

where ϵTEi ∼iid N(0, σTE
2 ).
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We estimate the TE, NDE, and NIE using BKMR-CMA at particular levels of the effect 

modifiers, eM and eY, for a change in exposure mixture from a* to a via the following 

algorithm, where we let zM = (a, eM), z*M = (a*, eM), zY = (a, eY), and z*Y = (a*, eY). 

This corresponds to a fixed intervention in the exposures. It is of utmost importance that 

careful thought is given to the choice of values for a* and a as well as eM and eY used to 

estimate the mediation effects. These values should lie within the support of the multivariate 

distribution of the data to ensure the values compared are observable in the population under 

study31.

1. Fit BKMR mediator, outcome, and total effect models (9), (10), and (11), 

respectively.

2. For each MCMC iteration, j = 1, … , J:

a. Generate k = 1, … , K samples of the mediator for the mean level of 

covariates under exposure level a* from mediator model (9), fixing the 

modifiers EM to level eM:

Mz∗
(jk)(c) = E(j)(M ∣ ZM = zM∗ , C = c) + σM

(j)N(0, 1)

= ℎM
(j)(ZM = zM∗ ) + cTβ(j) + σM

(j)N(0, 1) .

b. For each of the j = 1, … , J iterations and k = 1, … , K samples of 

Mz*, jointly estimate the average outcome value for the mean level of 

covariates for YzMz* and Yz*Mz* from outcome model (10), setting the 

modifiers EY to level eY and where z = zY  zY∗
T

 :

Y zz∗(jk)(c) = E(j)(Y ∣ ZY = z, M = Mz∗
(jk)(c), C = c)

= ℎY
(j)(ZY = z, M = Mz∗

(jk)(c)) + cTθ(j) .

c. Let the jth posterior sample of YzMz* be the mean over the K samples 

of YzMz*, or Y zMz∗
(j) (c) = 1

K k 1
K Y zMz

(jk) (c), and let the jth posterior 

sample of Yz*Mz* be the mean over the K samples of Yz* Mz*, or 

Y z∗Mz∗
(j) (c) = 1

K k 1
K

Y z Mz
(jk) (c).

d. We sample the jth posterior sample of Yz*, and Yz from the total effect 

model (11). We then calculate the average outcome value for the mean 

level of covariates at z = zY  zY∗
T

 from (11), setting the modifiers to 

level eY:

Y z
(j)(c) = E(j)(Y ∣ ZY = z, C = c)

= ℎTE
(j) (ZY = z) + cTγ(j)

Devick et al. Page 7

Stat Med. Author manuscript; available in PMC 2022 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Obtain the jth posterior sample of the TE, NDE, and NIE by:

TE(j) = Y z
(j)(c) − Y z∗

(j)(c),

NDE(j) = Y zMz∗
(j) (c) − Y z∗Mz∗

(j) (c),

NIE(j) = TE(j) − NDE(j) .

Note that we estimate the NIE as the difference between the TE and NDE to 

ensure the property of effect decomposition and to minimize the potential effect 

of overfitting using kernel methods.

4. Estimate the TE, NDE, and NIE and 95% credible intervals (CI) conditional for 

level of the effect modifiers and marginally according to the confounders as the 

posterior mean and posterior 2.5th and 97.5th percentiles. We take the standard 

Bayesian approach to calculate the CIs and variance of each effect of interest. 

After we calculate the marginal TE, NDE, and NIE at each MCMC iteration, we 

then calculate the variance and 2.5th and 97.5th percentiles of these J estimates 

of the TE, NDE, and NIE separately, and use these as the variance estimate and 

95% CI.

Four no unmeasured confounding assumptions are required for the NDE and NIE to have 

a causal interpretation: (i) Yam ⵡ A|C, (ii) Yam ⵡ M|C, A, (iii) Ma ⵡ A|C, and (iv) Yam 

ⵡ Ma*|C. Namely, there are no unmeasured exposure-outcome confounders, there are no 

unmeasured mediator-outcome confounders, there are no unmeasured exposure-mediator 

confounders, and the exposure mixture does not affect any mediator-outcome confounders.9 

To estimate CDEs, only two no unmeasured confounding assumptions are required: (i) and 

(ii). The algorithm to estimate CDEs is similar to the algorithm presented above. We include 

explicit steps to estimate CDEs in Section B of the Supplementary Materials.

We define BKMR-CMA-VS to be the method in which BKMR models (9), (10), and (11) 

are all fit with component-wise variable selection and then these models are used in our 

BKMR-CMA algorithm to obtain posterior samples of the counterfactuals and mediation 

effects. R Code to implement BKMR-CMA and BKMR-CMA-VS is publicly available on 

GitHub (https://github.com/kdevick/BKMR-CMA). A figure summarizing the notation and 

models used in BKMR-CMA is included in Section A.1 of the Supplementary Materials.

3 | SIMULATION STUDY

We evaluated the ability of BKMR-CMA and BKMR-CMA-VS to estimate the joint 

mediated effects of a mixture compared to the product method32 and causal mediation 

analysis methods using linear models8–10 under numerous plausible data generating 

mechanisms.
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3.1 | Setup

We first generated a true underlying dataset for each simulation scenario. The dataset 

consisted of a continuous health outcome Yi a continuous mediator value Mi and 

an exposure mixture Ai = (A1i, … , ALi)T comprised of L continuous mixture 

components for i = 1, … , 1,000,000 subjects. The exposure mixture was generated as 

Ai ∼ N(0, Σ), the mediator as Mi ∼ N(ℎM(Ai1, …, AiQ), σM
2 ), and the health outcome as 

yi ∼ N(ℎY (Ai1, …, AiR, Mi), σY
2 ), where we assumed that the mediator depended on subset 

Q < L of the exposure mixture components and the health outcome depended on the 

exposure subset R < L in addition to the mediator. We set σM
2 = σY

2 = 0.75, motivated from 

the signal-to-noise ratios observed in the Bangladesh application (Section 4).

We considered two cases for the number of mixture components, L = 3 and L = 10. For L = 

3, we took the true covariance matrix Σ to be the covariance structure of in utero exposure 

to manganese (Mn), arsenic (As), and lead (Pb) after log transformation and standardization 

from our Bangladesh application. For L = 10, we used the covariance structure from the 

Bangladesh data for the first three elements of the mixture, and then set the remaining 

covariances to 0.3. The correlation structures used in our simulation are summarized in 

Section D of the Supplementary Materials.

We considered six scenarios for the true underlying exposure-mediator and exposure-

response functions hM(·) and hY(·), respectively. Figure 1 graphically displays the functions 

we considered for hM(·) and hY(·) in our simulations. The specifications for each scenario, 

including the metals considered to have an effect on the mediator and outcome and the 

functions hM(·) and hY(·) used to generate the true underlying dataset, are summarized in 

Table 1. The linear method is correctly specified for scenario 1 as hM(·) and hY(·) are 

linear functions. Since all scenarios include an interaction term, the traditional method is 

misspecified for all scenarios. The explicit functional form of the dose-response surfaces we 

used for hY(·) and hM(·) are included in Section A.2 of the Supplementary Materials. Our 

first scenario included a null effect of all metals on the mediator and an additive interaction 

between one metal, A1, and the mediator on the outcome. In this scenario 1, a linear model 

with an additive interaction is the “truth”. We also considered numerous nonlinear scenarios 

where the functions hM(·) and hY(·) are quadratic. For scenarios 1 through 3, the true NIE 

is null, and for scenario 4, the true NDE is null. For each simulation scenario, we randomly 

sampled 500 datasets of 300 observations each, {Y i, Ai, Mi}i = 1
300 , from the true underlying 

dataset of one million subjects.

For each simulation dataset, we first fit BKMR models (12) - (14) with and without 

component-wise variable selection:

Mi = β0 + ℎM Ai + ϵMi, (12)

Y i = θ0 + ℎY Ai, Mi + ϵY i, (13)
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Y i = γ0 + ℎTE Ai + ϵTEi, (14)

where ϵMi ∼iid N(0, σM
2 ), ϵY i ∼iid N(0, σY

2 ), and ϵTEi ∼iid N(0, σTE
2 ). Using our proposed BKMR-

CMA and BKMR-CMA-VS approaches, we estimated the NDE, NIE, and TE for a change 

of the exposure mixture from a*, the exposures set equal to their 25th percentile in the 

true underlying dataset, to a, where the exposures were set equal to their 50th percentile in 

the true underlying dataset. Since the exposures were generated from a multivariate normal 

distribution with mean 0 and variance 1, all elements in the a* vectors were extremely close 

to Φ−1 (0.25) = −0.674 (range: [−0.677,−0.672]) and all elements in the a vectors were 

extremely close to Φ−1 (0.5) = 0 (range: [−0.001,0.0008]). We estimated the CDE for the 

same change in the exposures, from a* to a, fixing the mediator at the observed 25th, 50th, 

and 75th percentiles of the mediator in the corresponding true underling dataset.

Second, we conducted mediation analyses for the joint effect of the metal mixture using 

both causal mediation methods and traditional approaches. Specifically, we used causal 

mediation methods or the “linear approach” in which we fit linear regression models 

for both the mediator and outcome and allowed for exposure-mediator interactions in the 

outcome model.8–10 For the “traditional approach,” we estimated the NDE and NIE without 

considering exposure-mediator interactions using the product method extended for multiple 

exposures.32 Derivations of the closed form solutions to estimate causal mediation effects 

under the linear and traditional methods are included in Section C of the Supplementary 

Materials. For these analyses, we considered the same change in exposures as with BKMR-

CMA and BKMR-CMA-VS, a change in the metals from their 25th to 50th percentiles in the 

underlying data for the NDE, NIE, TE, and CDEs. For the CDEs, we fixed the mediator to 

its 25th, 50th, and 75th percentiles in the corresponding true underling dataset.

3.2 | Simulation results

The empirical median and 2.5th and 97.5th percentiles of the TE, NDE and NIE estimates 

across the 500 simulated datasets for the six scenarios are displayed in Figure 2. Simulation 

results for the CDEs are summarized in Section D of the Supplementary Materials. We 

noticed similar patterns in the empirical distributions for the TE, NDE, and NIE when L 
= 3 and L = 10. We found BKMR-CMA and BKMR-CMA-VS were able to correctly 

estimate null effects for the NIE and NDE under different causal structures. For scenario 

1, we observed equivalent performance of the methods across the mediation effects, as we 

expected with both hM(·) and hY(·) being linear. As the scenarios depart from linearity, 

we observed large differences in the methods across the mediation effects. BKMR-CMA 

and BKMR-CMA-VS consistently had equal or notably smaller bias than the linear and 

traditional methods for scenarios 2 through 6. Notably, the 2.5th and 97.5th percentiles of 

the linear and traditional approach estimates for the TE under scenarios 3 through 6 did 

not contain the truth, for the NDE under scenario 3 did not contain the truth, and for the 

NIE under scenarios 4 through 6 did not contain the truth. When L = 10, BKMR-CMA-VS 

was the least biased of all the methods. We observed similar results for the CDEs when 

we intervene to fix the mediator at its 25th, 50th, and 75th percentiles in the true underlying 

datasets as we do for the NDE, with larger differences between BKMR-CMA or BKMR-
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CMA-VS compared to the linear or traditional methods when the mediator is fixed at higher 

percentiles.

The root mean squared error (rMSE) for the TE, NDE and NIE under the six data generating 

scenarios we considered are shown in Figure 3. Universally, we observed our BKMR-CMA 

and BKMR-CMA-VS approaches performed on par or better than current methods in terms 

of rMSE, especially when the true effect is not null. With a larger number of elements in 

the mixture, BKMR-CMA-VS performed better than BKMR-CMA. This suggests that as 

the number of exposures increases and the dose-response surfaces become increasingly more 

complex, BKMR-CMA and BKMR-CMA-VS outperforms other approaches with respect to 

estimation within a causal mediation framework.

The coverage probability for the TE, NDE and NIE under the six data generating scenarios 

are summarized in Figure 4. For the NDE and NIE, we observed higher than a 0.95 coverage 

probability of the truth for the 95% credible intervals estimated using BKMR-CMA and 

BKMR-CMA-VS. Of note, when nonlinear functions were used for hM(·) and/or hY(·) or 

the true mediation effect was not null, the linear and traditional methods have very low 

coverage, less than 25% for many effects and scenarios.

4 | DATA ANALYSIS

4.1 | Study population

We applied our BKMR-CMA methodology to quantify the contribution of birth length (BL) 

as a mediator between in utero co-exposure to arsenic (As), manganese (Mn) and lead 

(Pb), and children’s neurodevelopment, in a prospective birth cohort in rural Bangladesh. 

A directed acyclic graph displaying this relationship is summarized in Figure D.5 in the 

Supplementary Materials. This cohort has previously been described.28,33,34 We excluded 

two mother-infant pairs where the infant had outlying birth lengths (BL > 6 standard 

deviations from the mean), for a total sample of 727. Researchers measured in utero metal 

exposure to As, Mn and Pb from umbilical cord venous blood samples. Collaborators in 

Bangladesh administered the Bayley Scales of Infant and Toddler Development™, Third 

Edition (BSID-III™) to children 20-40 months after birth and neurodevelopment was 

measured as the raw cognitive development score (CS).35 We controlled for clinic, child 

sex, maternal IQ, maternal education (less than high school vs. at least high school), 

maternal protein intake (low vs. medium vs. high tertiles), secondhand smoke exposure at 

baseline (smoking environment vs. non-smoking environment), HOME score, and maternal 

age at delivery in all analyses. When conducting our analyses, we log transformed and 

standardized metal concentrations, and standardized CS, BL, and other continuous variables. 

To evaluate the persistence of the effect of in utero metal exposure on neurodevelopment, 

we considered age at BSID-III testing to be an effect modifier of the metal mixture and 

neurodevelopment relationship.

4.2 | Models

We modeled the effect of co-exposure to As, Mn and Pb on birth length via BKMR mediator 

model (9), where EM did not include any variables. To model the joint effect of the metal 
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mixture and birth length on neurodevelopment, we fit a BKMR outcome model (10) with 

all three metals, age at BSID-III testing and birth length in the kernel function (EY only 

included age at BSID-III testing). We examined the relationship between the metal mixture 

on birth length and the relationship between the metal mixture, child’s age and birth length 

on neurodevelopment.

We simulated counterfactuals to estimate the NDE, NIE, and TE for a change in the raw 

(untransformed) exposures from a* = (As.25 = 0.56μg/dL, Mn.25 = 4.72μg/dL, Pb.25 = 

1.15μg/dL), all metals set at their corresponding 25th percentile, to a = (As.75 = 1.58μg/dL, 

Mn.75 = 17.80μg/dL, Pb.75 = 2.42μg/dL), all metals set at their 75th percentile, when age at 

testing was set at its 10th percentile of 24.6 months and its 90th percentile of 31.0 months. 

We also calculated the CDEs for a change in exposure from a* to a when birth length was 

set to its 10th percentile of 44cm, median value of 46cm, and 75th percentile of 48cm, fixing 

age at testing to 24.6 and 31.0 months. We used three dimensional scatterplots to verify there 

are observations in the multivariate exposures space to justify these values of a* and a for 

our data application.

We estimated the mediation effects using both BKMR-CMA and BKMR-CMA-VS and 

compared these results to the effects estimated by (1) the linear method including an age at 

testing by Mn interaction (motivated by our BKMR analysis), (2) the linear method without 

an age at testing by Mn interaction, and (3) the traditional method. For methods 1-3 listed 

above, we included child’s age at the time of the Bayley Scale administration and a child’s 

age squared when modeling children’s neurodevelopment.

4.3 | Results

A three dimensional scatterplot showing there are children who had low levels of all three 

metals as well as children who had high levels of all three metals in our Bangladeshi cohort 

is included in Section D of the Supplementary Materials. This figure shows that our contrast 

of interest lies within the multidimensional support of our data. Figure 5 shows age at testing 

modifies the relationship between the metal mixture and neurodevelopment. We observed 

a significant harmful effect of the metal mixture on neurodevelopment when age was fixed 

at its 10th percentile value of 24.6 months and a null effect when age was fixed to its 90th 

percentile value of 31.0 months. The significant harmful effect seen when age of testing was 

fixed at 24.6 months was driven by Mn (Figure 5B).

Figure 6 displays the bivariate effect on neurodevelopment of each element listed on the top 

when the element listed on the right was fixed at its 25th, 50th or 75th percentiles, and all 

remaining elements were fixed at their median. We observed nonlinear associations of age 

at testing and BL with neurodevelopment and interactions between age and both birth length 

and Mn. There also appeared to be small interactions of Mn and Pb with birth length on 

neurodevelopment.

Figure 7 summarizes the mediation effects for a change of the raw metal mixture from a* 

= (As.25 = 0.56μg/dL, Mn.25 = 4.72μg/dL, Pb.25 = 1.15μg/dL) to a = (As.75 = 1.58μg/dL, 

Mn.75 = 17.80μg/dL, Pb.75 = 2.42μg/dL) when age at testing was either fixed at 24.6 or 

31.0 months. We observed substantial differences between the results for the two age at 
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testing percentiles when the mediation effects were estimated with more flexible methods. 

Specifically, we observed a large TE and NIE for both our BKMR-CMA and BKMR-CMA-

VS approaches when age at testing was fixed at 24.6 months (Figure 7A), however, this 

effect was null when age at testing was fixed to 31 months (Figure 7B).

When age of testing was fixed to 24.6 months, BKMR-CMA estimated the TE of an 

interquartile range (IQR) change in the metal mixture to correspond to a 0.41 standard 

deviation decrease in cognitive scores (95% CI = [−0.73, −0.10]). The NDE, the causal 

effect of the IQR change of the metal mixture on cognitive score had birth length been set 

to the level it would take if the metal mixture was at its 25th percentile, that is the effect 

that operates independently from birth length, was estimated to be −0.07 (95% CI = [−0.44, 

0.29]). Additionally, the NIE, the causal effect of a change in birth length induced by a 

IQR change in the metal mixture and had the metal mixture exposure been set to its 75th 

percentile (i.e., the effect that operates indirectly through or mediated by birth length) was 

estimated to be −0.33 (95% CI = [−0.83, 0.11]). Thus, we found that the majority of the 

adverse effect of the metal mixture on cognitive function operates through birth length when 

age at testing was fixed to 24.6 months (percent mediated = 81.7%).

The CDEs, the direct effect of an IQR change of the metal mixture under a hypothetical 

intervention that fixes birth length for everyone at specific quantiles of that distribution, 

showed that among children who were tested earlier in life, the harmful direct effect of the 

metal mixture on neurodevelopment was reduced for higher quantiles of birth length. For 

instance, had we fixed birth length for everyone to the 10th percentile value of 44cm, we 

estimated the direct effect of an IQR change of the mixture on cognitive function to be −0.26 

(95% CI = [−0.64, 0.09]). However, if we had fixed birth length for everyone to the 75th 

percentile value of 48cm, we estimated the direct effect of an IQR change of the mixture on 

cognitive function to be null (C D EM0.75 = 0.03, 95% CI = [−0.27, 0.15]). This suggests 

that intervention on fetal growth could potentially reduce the harmful impact of this metal 

mixture on children’s neurodevelopment.

5 | DISCUSSION

We have proposed BKMR-CMA as a way to estimate the direct and indirect effects 

of an environmental mixture on an outcome through an intermediate variable. To our 

knowledge, this is the first method presented in the causal inference literature to estimate 

these effects when the exposure of interest is a potentially complex mixture, without a 
priori knowledge of the exposure-mediator and exposure-mediator-outcome relationships. 

This method allows for complex relationships between the elements of the mixture and the 

mediator, and between mixture elements, the mediator, continuous effect modifiers, and the 

outcome through a joint kernel specification, and inherently controls for multiplicity. The 

nonparametric treatment of these relationships avoids explicit specification of parametric 

terms for all of the potential nonlinear and/or interaction terms in the high-dimensional 

exposure-response function. Our extension of causal mediation methodology that allows 

for a mixture of exposures is important for many environmental health applications. In the 

Bangladesh application, the use of our proposed BKMR-CMA approach uncovered patterns 

in the data that would have been completely missed using simpler, existing methods.
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We estimate the TE, NDE, NIE, and CDEs at fixed levels of the modifiers and for a 

fixed intervention in the exposures through simulation of counterfactuals from the posterior 

predictive distribution for each MCMC iteration and make inference from these posterior 

samples of the mediation effects. Our simulations show that our proposed BKMR-CMA 

and BKMR-CMA-VS approaches outperform current methods when the underlying data 

generation mechanisms are not adequately modeled as a collection of linear models. 

Additionally, our simulations show our method is unbiased even when complex relationships 

do not exist. As with any semiparametric formulation, when the true data generating 

mechanism is closely approximated by a simpler parametric model, it will not be as efficient 

as the parametric model. In the presence of complex data generation scenarios, we advise to 

use our approach over other methods, as BKMR-CMA does not place assumptions on the 

relationships between the mixture elements, mediator and outcome. In this work our goal 

was estimation, so we focused on the performance of BKMR-CMA and BKMR-CMA-VS 

with respect to bias, rMSE, and interval coverage. If one were explicitly interested in 

hypothesis testing, other frequentist approaches may be preferable. We do note that Scott 

and Berger (2010) explained that treating the probability parameter in the spike-and-slab 

formulation of the variable selection procedure employed by BKMR (π in Bobb et al. 

2015) as an unknown parameter estimated from the data yields an automatic multiple-testing 

penalty.12,13

Applying these methods to a prospective Bangladeshi birth cohort, we found a negative 

(adverse) association of co-exposure to lead, arsenic, and manganese on neurodevelopment, 

a negative association of exposure to this metal mixture on birth length, evidence that 

birth length mediates the effect of this metal mixture on children’s neurodevelopment, and 

that age modifies these relationships. If birth length were fixed to its 75th percentile value 

of 48cm and age fixed to its 10th percentile value of 24.6 months, the harmful direct 

effect of the metal mixture on neurodevelopment is attenuated compared to smaller birth 

length percentiles, suggesting that targeted interventions to promote healthy fetal growth 

could potentially block part of the adverse effect of metals on neurodevelopment. For 

those children exhibiting effects (those at the 10th percentile of age at testing), the BKMR-

CMA and BKMR-CMA-VS analyses suggests a relatively large total estimated effect of 

the mixture, and that this effect is largely due to an indirect, rather than a direct, effect. 

Estimates from existing approaches were severely attenuated towards the null, even when an 

age squared term and age by Mn interaction is included in the model for cognitive score, 

which, while they might have confidence intervals that do not contain zero, presented an 

entirely different picture of the impact of this metal mixture on neurodevelopment in this 

Bangladeshi cohort. This demonstrates the importance of using a flexible method, such as 

our BKMR-CMA or BKMR-CMA-VS approach, when estimating mediation effects of a 

mixture.

Prior to implementing BKMR-CMA or BKMR-CMA-VS, careful thought should be given 

via subject matter expertise and a literature review to determine the mixture set and potential 

effect modifiers to include in hM(·) and hY(·). As with all statistical analyses (mediation 

and otherwise), when the exposure of interest is continuous, there are infinite options to 

consider for the scale on which the effects are reported. It is best to define the contrast 

of interest through extensive data exploration and visualization of the multidimensional 
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exposure distribution a priori to data analysis to avoid intentionally selecting the contrast 

that reports the largest effect. It is important that there is enough data to evaluate the 

hypothetical intervention of interest without model extrapolation31. As it is common in the 

field of environmental epidemiology, an interquartile range change in exposure could be 

chosen for a* and a. In our experience, using the 25th and 75th (or 25th and 50th) percentiles 

work well for these types of environmental mixtures since they typically exhibit moderate 

to high correlations between the mixture elements. With moderate to high correlation among 

the mixture components, the exposure concentrations are more likely to be similar. Thus, 

we would expect some observations where all of the exposures levels are low and some 

where all are high. When some components of the mixture are weakly correlated, we 

recommend the investigator focuses on understanding the distributions of these weakly 

correlated mixture components through extensive data visualization and then chooses a 

contrast that represents differences between groups of subjects in the study population. Of 

note, for effects that appear quadratic, reporting effects per the interquartile range has the 

potential to mask effects of a given exposure on an outcome. In such cases, one could 

consider contrasts from the 10th or 25th percentiles to the median. It is important to assess 

whether the final contrast chosen is in the support of the observed data to avoid extrapolation 

of the models.

BKMR-CMA is useful in several settings, including when there is a high dimensional 

exposure, when there are multiple exposures and effect modifiers, or both. One can use the 

hierarchical variable selection option in the bkmr package in addition to component-wise 

variable selection presented here. In addition to effect modifiers, our general framework can 

allow for complex relationships between confounders, the exposures, mediator and outcome, 

by also including confounding variables in the kernel functions. However, in this setting, 

one would need to integrate over the distribution of the confounders included in the kernel 

function to obtain correct marginal estimates (instead of evaluating the effects at the mean 

level of these confounders).

A limitation of our method is the increasing computation time required to fit BKMR 

and predict counterfactuals as the complexity of the model and sample size increase. The 

computational burden of the BKMR-CMA algorithm for a single simulation dataset with N 
= 300 is just over four hours.

In some applications, exposure to mixtures with more than ten elements is common. 

When the number of mixture elements is significantly greater than 10, simulations studies 

would need be conducted to see how our method performs. In the current formulation 

of our algorithm, we assume the mediator and outcome models are independent. This is 

a common assumption in causal mediation literature, however, this is a limitation of our 

methods. Although models (9) and (10) are theoretically compatible, we acknowledge the 

phenomenon noted by Sanders and Blume (2018) whereby a model may be structurally 

compatible but the estimates from the conditional and total effect models do not exhibit 

compatibility (i.e. do not match) likely due to sampling variability in finite samples.36 

We note this is an issue in all causal mediation models, and not unique to BKMR-CMA 

or BKMR-CMA-VS. This could also occur if the true exposure-response functions are 

not within the space of functions spanned by BKMR, which is always a possibility but 
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likely rare due to the smoothness often observed in biological effects of environmental 

exposures. In our data application, our results are limited by potential residual confounding 

by malnutrition and measurement error in birth length. In the presence of measurement error 

in the mediator, our methods would need to incorporate current methods for measurement 

error in mediation.37,38

In future work, we plan to consider joint specification of the mediator and outcome models 

to reduce the assumptions needed for BKMR-CMA to be interpreted causally. Additionally, 

we hope to extend BKMR-CMA to allow for discrete and failure time mediator and outcome 

distributions as well as to allow for multiple mediators and/or multiple outcomes. Further, 

BKMR-CMA could be extended to consider a stochastic or distributional change on the 

exposures instead of a fixed intervention. Overall, we find BKMR-CMA to be a potentially 

useful tool to estimate mediation effects when the exposure of interest is an environmental 

mixture.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Dose-response surfaces used in our simulation to generate the mediator and outcome values. 

h2,lin and h2,quad include an additive interaction of the 2 components, z1 and z2. The explicit 

functional forms used to generate these dose-response surfaces are summarized in Section 

A.2 of the Supplementary Materials.
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FIGURE 2. 
Empirical median and 2.5th and 97.5th percentiles calculated from the estimates of the TE, 

NDE and NIE across the 500 simulation datasets using our proposed BKMR-CMA and 

BKMR-CMA-VS approaches, the linear method, and the traditional method under each 

simulation scenario. The specific data generation functions used for each simulation scenario 

are defined in Table 1. The truth for each mediation effect and scenario are depicted as black 

dots. Results are shown for six different data generation scenarios and when the number of 

mixture components is three and ten.
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FIGURE 3. 
A comparison of the root mean square error (rMSE) from our simulation when the TE, 

NDE and NIE are estimated by our BKMR-CMA and BKMR-CMA-VS approaches, the 

linear method, and the traditional method. Results are shown for six different data generation 

scenarios and when the number of mixture components is three and ten. The specific data 

generation functions used for each simulation scenario are defined in Table 1.
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FIGURE 4. 
A comparison of the coverage probability from our simulation when the TE, NDE and NIE 

are estimated by our BKMR-CMA and BKMR-CMA-VS approaches, the linear method, 

and the traditional method. The coverage probability is defined as the proportion of the 

estimates and 95% credible or confidence intervals in the 500 simulation datasets that 

contain the truth for each effect. The black line represents a coverage probability of 0.95. 

Results are shown for six different data generation scenarios and when the number of 

mixture components is three and ten. The specific data generation functions used for each 

simulation scenario are defined in Table 1.
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FIGURE 5. 
The joint effect of co-exposure to As, Mn and Pb on neurodevelopment and single variable 

effects observed in our Bangladeshi cohort estimated by BKMR. Presented when age is 

fixed at its 10th percentile of 24.6 months (A,B) and 90th percentile of 31.0 months (C,D). 

The average change in cognitive score for a joint change in the metal mixture from the 

quantile value on the x-axis to the median (estimates and 95% CI), when age is fixed at 

24.6 months (A) and 31.0 months (C). Single metal associations with neurodevelopment 

(estimates and 95% CI, gray dashed line a the null). These figures show the average change 

in cognitive score for a change in a single metal from its 25th to 75th percentile, fixing the 

other metals at their 25th, 50th, or 75th percentiles, when age is fixed at 24.6 months (B) and 

31.0 months (D).
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FIGURE 6. 
Bivariate associations between each column element (listed on the top) and 

neurodevelopment, when the row element (listed on the right) is fixed at its 25th, 50th or 

75th percentiles, and the remaining elements are fixed at their median.
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FIGURE 7. 
Mediation effects estimated in our Bangladeshi cohort using BKMR-CMA, BKMR-CMA-

VS, the linear method with and without an age by Mn interaction, and the traditional 

method. All effects are estimated for a change of the metal mixture from its raw 

(untransformed) 25th percentile a* = (As.25 = 0.56μg/dL, Mn.25 = 4.72μg/dL, Pb.25 = 

1.15μg/dL) to its raw 75th percentile a = (As.75 = 1.58μg/dL, Mn.75 = 17.80μg/dL, Pb.75 = 

2.42μg/dL) and fixing age at its 10th percentile of 24.6 months (A) and 90th percentile of 

31.0 months (B). The CDEs are calculated as the direct effect from a* to a intervening to fix 

the mediator at its 10th, 50th, 75th percentiles values of 44, 46, and 48cm respectively.
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TABLE 1

Exposure-mediator and exposure-mediator-response surfaces used for data generation in our simulations. The 

metals and BL indicate which elements are taken to have a true effect on the mediator and outcome. When 

hM = 0, no metals have a true effect on the mediator. The true NIE is null for scenarios 1 through 3, and the 

true NDE is null for scenario 4. The linear method is correctly specified for scenario 1 since hM(·) and hY(·) 

are linear functions. Since all scenarios include an interaction term, the traditional method is misspecified for 

all scenarios. Graphical representation of the h(·) functions are depicted in Figure 1 and the explicit functional 

forms are summarized in Section A.2 of the Supplementary Materials.

Scenario h M h Y 

1 0 h2,lin(Mn, BL)

2 0 h2,quad(Mn, BL)

3 h1,quad(Mn) h1,quad(Mn)

4 h1,quad(Mn) h1,quad(BL)

5 h1,quad(Mn) h2,lin(Mn, BL)

6 h2,quad(Mn, Pb) h2,quad(Mn, BL)
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