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SUMMARY

To design effective food safety programmes we need to estimate how many sporadic foodborne
illnesses are caused by specific food sources based on case-control studies. Logistic regression has
substantive limitations for analysing structured questionnaire data with numerous exposures and
missing values. We adapted random forest to analyse data of a case-control study of Salmonella
enterica serotype Enteritidis illness for source attribution. For estimation of summary population
attributable fractions (PAFs) of exposures grouped into transmission routes, we devised a
counterfactual estimator to predict reductions in illness associated with removing grouped
exposures. For the purpose of comparison, we fitted the data using logistic regression models with
stepwise forward and backward variable selection. Our results show that the forward and backward
variable selection of logistic regression models were not consistent for parameter estimation, with
different significant exposures identified. By contrast, the random forest model produced estimated
PAFs of grouped exposures consistent in rank order with results obtained from outbreak data, with
egg-related exposures having the highest estimated PAF (22·1%, 95% confidence interval 8·5–31·8).
Random forest might be structurally more coherent and efficient than logistic regression models for
attributing Salmonella illnesses to sources involving many causal pathways.
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INTRODUCTION

Each year, about 9 million people in the United States
become sick from known foodborne pathogens, result-
ing in more than 120 000 estimated hospitalizations
and 3000 deaths [1, 2]. To prevent foodborne illness,
we need reliable estimates of the percentages of illness

attributable to specific foods so that targeted food
safety interventions can be designed. Finding the
sources of foodborne illnesses is challenging because
causal pathways for most individual illnesses are un-
known. Data from case-control studies of sporadic
infections are used to estimate population attributable
fractions (PAFs), defined as the proportion of cases
over a specified period that would be prevented if
the causal exposure was removed from the population
[3, 4]. Such estimates are needed by food safety regu-
latory and public health agencies to assess the likely
effect of interventions.

Causal pathways of sporadic enteric diseases are
complex, in part because the sources may or may
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not be foodborne. Causality may vary geographically,
demographically, and socially. As a result, the ques-
tionnaires of case-control studies often include hun-
dreds of plausible food and non-food exposures and
exposure modifiers such as food processing, handling
and preparation techniques, and consumption set-
tings. Exposure data collected by study questionnaires
are hierarchically structured to ascertain broad cat-
egories of exposure (e.g. consumption of beef) and
also be specific to measure levels of exposure risk
(e.g. consumption of undercooked vs. well-cooked
ground beef). With the limitation of mathematical
tractability, analysis of study data using conventional
logistic regression is challenging because of the diffi-
culty in capturing mixed and conditional causality of
numerous exposures. Another difficulty is missing
data (caused by non-response), which might bias the
estimation of exposure–disease relationships [5].
Furthermore, whereas study questionnaires often ex-
plore the relationships between illness and individual
exposures, summary estimates are needed for
groups of exposures related to the same food category.
It is difficult to estimate summary PAFs for groups of
exposures using a logistic regression model because
individual exposures may be overlapped [6, 7].
Therefore, new approaches are needed to analyse
complex causal relationships in case-control studies
of infetions transmitted commonly by food.

Random forest is a powerful machine learning tool
that has been successfully used to analyse high-
dimensional biomedical datasets [8, 9]. Unlike logistic
regression, which requires assumptions of functional
forms and interactions, random forest can learn non-
linear relationships and interactions from data [10].
This is especially useful for studies with more than
20 variables of interest because it is difficult to specify
a logistic regression model with appropriate biologi-
cally relevant functional forms and all plausible
interactions. Although random forest is a popular
tool for data mining, its application in causal infer-
ence based on observational epidemiological studies
is lacking. Random forest does not produce risk
estimates that allow straightforward epidemiological
interpretation. For causal estimation, we developed
a counterfactual random forest to estimate PAFs
for grouped exposures using data from a case-control
study of Salmonella enterica serotype Enteritidis
(SE) infections [11]. SE is one of the most common
serotypes of Salmonella bacteria reported world-
wide and is a common cause of foodborne out-
breaks [12].

MATERIAL AND METHODS

Case-control study data

The Foodborne Diseases Active Surveillance Network
(FoodNet) is a collaborative programme between
CDC, 10 state health departments, the U.S.
Department of Agriculture’s Food Safety and
Inspection Service, and the U.S. Food and Drug
Administration. Since 1996, FoodNet has conducted
active, population-based surveillance of laboratory-
confirmed infections caused by pathogens transmitted
commonly by food [13], which provides a foundation
for food safety policy and prevention efforts.

In 2002, FoodNet sites conducted a year-long case-
control study of sporadic laboratory-confirmed SE
infections and reported the results based on logistic re-
gression analyses [11]. Enrolled cases were aged at
least 1 year, were not known to be associated with
an outbreak, and did not report contact with a house-
hold member with diarrhoea before illness began.
Controls were aged at least 1 year and resided in the
same FoodNet surveillance site as the cases; at least
10 controls were enrolled each month of the study.
The study included 218 cases and 742 healthy con-
trols. We restricted our analyses to 127 cases and
681 controls aged at least 5 years with no history of
international travel in the 5 days before they became
ill and assumed all illnesses in our study were acquired
in the United States. We excluded participants aged
<5 years because illnesses in young children might
have causal pathways distinct from adults.

The original study questionnaire had 278 questions
about food and non-food exposures, locations where
the exposures occurred, and food handling practices.
We restricted our analysis to six demographic vari-
ables and 66 individual exposures that were con-
sidered epidemiologically relevant and also had
complete data for at least 50% of study participants.
The exposures were grouped into seven transmission
routes (egg, chicken, beef, other meat, dairy, produce,
animal contact) for estimation of PAF (see
Supplementary Appendix).

Data analyses

Random forest model

A random forest is an ensemble of decision trees based
on bootstrap samples of data. Each tree is fully grown
by recursively splitting a parent node, resulting in
increased homogeneity of cases or controls in daugh-
ter nodes until a node could not be split further
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(terminal nodes). For each split, the splitting variable
is selected from a random set of original variables to
reduce between-tree correlation. For each tree built,
about one-third of unused samples, called out-of-bag
(OOB) samples, are used to assess prediction accu-
racy. A proximity matrix is calculated to measure
closeness between observations by scoring frequencies
of two observations falling into the same terminal
node in all trees. The proximity matrix is used to im-
pute missing values of a covariate based on observed
values of the covariate in other observations weighted
by their proximities [14].

In random forest, a permutation method is com-
monly used to assess the importance of variables in
influencing prediction accuracy (i.e. to correctly clas-
sify observations as cases or controls). After the vari-
able being studied in the OOB samples is permuted, its
prediction accuracy is compared with that of the orig-
inal prediction. Permutation importance is the differ-
ence between correct classifications before and after
the variable is permutated. If the variable is import-
ant, permutation will distort the relationship and re-
duce prediction accuracy, whereas permutation of
unimportant variables will scarcely influence predic-
tion accuracy. Permutation importance is not straight-
forward for epidemiological interpretation because
permutation can change exposure status in either di-
rection (i.e. exposed to unexposed or unexposed to ex-
posed). Consequently, permutation importance is not
equivalent to an effect measure of the exposure on
health outcome – we were interested only in the effect
of removing exposures.

We developed a random forest model of 1000 trees
based on the SE case-control study data using the ran-
dom forest package [15] in R [16]. Missing values of
predictors were imputed using the rfImpute function
with 800 trees and five iterations. Because only 16%
of enrollees in the original dataset were case-patients,
we took subsamples of healthy controls to increase the
case proportion to 33% for each tree built. To adapt
the random forest model to causal estimation, we de-
veloped a counterfactual method to quantify the influ-
ence of reduced levels of exposures on predicted
illnesses. We did this by changing the exposure status
in the original dataset from exposed to unexposed ac-
cording to a pre-specified probability, a, reflecting
the level of reduced exposure (from 0 for no change
to 1 for complete removal of exposure). Then we
reran the random forest model on the altered data to
calculate the change in the number of predicted
cases compared to the prediction of the original

data. For example, for a= 0·8, we generated a random
number for each study participant from a uniform dis-
tribution (ranging from 0 to 1). If the random number
was smaller than 0·8, then the status of the person was
changed from exposed to unexposed; otherwise, the
exposure status remained unchanged. We estimated
the predicted percentage reduction in illnesses asso-
ciated with the probability of reduced exposure a:

Ra = Nori −Na

Nori
× 100%,

where Nori is the number of correctly predicted cases
in the original data, and Na is the number of correctly
predicted cases when exposures were reduced by a.
The PAF was the predicted percentage reduction in ill-
nesses when a= 1.

To estimate PAFs for grouped exposures, we simul-
taneously applied the same a value to all exposures in
a transmission category. For example, all exposures
that a study participant was exposed to in the egg
group were subject to the same probabilistic change
(a) in exposure to calculate the changes in predicted
cases.

For simulation, we generated 500 a values in the
range of 0–1, and calculated the reduction rate of pre-
dicted illness.We obtained a summary PAF for grouped
exposures by calculating the ratio of reduced illnesses to
the original number after removing the group’s expo-
sures (a= 1) from the study population. We calculated
confidence intervals (CIs) by bootstrap sampling the
data and building random forest models. For each
samplewe removed grouped exposures (a= 1) and calcu-
lated the percentage reduction in illnesses comparedwith
the original samples. The 2·5 and 97·5 percentiles of
the predicted percentage reduction in illness in 1000
bootstrap samples provided the estimated 95% CIs.

Logistic regression model

For comparison, we developed logistic regression
models on the original study data using three variable
selection methods: (1) a full model including all pre-
dictors and possible confounders; (2) forward, and
(3) backward variable selection models based on
Akaike’s Information Criterion (AIC) using stepAIC
(MASS package) in R [16]. We did not include inter-
actions. We filled missing values with the variable
mean (continuous variables) or mode (categorical
variables) values before model fitting. We did not sub-
sample healthy controls for model building because
parameter estimation of logistic regression is robust
for unbalanced data [17].
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To compare the predictive ability of random forest
and logistic regression, we examined each model’s per-
formance using a fourfold cross-validation method.
We measured model performance based on the area
under the curve (AUC) of the receiver-operating
characteristic. For cross-validation, the data were ran-
domly partitioned into four subsets. We then fitted
models to 75% of the data. We applied the fitted mod-
els to the remaining 25% of the data and calculated the
resulting AUC. We did this four times so that each of
the four subsets served as a validation set for calculating
AUC, and then we averaged the results.

RESULTS

All exposures were missing some values; this occurred
more frequently in cases (1·6–15·7% for each exposure)
than controls (0–1·6%) (Table 1). Furthermore, differ-
ential missingness between cases and controls was
relatively frequent in variables with low exposure fre-
quencies, such as living with a dog or cat having diar-
rhoea or consumption of poached eggs inside or
outside the home.

Variable importance of individual exposures

The six top-ranked variables based on random forest
permutation importance (three animal-related, one
beef-related, two egg-related) had low frequencies
(<5%) of exposure (Fig. 1). Similarly, these six vari-
ables had high estimated odds ratios (ORs) (55·8)
by the forward logistic regression model (Table 1).
In the three logistic regression models, estimated
ORs were relatively consistent between the full and
the forward selection models, but the backward selec-
tion identified different sets of significant exposures.
For example, living with a dog or cat having diar-
rhoea were significant exposures in the forward logis-
tic regression model, but not in the backward logistic
regression model (Table 1).

Estimates of summary PAFs for grouped exposures

The numbers of individual exposures ascertained var-
ied in transmission pathways. There were more expo-
sures to eggs (12 exposures), animals (13 exposures),
and produce (12 exposures) ascertained than for
other transmission routes (Table 2). Exposure to
eggs had the highest summary PAF by random forest
(22·1%, 95% CI 8·5–31·8), followed by animal contact
(12·6%, 95% CI 2·7–19·2), exposure to chicken

(11·0%, 95% CI 1·5–24·8), and exposure to beef
(9·4%, 95% CI 1·9–17·6). Counterfactual random for-
est showed that estimated reductions in SE infections
appeared linearly related to exposure reductions
after 20–40% of exposures in a transmission pathway
were removed; the exception, however, was the dairy
transmission pathway, which showed little change
(Fig. 2). We observed considerable variability in the
estimated reductions in illnesses associated with a
given reduction in exposure; for example, hypothetical
interventions reducing exposures to contaminated
eggs by 0·8 reduced illnesses 9–16% (Fig. 2).

Model comparison by cross-validation

An AUC comparison showed logistic regression mod-
els were modestly predictive (68–70%) and that the ap-
proach used to select variables made little difference in
predictability. The random forest model was slightly
more predictive (73%).

DISCUSSION

Although random forest is increasingly being used to
assess the importance of genetic markers in high-
dimensional genomic data [9, 18–20], we are unaware
of its application analysing epidemiological data for
causal inference. In this study, we adapted random
forest to model exposures ascertained in a hierarchi-
cally structured questionnaire in a case-control study
of SE infections. We devised counterfactual random
forest for causal estimation. Our results showed ran-
dom forest could be used to analyse complex causal
relationships with numerous exposures and missing
values. Estimates of summary PAFs using random for-
est were highest for egg-related exposures, which is con-
sistent with attributable fraction estimates for SE from
outbreak surveillance data [12]. Additionally, our ap-
proach provided estimated percentages of illnesses
that could be reduced by incrementally decreasing the
frequency of risk exposure.

Logistic regression is widely used in epidemiologi-
cal studies for causal inference. With a relatively
limited number of variables (e.g. <20), it provides esti-
mates of ORs and PAFs. [21, 22] However, its limita-
tions become apparent when analysing datasets with a
high number of relevant exposures and multiple inter-
actions. Interactions are fundamental to the analysis
of diseases with complex causality because the ex-
posure–disease relationship may differ between groups
or may be affected by modifiers in different ways in
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different groups. Rarely is sufficient information
about interactions available to include all in a
model; for example, specifying all interactions for
the 72 predictors in our SE data would be nearly im-
possible. Because estimated ORs vary depending on
other variables in the model, logistic regression

estimation can be unstable for complex data. For
example, consumption of poached eggs cooked out-
side the home was not associated with risk (OR 0·0)
in the full logistic regression model but was highly
risky (OR 5·8) in the forward variable selection
model. In addition, the three logistic regression

Table 1. Percentage of missing data and estimated odds ratios of significant exposures identified by different variable
selection methods of logistic regression

No. of missingness (%) Estimated OR (95% CI)

Exposure Cases Controls Full model†
Backward variable
selection

Forward variable
selection

Direct contact with birds 3 (2·4) 0 (0) 3·4 (1·3–8·4) 3·2 (1·4–7·1) 2·7 (1·1–6·1)
Direct contact with snakes 2 (1·6) 0 (0) 4·3 (0·9–18·7) 3·7 (1–13·4) 3·9 (1·0–14·6)
Direct contact with a gecko* 2 (1·6) 0 (0) 4·6 (0·8–30·5) 4·0 (0·9–20·5) 6·2 (1·3–34·2)
Living with dog having
diarrhoea*

20 (15·7) 1 (0·1) 3·3 (0·5–16·1) 10·4 (3·3–33·4)

Living with cat having
diarrhoea*

16 (12·6) 6 (0·9) 2·8 (0·3–18·5) 7·0 (2·0–25·2)

Visit pond or lake 2 (1·6) 0 (0) 0·3 (0·1–0·7) 0·3 (0·1–0·6) 0·2 (0·1–0·5)
Consumption of

Uncooked chicken 5 (3·9) 3 (0·4) 1·4 (0·8–2·5) 1·6 (0·9–2·6)
Any food containing chicken 10 (7·9) 8 (1·2) 2·6 (1·1–6·2) 2·7 (1·5–5)
Chicken cooked at home 13 (10·2) 9 (1·3) 0·5 (0·2–1) 0·4 (0·2–0·8)
Chicken cooked outside

home
15 (11·8) 11 (1·6) 1·1 (0·6–2·2) 2·1 (1·3–3·3)

Uncooked ground beef* 4 (3·1) 0 (0) 109·9 (8·6–3142·3) 97·9 (9·2–2350·2) 112·5 (13·1–2611·3)
Steak 7 (5·5) 5 (0·7) 1·2 (0·7–2·1) 1·8 (1–2·9)
Roast beef 7 (5·5) 2 (0·3) 0·5 (0·2–1·1) 0·6 (0·3–1·1)
Ground beef in spaghetti

sauce, tacos
14 (11) 4 (0·6) 0·5 (0·3–0·8) 0·5 (0·3–0·8) 0·6 (0·3–1)

Burger cooked at home 19 (15) 10 (1·5) 1·0 (0·3–2·9) 1·7 (1–3·1)
Pasteurized milk 3 (2·4) 2 (0·3) 0·6 (0·4–1·1) 0·6 (0·3–0·9)
Eggs 10 (7·9) 3 (0·4) 6·5 (2·5–17·4) 4·5 (2·2–9·4)
Eggs cooked at home 11 (8·7) 4 (0·6) 0·2 (0·1–0·8) 0·2 (0·1–0·5)
Scrambled eggs at home 12 (9·4) 4 (0·6) 0·5 (0·2–1·3) 0·6 (0·3–1·1)
Boiled eggs at home 13 (10·2) 4 (0·6) 1·5 (0·5–4·1) 2·0 (0·9–4·2)
Poached eggs at home* 13 (10·2) 4 (0·6) 2·7 (0·5–13·4) 6·3 (2–19·5)
Scrambled eggs outside home 13 (10·2) 6 (0·9) 0·2 (0–1·4) 0·5 (0·2–1·2)
Poached eggs outside home* 13 (10·2) 6 (0·9) 0·1 (0–3211·9) 5·8 (1·3–24·5)
Cookie dough with raw egg 2 (1·6) 0 (0) 0·2 (0–1·4) 0·2 (0–1·0) 0·2 (0–1·4)
Alfalfa sprouts 6 (4·7) 3 (0·4) 0·4 (0–2·9) 0·3 (0–1·4)
Uncooked carrots 9 (7·1) 2 (0·3) 0·5 (0·2–0·8) 0·5 (0·3–0·8) 0·5 (0·3–0·8)
Cantaloupe 6 (4·7) 1 (0·1) 0·3 (0·1–0·8) 0·5 (0·2–0·9) 0·5 (0·2–1·0)
Watermelon 5 (3·9) 1 (0·1) 2·1 (1·1–4·1) 2·4 (1·3–4·3) 2·4 (1·3–4·5)
Other melon 5 (3·9) 1 (0·1) 1·2 (0–24·6) 9·9 (1·1–76·7)
Grapes 13 (10·2) 2 (0·3) 1·4 (0·8–2·4) 1·5 (0·9–2·4)
Other pork 9 (7·1) 1 (0·1) 0·5 (0·2–1·1) 0·5 (0·3–1·0) 0·4 (0·2–0·8)
Lamb 1 (0·8) 0 (0) 0·1 (0–0·9) 0·2 (0–1·0) 0·2 (0–1·0)
Fish 9 (7·1) 2 (0·3) 0·6 (0·3–1·1) 0·6 (0·4–1·1)

OR, Odds ratio; CI, confidence interval.
* Top ranked six exposures for permutation variable importance by random forest.
†Estimates for the full model include only variables identified as significant by either the backward or the forward selection
methods.
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models appeared to identify many ‘protective’ expo-
sures (OR <1), such as consumption of roast beef,
eggs cooked at home, and alfalfa sprouts, which
were likely artifacts because those estimates were de-
pendent on the other predictors in the models.

Another limitation of logistic regression is that it
implies parallel proximity of causality (i.e. each ex-
posure has the same proximity to the risk of disease)
[23]. However, when exposures belonging to the
same transmission pathway are nested, the exposure
on top of the nest might be distant causally in the
chain of the exposures. For example, three of
the four chicken-related exposures (consuming
uncooked chicken, consuming chicken cooked at
home, consuming chicken cooked outside the home)

retained in at least one of the logistic regression mod-
els were nested in a fourth exposure (consuming any
food containing chicken). The fourth exposure, at
the top of the nest, might be related to illness con-
ditional on the nested exposures below. An estimated
PAF that does not properly account for chained caus-
ality tends to neglect or underestimate the distant
causality [23]. Therefore, logistic regression models
can be inadequate for reliable causal inference or esti-
mation of summary PAFs [23].

By contrast, random forest is not compromised by
a high number of predictors because interactions
and nonlinearity are learned from the data [10].
Tree-based models are structurally accommodating
of conditional causality in which an exposure higher

Fig. 1. Permutation importance (blue circles) by mean decrease in classification accuracy of the random forest model
[normalized by the standard deviation of the differences in classification accuracy of pre- and post-permutation out-of-bag
(unused) data] and exposure frequency in cases (red-grey circles) of individual exposures measured.
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on a tree is related to the disease risk through expo-
sures down the tree. Empirical and theoretical studies
demonstrate the superiority of random forest for
model prediction and evaluation of variables
[24, 25]. The epidemiology of sporadic enteric illnesses

such as SE infection entails multifactorial causality
that varies over large geographical areas and includes
diverse social and demographic characteristics.
Therefore, the causality of SE illness might be context-
dependent and locally defined. Random forest pro-
vides a reliable mechanism to derive exposure–risk
relationships in diverse and complex contexts, includ-
ing interactions [26].

Another advantage of random forest is that it
imputes missing covariates based on a proximity
matrix, which uses weighted averages of observed
values from similar cases. This approach may be
more reasonable than complete case analysis or filling
missing data with the mean or mode, as is frequently
done in logistic regression. In this SE case-control
study, filling missing data with the most common
value was a concern because the effect of low-frequency
risky exposures might be underestimated if many of the
missing values were filled as unexposed. This was es-
pecially problematic in our study because many cases
hadmissing values, and simple filling would bias the ex-
posure status downward compared with controls. For
example, 17 values were missing in our data for the
variable ‘consuming poached egg in home’ (13 cases,
four controls). Random forest imputed 11 missing
values (seven cases, four controls) as exposed and six
(all cases) as unexposed, whereas simple filling with

Table 2. Estimated summary population attributable
fractions for grouped exposures obtained by random
forest model based on the Salmonella Enteritidis
case-control study data collected by the FoodNet in 2002

Grouped exposures

Exposures in
transmission
category (n) PAF (95% CI)

Exposure to eggs 12 22·1 (8·5–31·8)
Direct contact with
animals

13 12·6 (2·7–19·2)

Exposure to chicken 4 11·0 (1·5–24·8)
Exposure to beef 8 9·4 (1·9–17·6)
Exposure to produce 12 9·4 (2·6–15·3)
Exposure to dairy
products

9 6·3 (1·3–11·6)

Exposure to other
meat (turkey, deli
meat, sausage, lamb
and fish)

8 3·1 (0–7·4)

PAF, Population-attributable fraction; CI, confidence
interval.

Fig. 2. Predicted percentage reduction of illness as a function of probabilistic reduction in grouped exposures based on
counterfactual modelling of hypothetical interventions.
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the variable mean or mode set all 17 missing variables
as unexposed.

For counterfactual modelling, we did not differen-
tiate exposures based on their manipulability to inter-
vention. For example, chicken consumers were
counterfactually changed into a subpopulation that
did not consume chicken during the 5 days before
the onset of illness. Our interpretation of the counter-
factual modelling is that simulated reduction or re-
moval of chicken consumption serves as a proxy for
different hypothetical food safety interventions such
as reducing contamination in chicken products or im-
proving chicken handling and preparation practices.
We assumed that the multitude of trees approximated
complex causal pathways of sporadic illness to the ex-
tent that the average effect of exposure removal on
predicted illness across all trees would estimate the
summary PAF for the target population.

A limitation of random forest for causal inference is
the opaqueness of tree assembly, which prevents in-
terpretation of individual trees. Random forest was
introduced as a predictive tool that used the black-box
approach for mapping input variables and predicting
values of a response variable, and permutation vari-
able importance was biased toward correlated predic-
tors [27]. For observational epidemiological studies,
the focus is on causal inference rather than prediction.
We adapted random forest for causal inference be-
cause of its ability to account for complex data struc-
tures inherent to many case-control studies of enteric
disease. By estimating the PAF of grouped rather
than individual exposures, we minimized the inherent
bias of variable importance in correlated exposures in
the same transmission route. Overall, random forest
has distinct advantages over logistic regression mod-
els: flexible functional forms, better ability to model
interactions between variables, and imputation of
missing data. Coupled with the counterfactual esti-
mation method that we propose that random forest
can provide a meaningful estimation of PAFs to esti-
mate the sources of foodborne illnesses.
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