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Interest in the application of artificial intelligence (AI) to human health continues to grow, 

but widespread translation of academic research into deployable AI devices has proven 

more elusive.1,2 There is increasing recognition of limitations in how AI research is carried 

out, from methods of model validation that do not emulate real-world conditions,3 to 

characteristics of data4 and inadequate inclusion of researchers and populations from diverse 

global regions.5 Systematic reviews of clinical AI criticise widespread risk of bias and lack 

of downstream clinical utility, and research waste is an increasing concern.6,7

One problem is the lack of a unifying perspective over the colossal-sized landscape 

of global AI research. Continual quantification of research characteristics can enable 

identification and monitoring of shortcomings in this heterogeneous landscape. However, the 

sheer quantity of published research (>1509000 papers on MEDLINE under broad terms; 

appendix p 1) makes this a substantial challenge. Literature database searches have poor 

specificity, and cannot directly identify original research in model development, or pinpoint 

research representing advanced stages of model validation. Literature reviews only describe 

a portion of research at a single timepoint, are laborious to conduct and reproduce, and are 

quickly outdated in a rapidly changing landscape.

In response to these requirements, we produced an end-to-end Natural Language Processing 

(NLP) pipeline that performs real-time identification, classification, and characterisation 

of AI research abstracts extracted from MEDLINE, outputting results to an interactive 

dashboard, creating a live view of global AI development. We identified four primary 

aims: first, to directly discover original research in clinical AI model development; 

second, to identify research at more advanced development stages using mature evaluation 

methodology, ie comparative evaluation of AI algorithms versus a reference standard8 or 

prospective real-world testing (appendix p 13); third, to map, in real-time, global distribution 

and equity in AI research production on a per-author basis; and fourth, to track the main 

active research themes across clinical specialties, diseases, algorithms, and data types.

Development was done using Python (version 3.8) and Tensorflow (version 2.5). To 

achieve the required performance, we employed transfer learning, using state-of-the-art 

Bi-directional Encoder Representations from Transformers NLP models with pre-training 

on medical corpuses.9 Models were fine-tuned on manually labelled abstracts indexed 

on MEDLINE before 2020 and tested prospectively on abstracts indexed after pipeline 
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completion. The final pipeline and methods described are available in the appendix (pp 1–5, 

13). In a prospective evaluation, the classifier for research discovery achieves an F1 score 

of 0·96 and Matthews correlation coefficient (MCC) of 0·94. The classifier for maturity 

achieves an F1 of 0·91 and MCC of 0·90. The multi-class classifier for labelling themes 

achieves a macro-average F1 of 0·97. When evaluated against publications discovered by 

recent systematic reviews, the pipeline correctly classified 98% for inclusion and maturity. 

Performance metrics are reported in the appendix (pp 8–12).

The dashboard allows all discovered research to be visualised by development maturity, 

medical specialty, data type, algorithm, research location, publication date, or different 

combinations of attributes. Datasets containing labelled abstracts and metadata are refreshed 

every 24 h and made available to download, as an aid to literature reviewers, or for 

reproducible analysis of research progress across any cross-section of characteristics.

Using dashboard datasets, we illustrate heterogeneity in research maturity across major 

specialties and diseases over the past decade using a horizon chart (appendix p 17).10 

Respiratory medicine, breast cancer, and retinopathy demonstrate greatest production of 

mature research relative to total research production. Distribution of data type usage across 

major subspecialties are shown as heatmaps (appendix p 14), showing increased prevalence 

of mature validation methodology using radiomics (and other computer vision tasks) across 

all specialties. Notably, only 1·3% of research, and 0·6% of mature research, involved an 

author from a low to low-middle income country (as per World Bank definitions), with 

93·6% of such research published after 2016 (appendix p 15). Live visualisations are found 

on the dashboard website.

While demonstrating state-of-the-art NLP performance, classifier limitations include 

imperfect accuracy compared with careful human reviewers (the trade-off against time 

required for manual characterisation). We use only MEDLINE due to their unique 

application programming interface. Finally, prediction using full articles could increase 

performance, but this was hindered by a paywalled access to most publications.

The interactive dashboard was published in November, 2021. Given its popularity and 

utility to date, we plan to continue enhancement of this resource. We consider immediate 

downstream use-cases to be analysis of drivers for AI maturity and translation, reviewing 

features of mature AI research, and ongoing characterisation of AI development in 

developing countries. Codes and data are made public, with the hope that functionality 

can be expanded in collaboration with the global AI community.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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