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SUMMARY

Asymptomatic carriage of gastrointestinal zoonoses is more common in people whose profession
involves them working directly with domesticated animals. Subclinical infections (defined as an
infection in which symptoms are either asymptomatic or sufficiently mild to escape diagnosis) are
important within a community as unknowing (asymptomatic) carriers of pathogens do not change
their behaviour to prevent the spread of disease; therefore the public health significance of
asymptomatic human excretion of zoonoses should not be underestimated. However, optimal
strategies for managing diseases where asymptomatic carriage instigates further infection remain
unresolved, and the impact on disease management is unclear. In this review we consider the
environmental pathways associated with prolonged antigenic exposure and critically assess the
significance of asymptomatic carriage in disease outbreaks. Although screening high-risk groups for
occupationally acquired diseases would be logistically problematical, there may be an economic
case for identifying and treating asymptomatic carriage if the costs of screening and treatment are
less than the costs of identifying and treating those individuals infected by asymptomatic hosts.
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INTRODUCTION

Each year, foodborne diseases account for an esti-
mated 1·3 million cases in England and Wales and

76 million cases in the USA [1, 2], with four of
the most important pathogens responsible for food-
borne illnesses being zoonotic (Campylobacter
spp., Salmonella spp., Cryptosporidium spp. and
verocytotoxin-producing Escherichia coli (VTEC),
particularly E. coli O157). In addition to causing
acute diarrhoeal symptoms, infection may lead to
more severe complications, e.g. haemolytic uraemic
syndrome from E. coli O157, and Guillain–Barré
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syndrome from Campylobacter infection. Although
many cases of human salmonellosis, campylobacterio-
sis, cryptosporidiosis and E. coli O157 infections are
foodborne or waterborne, both outbreak and sporadic
infections have been linked with the veterinary sur-
geries and the farming environment and a number
of associated risk exposures have been identified
(Table 1). Here we consider the environmental path-
ways associated with prolonged antigenic exposure
and assess the role of occupational exposure in suscep-
tibility to zoonotic pathogens. We discuss the signifi-
cance of asymptomatic carriage in disease outbreaks,
and explore the epidemiological implications of
asymptomatic carriage on disease management.

Zoonoses are infectious diseases that are transmissi-
ble from vertebrate animals to humans. In many
countries, the reporting of most zoonotic illness has
traditionally been voluntary and therefore laboratory-
confirmed zoonotic cases probably account for only a
small fraction of those occurring in the community.
Farm workers, veterinarians and abattoir workers,
who have more repeated contact with animals than
almost any other occupational group, have a higher
potential risk of contracting zoonotic illnesses.
Seroprevalence studies have shown that these groups
and their families are at risk of exposure to a signifi-
cant number of zoonoses [3–5]. However, frequent
and recurrent occupational exposure to zoonoses can
result in reduced occurrence of clinical illness due to
a build-up of immunity; consequently it has been
suggested that asymptomatic carriage of zoonoses is
more likely in people whose occupation involves

them working directly with domesticated or wild
animals.

Despite the lack of clinical symptoms, individuals
with apparent immunity can still be colonized by
zoonotic pathogens [6], and could inadvertently facili-
tate disease transmission. A recent study from India
demonstrated that children excreting viruses asympto-
matically served as a significant source of infection
because they were not restricted by illness [7]. The
public health significance of this should not be under-
estimated as asymptomatically colonized individuals
involved in the food supply chain will not necessarily
alter their behaviour (e.g. due to diarrhoea) and could
be responsible for the prolonged cycling and trans-
mission of infectious diseases. The costs of illness to
local health services and the wider economy associ-
ated with asymptomatic carriage are currently
unknown. A better understanding of the scale of the
role of asymptomatic carriage in disease burden
would inform policy makers and allow a more accu-
rate assessment of the value and cost-effectiveness of
intervention strategies which would address it.

Recurrent occupational animal exposure and
subclinical infection

E. coli O157

Circumstantial evidence suggests that occupational
exposure to domesticated livestock can result in sub-
clinical infection with VTEC. For example, a study
in Canada found that 12% of dairy farm families

Table 1. Occupational and environmental risk exposures associated with gastrointestinal zoonotic pathogens

Zoonotic disease Occupational and environmental risk exposures References

Campylobacteriosis Poultry abattoir workers [11, 14–16, 18–20]
Living or working on a farm (particularly poultry)
Recreational water activities

Cryptosporidiosis Visiting farms and contact with farm animals [25–28, 31]
Recreational water activity (particularly swimming pools)
Living or working on a farm (dairy)
Rural areas with high ruminant livestock density

Salmonellosis Living or working on a farm [38–41]
Farm contact (sheep and dairy)
Working in a veterinary clinic

VTEC (including O157) Living or working on a farm (sheep and dairy) [6, 8, 10–13]
Rural residency or farm contact (particularly with animal faeces)
Visiting agricultural fairs and petting zoos
Meat processors and abattoir workers

VTEC, Verocytotoxin-producing Escherichia coli.
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possessed serum antibodies to the E. coli O157 lipo-
polysaccharide (LPS), although none of these subjects
reported gastrointestinal symptoms at the time of
sampling or a history of bloody diarrhoea or renal
problems [8]. Further evidence of asymptomatic car-
riage of VTEC in farm workers has led to the sugges-
tion that a degree of immunity to clinical infection
by E. coli O157 develops as a result of prolonged low-
level exposure to less virulent VTEC strains [6]. This
was supported by a retrospective serosurvey of healthy
adult farm workers from the UK, which provided
evidence of persisting antibodies to E. coli O157,
particularly of the IgG class, suggesting long-term or
repeated exposure to VTEC [9]. Further studies have
shown elevated levels of antibodies to E. coli O157
LPS in dairy farm residents compared to urban resi-
dents [10], and in farm-resident rural children com-
pared to non-farm-resident children [11]. Although
the phenomenon of seropositivity and asymptomatic
carriage of VTEC in farm workers has been well docu-
mented, the risk factors associated with carriage are
still poorly understood [12, 13].

Campylobacter

While increased anti-Campylobacter jejuni antibodies
are often detected in the sera of individuals who
work with poultry [14, 15], the risk of developing
Campylobacter infection is much greater in inexperi-
enced or temporary poultry farm workers [16, 17].
In a serological study of poultry abattoir workers,
long-term occupational exposure was accompanied
by high levels of C. jejuni-specific IgG antibodies
[18]. Eight of these abattoir workers tested positive
for faecal excretion of C. jejuni, with seven of
them apparently asymptomatic, despite evidence for
persistent excretion for up to 6 weeks. Occupational
exposure to farm animals (e.g. cattle, sheep, poultry)
and farm residency have also been identified as signifi-
cant risk factors for Campylobacter infection [19–21].
However, it has also been suggested that occupational
contact with livestock or their faeces can provide
protection against Campylobacter disease [22]. This
is supported by a study in rural Wisconsin, which
showed that 59% of children possessed antibodies to
C. jejuni, with farm-residency and increasing age inde-
pendently associated with seropositivity, despite no
corresponding increase in clinically recognized diar-
rhoeal illness compared to non-farm-resident children
[11]. Other factors associated with seropositivity
included contact with cattle and sheep and drinking

unpasteurized milk, which in previous studies has
also been associated with elevated levels of antibodies
and immunity to Campylobacter symptomatic infec-
tion [23, 24]. However, while frequent farm-related
antigenic stimulation may offer a degree of protective
immunity, this type of acquired immunity is often
incomplete, dose-respondent, and can be overcome
by exposure to novel antigenic serotypes.

Cryptosporidium

Infection with the protozoan parasite Cryptosporidium
(Cr.) can cause gastrointestinal disease of clinical and
economic significance in both humans and young
farmed animals, with most human cases being caused
by either Cr. hominis, or Cr. parvum. Several UK
studies have provided evidence for the anthroponotic
spread of Cr. hominis and the mainly zoonotic spread
of Cr. parvum, with short visits to farms, handling
cattle and touching farm animals being identified as
independent risk factors [25–27]. Furthermore, a quar-
ter of all reported sporadic annual cases of Cr. parvum
in England and Wales can be attributed to direct con-
tact with farm animals [28]. Several seroepidemiologi-
cal studies have found more positive subjects in rural
settings than urban groups [e.g. 29, 30] and increased
seroprevalence has been detected in dairy farmers
compared to control subjects [31]. However, in a series
of 790 sporadic cases in the UK between 2004 and
2006, only three cases were adults who had occu-
pational farm contact (two farmers and one veterinary
student), suggesting potential immunity in those fre-
quently and historically exposed to animals and their
faeces [28]. This contrasts with cryptosporidiosis out-
breaks that regularly occur at swimming pools, day-
care nurseries, open farms and similar settings which
frequently involve children, and have been reported
in veterinary students who have had limited prior
exposure [32, 33]. Frequent exposure through inter-
mittent low-level contamination may lead to subclini-
cal infection and some herd immunity [34]. This is
supported by evidence from a seroepidemiologi-
cal study, which showed that people with high
anti-cryptosporidial antibody levels were much less
likely to self-report diarrhoeal disease than those
with low levels of antibody [35]. Human infectivity
studies have shown that although prior exposure
does not provide complete protection against further
infection, clinical symptoms are less severe [36, 37]
and age-related increases in seroprevalence appear to
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correlate well with the decline in incidence of clinical
cryptosporidiosis [37].

Salmonella

The routes of zoonotic transfer of Salmonella spp.
include direct contact with farm animals or their
faeces and exposure to a number of companion
animals, particularly reptiles. Consequently, occu-
pational exposure has been demonstrated in farm
workers [38, 39] and veterinarians [40, 41], although
the type of practice, i.e. small or large animal practice,
will determine the Salmonella serotypes personnel are
exposed to. Although secondary transmission of
Salmonella is a recurrent problem in animals at veter-
inary clinics, there have been no direct studies on the
levels of immunity in veterinary personnel; however,
a stool sample from an asymptomatic employee
during one outbreak of salmonellosis at a veterinary
clinic in the USA was found to be positive for
S. Typhimurium [41]. Clearly the risks for zoonotic
transfer are high in veterinary workers, although a
recent report indicated that veterinarians rarely use
personal protective equipment or adopt infection con-
trol practices to protect themselves against zoonotic
disease transmission [42]. It remains unclear whether
the occupational exposure to zoonoses experienced
by veterinary workers results in a form of protection;
and although several studies have linked the zoonotic
spread of Salmonella from farm animals to farm
workers, intriguingly there are as yet no reports of
asymptomatic carriage in farm workers. Whether
this is due to a lack of cumulative exposure, through
common antigens from the range of different
Salmonella serotypes present in animals (as suggested
for acquired immunity to E. coli O157 [6]), or whether
this is simply because there is a paucity of studies
clearly needs further epidemiological investigation.

Acquired immunity and environmental exposure

Exposure to potentially ‘unhygienic’ environments
and the onset of protective immunity has been dis-
cussed in the context of many diseases. For example,
evidence of acquired, exposure-related, immunity
comes from travellers from Western countries who
often suffer from ‘traveller’s diarrhoea’ on arrival
in a developing country [43–45]; however, their dur-
ation of stay is linearly correlated with protection
from infection, indicating a build-up of immunity
over time [46]. This supports a widely reported

phenomenon in the abattoir industry where new
employees with a lack of previous exposure to a
range of zoonotic pathogens, almost inevitably report
gastrointestinal illness in the first few days of employ-
ment, with far fewer cases occurring in longer-term
employees [18, 47]. Although the implications of abat-
toir workers asymptomatically carrying gastrointesti-
nal zoonotic pathogens is not as immediately serious
as subclinical infection in other types of food handlers,
e.g. during the preparation of ready-to-eat products,
asymptomatic individuals may well be significantly
facilitating the transmission of zoonotic pathogens
into the food chain.

While few studies directly compare the prevalence
of zoonoses within populations of developing and
developed countries, there is evidence for increased
asymptomatic carriage of gastrointestinal pathogens
in developing nations [48, 49]. Environmental path-
ways associated with prolonged antigenic exposure
include the recurring consumption of contaminated
drinking water and lower levels of hygiene during
food preparation together with an increased environ-
mental burden. This makes recurring cycles of infec-
tion with a range of zoonoses in the developing
world more likely, with many reports ascribing the
asymptomatic carriage of particular zoonotic patho-
gens (e.g. Campylobacter) to this constant antigenic
exposure [45]. Although microbial stimulation plays
an important role in modulating and improving the
immune response against future challenges by infec-
tive agents, the levels of immunity to zoonoses in
the developing world are acquired at the expense of
considerable infant and child mortality, often due to
diarrhoeal diseases.

Asymptomatic Campylobacter infections are con-
sidered endemic in developing countries, with sympto-
matic infection limited to children aged <2 years. A
considerable number of studies have reported that
breastfeeding can induce basal immunity against cer-
tain zoonotic pathogens, e.g. Campylobacter [50],
and as breastfeeding is widespread in the developing
world, this may play an important role in the level
of subclinical infection in children and asymptomatic
carriage within a community. Conversely, evidence
suggests that asymptomatic breastfeeding mothers
can transfer certain zoonoses to their baby either
directly, e.g. brucellosis [51, 52] or indirectly, e.g.
Helicobacter pylori [53].

A large Iranian study conducted on faecal samples
from children revealed that a significant proportion
(7·2%) were asymptomatically shedding strains of
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enterotoxigenic E. coli (ETEC) known to cause diar-
rhoea [54]. A systematic review on the aetiological
role of ETEC in children with diarrhoea in the devel-
oping world found that colonization in the 0–4 years
age group was a significant risk factor for contracting
diarrhoea [44]. There also existed high rates of ETEC
in children aged >5 years; however, these children
were asymptomatic with a notable decrease in the
frequency of diarrhoea. Enterohaemorrhagic E. coli
O157, which has recently become a serious zoonotic
pathogen in industrialized nations, appears to be a
relatively uncommon causative agent of illness in
developing countries. Whether this is due to this
particular strain of E. coli being relatively new, or
whether people in developing countries have already
acquired a significant amount of immunity to it clearly
warrants further investigation.

Genetic variation in human populations also
plays an important role in susceptibility to infectious
diseases, with several genetically determined factors
influencing susceptibility to specific infections, e.g.
Norwalk virus [55]. However, the role of genetic vari-
ation in determining resistance to infection by zoono-
tic pathogens remains unclear, although evidence
from genetic epidemiological studies has demon-
strated that immunity to disease usually arises from
a complex interaction of environmental, pathogen
and host genetic factors [56]. Genetically controlled
host defence factors can affect the susceptibility of
individuals to zoonotic challenge, e.g. individuals
unable to produce or respond to interferon-gamma
[57]. Genetic factors can also alter innate immunity,
e.g. the heterogeneous condition hypogammaglobuli-
naemia can lead to repeated infection and prolonged
symptoms from a range of pathogens, including zoo-
noses [58].

Comparing the incidence of zoonoses in immigrant
and resident populations may help to understand
acquired immunity, although these studies need to
be treated with caution as they can often be influenced
by confounding factors. An example of this occurred
during the largest ever outbreak of Q fever in the
UK, where no cases were reported in the local
Asian community despite there being many cases in
the same area in the non-Asian community [59].
Although it was hypothesized that cultural factors
partially explained this observation, serosurvey data
provided evidence for an underlying immunity as
many members of the Asian community had origi-
nated from areas of Pakistan with high rates of
Coxiella burnetii infection in sheep [59]. Factors

other than environmental exposure can also affect
susceptibility, e.g. socioeconomic status, which is an
important co-factor for the prevalence of H. pylori
in the US adult population [60]. The available
evidence for the occurrence of subclinical infections
demonstrates that they can be multifactorial and
may be related to the type or level of exposure, the
presence of potential immunity in the host, or
agent-specific factors, such as genotypic variation in
virulence. Whatever the mechanism, the presence of
subclinical zoonotic infections in human populations,
together with associated asymptomatic carriage, gives
rise to a number of important issues for the epidemiol-
ogy and control of these diseases.

Community epidemiology and the public health
significance of subclinical zoonotic infections in humans

The emergence of several zoonotic diseases of
major public health significance, e.g. swine influenza
A(H1N1), E. coli O157, vCJD, and SARS, have high-
lighted the importance of early surveillance. Essential
to mitigating the spread of communicable diseases
is the implementation of control measures, which
includes horizon-scanning and risk assessment. How-
ever, the presence of subclinical cases can present a
barrier to effective disease control as infections often
escape detection. Subsequently, under-ascertainment
of cases may underestimate the extent of an outbreak,
and facilitate continued transmission, or lead to bias
in an epidemiological investigation, e.g. by the
misclassification of controls in case-control studies.
Further, the presence of subclinical or mild infection
in a proportion of hosts may provide an evolutionary
advantage to an emerging pathogen, facilitating
onward transmission within animal and/or human
populations. Asymptomatic carriers can still excrete
infective organisms, and may pass the infection on
to others, although for gastrointestinal infections,
transmission is more likely from clinical cases,
especially where cases exhibit diarrhoea (Fig. 1).

Person-to-person spread of zoonoses is most usually
considered in the control of gastrointestinal infections
such as Salmonella and E. coli O157. Horizontal
transmission of E. coli O157 spread via the faecal–
oral route can occur in families and in the wider
community. However, secondary transmission of
salmonellosis during outbreaks may vary depending
on the outbreak setting and the strain of pathogen,
and is often dependent on the population at risk. In
a large outbreak on the Navajo Nation Indian
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Reserve in the USA, which involved 3400 cases, no
secondary infections were reported [61], whereas in
hospital outbreaks in the UK during the 1980s
person-to-person transmission was a significant factor
[62]. Secondary transmission of E. coli O157 is rela-
tively common [63], and of 157 cases identified in a
school outbreak in Wales, UK, 48 cases were attribu-
ted to secondary transmission [64]. By contrast,
person-to-person spread of Campylobacter is rare
and family clusters are seldom seen [65], and although
secondary transmission following point-source out-
breaks does occur, it is uncommon [66]. In a recent
outbreak of E. coli O157 on a petting farm in the
UK, of 93 cases of illness, 65 were attributed to pri-
mary infection, 13 to secondary infection and 15
were asymptomatic cases [67]. While it is theoretically
possible that some of the secondary cases of infection
could be linked to direct person-to-person spread from
some of the asymptomatic cases, quantifying this risk
during an outbreak scenario would prove very diffi-
cult. However, the potential for asymptomatic
human carriage as an epidemiological variable should
not be discounted [68].

Guidelines exist in the UK for the prevention of
person-to-person spread of gastrointestinal infections
in general [69], and E. coli O157 in particular [70].
These guidelines consider the public health manage-
ment of cases and contacts and the control of second-
ary transmission. Special attention is given to hygiene
precautions, such as hand washing, decontamination,

exclusion from work, school and other institutional
settings, and identifying population groups at greater
risk of spreading infection, e.g. children aged
<5 years attending pre-school facilities, people work-
ing with ready-to-eat food and health and social
care staff who have direct contact with individuals,
for whom a gastrointestinal infection could have
serious consequences. Outbreaks in children’s nur-
series in which an explicit link between human asymp-
tomatic carriers of E. coli O157 and person-to-person
infection have been reported [71]. Given the frequency
of secondary transmission by E. coli O157, and the
potential severity of outcomes of infection, the
prompt separation of primary cases of E. coli O157
from young household contacts has been rec-
ommended [72].

The theoretical possibility of person-to-person
infection from asymptomatic carriers poses a signifi-
cant demand on the monitoring and control of disease
outbreaks. Methicillin-resistant Staphylococcus aureus
(MRSA) is an example of a disease with evidence of
asymptomatic person-to-person infection, e.g. health-
care workers [73], and recent reports also suggest a
zoonotic pathway through professional contact with
animals [74–76]. Asymptomatically colonized individ-
uals can transmit MRSA to others [77], and in
so doing can unknowingly act as reservoirs for the
disease [73], particularly in nosocomial situations
[78–81]. Although the infection pathways for zoonotic
MRSA transmission are different to E. coli O157,

Gastrointestinal zoonotic
infection

Subclinical
infection

No behavioural
change

Limited by
behavioural

change

Clinical infection

Presentation to GP

Treatment

Secondary infection

No presentation to GP

Undetected reservoir in
the community

Acquired immunity/
occupational exposure

Fig. 1. Infection pathways and potential for the maintenance of asymptomatic carriage of gastrointestinal zoonotic
pathogens.
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Salmonella, Campylobacter and Cryptosporidium, the
role of occupational exposure, asymptomatic carriage
and person-to-person spread of MRSA gives rise to a
number of important implications relating to the con-
trol and surveillance of gastrointestinal zoonotic
diseases.

Livestock farmers and veterinarians in this context
are an occupational group analogous to healthcare
workers and should be considered at risk of becoming
asymptomatic carriers due to their regular handling
of potentially infected animals. Therefore, protective
measures for this group are important [82]; although
approaches proposed for healthcare workers in hospi-
tal settings, e.g. regular screening and decolonization
of carriers [83], would be impractical for workers in
the livestock sector. Screening farmers for occupation-
ally acquired diseases would be logistically problema-
tical owing to the number of farms, their type and the
practicality of regularly screening in geographically
isolated locations. Veterinarians pose a potentially
greater threat for the dispersal of these types of patho-
gen than farmers due to their multiple daily farm
visits, and subsequently have greater potential for
asymptomatic person-to-person contact within the
more densely populated urban and semi-urban com-
munities.

The importance of asymptomatic carriage in
causing secondary infection was highlighted during a
retrospective cohort study following an outbreak
of E. coli O157 in the UK [72]. Although it would
be fairly straightforward to set up a similar study to
quantify the spread of zoonoses from primary symp-
tomatic cases to asymptomatic secondary cases,
future epidemiological investigations need to focus
on quantifying the spread from asymptomatic car-
riers. However, identifying clinical cases that result
from the secondary transmission from asymptomatic
primary cases would be chronologically difficult
during an outbreak setting, as the investigation
usually begins with the symptomatic case.

Potential mitigation strategies

If asymptomatic carriers are a source of infection then
there may be an economic case for identifying and
treating asymptomatic carriage if the costs of screen-
ing and treatment are less than the costs of identifying
and treating those individuals infected by asympto-
matic hosts. One strategy to encourage high-risk occu-
pational groups to seek tests and treatment would
be to impose penalties and/or positive incentives.

The latter could involve payment for regular screening
for high-risk asymptomatic carriage groups such as
veterinarians. However, surveillance of veterinarians
and farmers may prove to be controversial and a
need to adhere to strict confidentiality guidelines essen-
tial [84]. As a control measure the weekly voluntary
screening of veterinarians appears to be technically
feasible and coupled with an overall improvement in
hygiene practices may provide sufficient protection
from transmitting both clinical and subclinical infec-
tions [42, 84]. Schemes which aim to reduce the risk
posed by asymptomatic carriers in the food chain
are mostly not predicated on the assumption that
there is some intervention that will remove gastroin-
testinal zoonotic pathogens from asymptomatic
hosts. Rather, those hosts are removed from food
handling until such time as the organism can no
longer be recovered from their stool. Such interven-
tions are not available for all zoonoses, and even if
they were, they would need to be taken regularly in
order to counter host re-colonization. The imposition
of any programme aimed at reducing the risk from
asymptomatic carriers may be best focused on groups
with a higher risk of transmitting zoonoses to others
and lower probabilities of infection, e.g. farmers and
veterinarians.

In theory, a prospective cohort study could be set
up following a cohort of high-risk individuals (high
risk of acquiring a zoonotic infection with a low risk
of clinical symptoms, but a high risk of transmitting
it on) and collecting detailed information about their
contacts. In practice, this would probably need a
large number of people, as risk of secondary spread
would be low, and would therefore not be practical.
Another approach would be to simply screen a
healthy occupational cohort for markers of infection,
screen the contacts of both positives and negatives and
simply examine statistically whether contacts of posi-
tives are more likely to be positive. However, this
would likely be confounded by the fact that contacts
would have other common sources of infection, rather
than linearly transmitting to each other.

The effective management of such diseases is con-
tingent upon substantive empirical information under-
pinning policy decisions. The nature of emerging
diseases often requires policy makers and scientists
to make choices about disease control in the absence
of hard empirical data. Although when the efficacy
of a large number of intervention strategies requires
such thorough evaluation the task can be cognitively
taxing. To overcome such obstacles, recent research
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has employed a range of innovative techniques includ-
ing the market research tool ‘Best-Worst Scaling’
designed to facilitate the elicitation of opinion from
both health experts and land managers. The common
objective of such an approach is to identify interven-
tions considered both effective in the control of patho-
gen movement within the wider environment and
practical to implement [85]. The compliance of key
stakeholders such as farmers and veterinarians, how-
ever, is critical to successful policy implementation.

This review has highlighted a number of important
gaps in our knowledge about the significance of
asymptomatic carriage and subclinical infection, and
exposed a lack of understanding about the risks
posed by subclinical infection in different parts of
the food chain from field to fork. This includes the
rate of asymptomatic carriage in different occu-
pational groups (farmers, veterinarians, abattoir and
processing workers, food manufacturers and handlers)
and the risk of person-to-person transmission from
asymptomatic carriers. It is therefore essential that
future research is concentrated towards understanding
the role occupational exposure and asymptomatic car-
riage play in outbreak scenarios and the epidemiologi-
cal significance of subclinical infection in the
community.
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