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Chord: an ensemble machine learning algorithm to
identify doublets in single-cell RNA sequencing
data
Ke-Xu Xiong1,2,9, Han-Lin Zhou 2,3,4,5,6,9,10✉, Cong Lin2,4,5,7, Jian-Hua Yin2,4,5,7, Karsten Kristiansen2,6,

Huan-Ming Yang2,8 & Gui-Bo Li 2,3,4,5,7,10✉

High-throughput single-cell RNA sequencing (scRNA-seq) is a popular method, but it is

accompanied by doublet rate problems that disturb the downstream analysis. Several com-

putational approaches have been developed to detect doublets. However, most of these

methods may yield satisfactory performance in some datasets but lack stability in others;

thus, it is difficult to regard a single method as the gold standard which can be applied to all

types of scenarios. It is a difficult and time-consuming task for researchers to choose the

most appropriate software. We here propose Chord which implements a machine learning

algorithm that integrates multiple doublet detection methods to address these issues. Chord

had higher accuracy and stability than the individual approaches on different datasets con-

taining real and synthetic data. Moreover, Chord was designed with a modular architecture

port, which has high flexibility and adaptability to the incorporation of any new tools. Chord is

a general solution to the doublet detection problem.

https://doi.org/10.1038/s42003-022-03476-9 OPEN

1 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. 2 BGI-Shenzhen, Shenzhen 518083, China. 3 BGI College & Henan
Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, China. 4 BGI-Henan, BGI-Shenzhen, Xinxiang 453000, China. 5Guangdong
Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen 518083, China. 6 Laboratory of
Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark. 7 Shenzhen Key Laboratory of
Single-Cell Omics, BGI-Shenzhen, Shenzhen 518083, China. 8 James D. Watson Institute of Genome Science, 310008 Hangzhou, China. 9These authors
contributed equally: Ke-Xu Xiong, Han-Lin Zhou. 10These authors jointly supervised this work: Han-Lin Zhou, Gui-Bo Li. ✉email: zhouhanlin@genomics.cn;
liguibo@genomics.cn

COMMUNICATIONS BIOLOGY |           (2022) 5:510 | https://doi.org/10.1038/s42003-022-03476-9 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03476-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03476-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03476-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-022-03476-9&domain=pdf
http://orcid.org/0000-0001-8562-6819
http://orcid.org/0000-0001-8562-6819
http://orcid.org/0000-0001-8562-6819
http://orcid.org/0000-0001-8562-6819
http://orcid.org/0000-0001-8562-6819
http://orcid.org/0000-0002-6141-4931
http://orcid.org/0000-0002-6141-4931
http://orcid.org/0000-0002-6141-4931
http://orcid.org/0000-0002-6141-4931
http://orcid.org/0000-0002-6141-4931
mailto:zhouhanlin@genomics.cn
mailto:liguibo@genomics.cn
www.nature.com/commsbio
www.nature.com/commsbio


Recently, the development of high-throughput single-cell
RNA sequencing (scRNA-seq) has provided convenience
for dissecting the cellular heterogeneity of tissues1. In

contrast to bulk RNA sequencing, profiling transcriptomes at the
single-cell resolution has enabled researchers to recognise the
molecular characteristics of all cell types at one time and acquire a
better insight into physiology, biological development, and
disease2. Among the current state-of-the-art technologies of high-
throughput scRNA-seq, droplet-based technologies are currently
commonly employed as an unbiased solution of single-cell
transcriptomics3. However, these microfluidic methods often
encounter the problem of doublets, where one droplet may
contain two or more cells with the same barcode during the
distribution step of isolating single cells. Then the doublets are
counted as a single cell in the data forming technical artefacts4.
According to the composition of doublets, doublets can be divi-
ded into two major classes: homotypic doublets, which originate
from the same cell type, and heterotypic doublets, which arise
from distinct transcriptional cells generating an artificial hybrid
transcriptome4,5. Compared to homotypic doublets, heterotypic
doublets are considered to have more impact on downstream
analyses, including dimensionality reduction, cell clustering, dif-
ferential expression, and cell developmental trajectories6,7.

To reduce the number of doublets in experiments, decreasing the
concentration of loaded cells is an effective control measure.
However, this approach also reduces the number of captured cells
and dramatically increases the cost per sample6,8. Several existing
experimental techniques can be applied to identify doublets instead
of avoiding doublets, such as the cell hashing method using oligo-
tagged antibodies as an orthogonal information9, MULTI-seq using
lipid-tagged indices10, and demuxlet using natural genetic
variations11. However, there are inherent limitations to these
experimental techniques. First, since these methods require special
experimental operations and additional costs, so they are not
helpful for the existing scRNA-seq data. Second, these techniques
only experimentally label doublets from different samples but
ignore the kind of doublet generated by cells from the same sample
or individual. Therefore several computational approaches have
been developed to detect doublets in common scRNA-seq data,
including data already generated7. A benchmarking study has
shown that the performance of these computational methods varies
greatly, even the top-performing methods with the noticeable
differences7, so there is still a larger challenge in terms of sub-
optimal accuracy of each method. In addition, because of the
unique characteristics brought by these specific mathematical
algorithms and their applicability to different scenarios, no method
can be considered as the gold standard for each scenario; Thus, it is
a challenging and time-consuming task for researchers to choose
suitable software for their specific research.

To address these unmet needs, we propose Chord, which
implements an ensemble algorithm that aggregates the results from
multiple representative methods to identify doublets accurately.
The ensemble algorithm is a widely used technique of machine
learning12 that can boost the accuracy of somatic mutation
detection13 and culprit lesion identification14. Compared to the
individual methods, Chord was demonstrated an improved accu-
racy and stability in doublet detection across different datasets of
real and synthetic data. Moreover, Chord was designed with a
modular architecture port that is highly flexible and adaptable to
incorporate new tools.

Results
The Chord workflow for accurate and robust ensemble algorithm-
based doublet detection. The computational approaches to detect
doublets in scRNA-seq data are grouped into two categories. One

strategy of one category uses the distance between simulated artificial
doublets and the observation cells to identify doublets. For example,
DoubletFinder5 adopts this strategy to handle the doublet detection
task as a binary classification problem. The other strategy used by
cxds in the scds15 package is based on co-expressed ‘marker’ genes
that are not simultaneously expressed in the same singlet cell but can
appear in doublet cells. However, the performance of existing
computational approaches for doublet detection varies greatly in
overall detection accuracy, impacts on downstream analyses and
computational efficiency7. Here, we describe a strategy based on an
ensemble algorithm of machine learning for doublet identification.
Our approach, Chord, integrates three representative computational
doublet detection methods in R environment (Supplementary
Table 1), including DoubletFinder5, bcds and cxds15, to enhance the
improvement in doublet detection (Fig. 1a).

The Chord workflow is composed of three main steps (Fig. 1a).
(i) Generating training data after coarse removal of doublets
using existing methods and generating artificial doublets from the
filtered data. (ii) Generalized Boosted Regression Modeling
(GBM) model16 fitting, which integrates and weights the
predictions of existing doublet detection tools based on
classification performance on the training data. (iii) Application
of the trained GMB model to the original dataset to predict
doublets.

Doublets in the original dataset might cause two types of
potential errors which may be introduced into the training set: (i)
In the process of generating doublets, the doublets will also be
treated as singlets to simulate new doublets, resulting in wrong
doublets introduced into the training set. (ii) In the generated
training set, the remaining doublets in the original data will be
marked as singlets. Therefore, the Chord first roughly estimates
the doublets of the input droplet data according to the three built-
in methods: DoubletFinder, bcds, and cxds to filter out the likely
doublets from the original data before simulating artificial
doublets. We called this step “overkill”. Selecting “overkill” could
improve the accuracy of training sets, which is beneficial to model
fitting (Methods; Supplementary Fig. 1c). Next, a simulation
training set is generated from quality singlet data after removing
these likely doublets. After evaluating the simulation training set
using DoubletFinder, bcds, and cxds to get their predicted scores,
the GBM algorithm was adopted to integrate these predicted
scores, which served as the predictors in the GBM model. Then
the doublet scores output was calculated by the GBM model for
the input droplets data (Supplementary Fig. 1a).

To determine whether the ensemble algorithm improves the
performance of doublet detection, we first evaluated these
methods on ground-truth scRNA-seq datasets that label doublets
using the experimental strategies demuxlet11 and Cell Hashing9.
The regions of ground-truth doublets in UMAP show enrichment
of the Chord’s doublet scores (Fig. 1b, c). The performance results
of Chord in each dataset and the average across datasets were
evaluated using receiver operating characteristic (ROC) curve
analysis and precision-recall(PR) curve analysis (Table 1 and
Supplementary Data 1). Chord achieved the highest areas under
the ROC curves (AUCs) and the highest area under the PR curve
(AUPRC) value on HTO8 dataset (0.815 and 0.599) and DM-A
dataset (0.831 and 0.394) respectively (Supplementary Fig. 1b,
Supplementary Table 3, Supplementary Table 4, Supplementary
Table 5). When the real doublet rate was taken as cutoff, Chord
detected 1596 doublets in the HTO8 dataset and 56 doublets in
the DM-A dataset, which were higher than any individual built-in
method (Supplementary Fig. 2c).

Furthermore, to thoroughly evaluate the performance of
Chord, Chord without overkill step, and the individual built-in
methods under a wide range of doublet rates, we used random
sampled singlets and doublets in the dataset to build a doublet

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03476-9

2 COMMUNICATIONS BIOLOGY |           (2022) 5:510 | https://doi.org/10.1038/s42003-022-03476-9 | www.nature.com/commsbio

www.nature.com/commsbio


a b

c

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DM-A
AUC = 0.831

FPR

Se
ns

iti
vi

ty

−1.0

−0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HTO8
AUC = 0.815

FPR

Se
ns

iti
vi

ty

UMAP_1 UMAP_1

UMAP_1 UMAP_1
U

M
AP

_2

U
M

AP
_2

U
M

AP
_2

U
M

AP
_2

DM-ADM-ADM-A HTO8

DM-A HTO8

−1.00

−1.25

-1.50

-1.75

Doublet
Singlet

C
el

l l
ab

el
Sc

or
es

Fig. 1 Chord overview and its performance on the DM-A and HTO8 tests. a Schematic outline of the Chord workflow. First, preliminarily predicted
doublets are filtered using bcds, cxds and DoubletFinder, and then the processed dataset is randomly sampled to generate simulation doublets that are
added to the training dataset. The second step is to fit the weights of the integrated methods through the GBM algorithm on the training dataset. In the
third step, the ensemble model is used to evaluate the original expression matrix and the doublets are identified by the expectation threshold value.
b UMAP was embedded for the DM-A and HTO8 tests with experimental doublet labels. The doublets are shown in red, and the singlets are shown in grey.
The doublet prediction scores of Chord were visualised on the UMAP plots for the DM-A and HTO8 tests. The DM-A dataset was from human peripheral
blood mononuclear cell (PBMC) samples using the experimental demuxlet method to annotate doublets11. The HTO8 dataset was from the samples of
PBMC using eight barcoded antibodies to mark and label doublets9. c The ROC curves of Chord were drawn for the DM-A and HTO8 tests using the R
package PRROC29.

Table 1 Comprehensive performance of each method in real-world scRNA-seq datasets with experimentally annotated doublets.

PAUC800 PAUC900 PAUC950 PAUC975 AUC PR

bcds 0.598456581 0.697609168 0.747471204 0.772440146 0.797428571 0.465471429
Chord 0.602189241 0.701382997 0.751248502 0.77621856 0.801214286 0.464642857
ChordP 0.614164051 0.713609623 0.763485434 0.788453732 0.8132 0.466514286
cxds 0.576279854 0.675031498 0.724828357 0.749788808 0.774785714 0.367342857
doubletCells 0.396983835 0.487445535 0.535271112 0.559821949 0.584685714 0.173985714
DoubletDetection 0.569370526 0.666356657 0.715610186 0.740426505 0.793114286 0.500857143
DoubletFinder 0.537830717 0.636466839 0.686221775 0.711172069 0.736171429 0.339428571
Scrublet 0.564203075 0.663581473 0.713449225 0.738419459 0.763414286 0.399771429
Solo 0.604236942 0.703224153 0.752987364 0.777930394 0.803142857 0.434714286

The average performance of various methods in all datasets. The indexes are the pAUC800, pAUC900, pAUC950, pAUC975, AUC and AUPRC.
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rate gradient (Methods). The performance of these methods
generally showed an upward trend as the doublet rate increased,
except that the DoubletFinder had dropped significantly at some
doublet rates. In the doublet rate gradient test of the random
sampled DM-A dataset, bcds had the best performance while the
effect of Chord was only inferior to that of bcds. In the 15 datasets
with doublet rates ranging from 2 to 30% generated from the
random sampled HTO8 dataset, Chord ranked first in terms of
the AUC and AUPRC most times (Supplementary Fig. 1c). Chord
outperformed other methods on many doublet rates and overkill
is beneficial to Chord performance.

The performance of doublet detection approaches on ground-
truth datasets. In addition to the abovementioned computational
doublet detection approaches based on the R environment, some
cutting-edge doublet detection software programs based on the
Python platform have also been published in recent years. To
integrate more doublet identification algorithms to improve the
accuracy without losing the usability of Chord and the con-
venience of the R environment, Chord developed an expandable
port allowing integration of more doublet identification algo-
rithms (Supplementary Fig. 1a). This port can take the scoring
results of other doublet detection software as input files, integrate
these new methods with the individual built-in methods and
obtain a training model to further improve the accuracy of
doublet identification. Combinations of doublet detection meth-
ods were evaluated and the optimal combination (Chord,
Scrublet4,6 and DoubletDetection17) was decided based on the
mean AUC (Supplementary Fig. 3b, Supplementary Table 7). We
used the Chord port to integrate the two Python software
(Scrublet and DoubletDetection) (Supplementary Table 1) for an
enhanced GBM algorithm model, called Chord Plus version
(ChordP) (Supplementary Fig. 3b).

To compare the doublet detection performances of Chord,
ChordP and the other seven stand-alone software programs, we
chose the seven ground-truth scRNA-seq datasets (Supplemen-
tary Table 2) to evaluate their overall performance. Chord and
ChordP achieved improved accuracy, and what’s more important
was that it showed stability across datasets (Fig. 2). Compared
with Chord, the AUC of ChordP increased from 0.831 to 0.833 on
the DM-A dataset and from 0.815 to 0.835 on the HTO8 dataset
(Fig. 2a), and ChordP performed better on most datasets.
Moreover, partial areas under the ROC curve (pAUC) at 80%
(pAUC800), 90%(pAUC900), 95%(pAUC950) and 97.5%
(pAUC975) specificity were calculated, the average AUC,
pAUC800, pAUC900, pAUC950 and pAUC975 of ChordP across
all the datasets were the highest among all methods (Fig. 2d,
Table 1), and its average rank value in all datasets reached the
highest (2.285, Fig. 2c, Supplementary Data 2). These results
showed that ChordP can indeed obtain more accurate results
after ensembling 5 methods. In addition, the ranking variance of
ChordP was 1.254, which was lower than that of Solo6 (3.047)
and bcds (1.773), both of which had the same high accuracy rate
(Fig. 2c, Supplementary Data 2). This finding shows that ChordP
has better versatility for different datasets than the other methods.

Through the uniform manifold approximation and projection
(UMAP) method for visualising the true positive doublets (TP),
true negative doublets (TN), false negative doublets (FN) and
false positive doublets (FP) (Supplementary Fig. 2), the distribu-
tions of the doublets detected by each method were various at
cluster level, which intuitively showed the complementarity
between the different methods and the necessity of ensembling
these methods. Among them, some methods, such as double-
tDetection and DoubletFinder, had a concentrated distribution of
FP results in the HTO8 dataset. The removal of doublets based on

these scoring results may lead to the accidental deletion of such
FP cell-enriched clusters, affecting cell type proportion statistics
and directly leading to the loss of rare cell subpopulations. In
contrast, the FP results of Chord and ChordP were relatively
evenly distributed, avoiding becoming independent clusters and
affecting subsequent analysis (Supplementary Fig. 2). Above all,
the results showed that ChordP, which integrates more
algorithms, outperforms Chord and the other methods.

We tested the time consumption of these different software
programs under uniform hardware conditions and found that
Chord did not significantly increase the time consumption. Cxds
was extremely time-efficient, while Solo was the most time-
consuming method in a CPU environment (Fig. 2e, Supplemen-
tary Data 3).

The performance of doublet detection approaches in DEGs and
pseudotime analysis. To evaluate the effect of different methods
on downstream analysis, we used synthetic scRNA-seq datasets
from a recent benchmarking research7 to compare Chord and
other approaches in terms of differentially expressed gene (DEG)
detection and pseudotime analysis. In the DEG analysis, one of
the synthetic scRNA-seq datasets was ‘clean data’ with two cell
types and 1126 between-cell-type DEGs, while the other dataset
was the ‘contaminated data’mixed with doublets at a 40% doublet
rate (Fig. 3d). We applied Chord and other approaches to remove
the predicted doublets from the contaminated data, and each
method generated a ‘filtered dataset’ (Fig. 3e). In the clean data,
the contaminated data, and the filtered datasets obtained from
each doublet detection approach, DEGs were analysed using the
Wilcoxon rank-sum test18 and model-based analysis of single-cell
transcriptomics (MAST)19. Three accuracy measures, namely, the
true positive rate (TPR), true negative rate (TNR) and accuracy,
were used to evaluate the results of DEG analysis. In Fig. 3a, even
on the contaminated data, all the data processed by each doublet
detection approach showed extremely high TNRs on the two
differential gene detection algorithms, because the two algorithms
try to detect more correct differential genes instead of detecting as
many differential genes as possible. The results of TNR and
accuracy showed very tiny differences in different data, it might
be due to the negative results as the majority in the dataset7. The
accuracy of DEG analysis has been improved on these filtered
datasets with doublet detection methods. The low TPR for the
contaminated data indicated that it was more difficult to identify
DEGs in contaminated data. The results of these methods were
better than contaminated data, and the results of Chord, Dou-
bletFinder and DoubletDetection are closer to the clean data
results. In the pseudotime analysis, the ‘clean data’ is a synthetic
scRNA-seq dataset including a bifurcating trajectory, while the
‘contaminated data’ is composed of ‘clean data’ plus 20% doublets
(Fig. 3d). The ‘filtered dataset’ was generated from the con-
taminated data with removal of the predicted doublets by Chord
and other approaches (Fig. 3e). Then, two pseudotime analysis
methods (Slingshot20 and monocle21) were implemented on the
clean data, the contaminated data, and the filtered datasets. In the
cell trajectory inferred by monocle, the contaminated data and
the filtered datasets from bcds and cxds generated additional
bifurcation trajectories due to the influence of doublets (Fig. 3b).
The unrecognised real doublets by doubletCells22 had a clear
tendency to deviate from the trajectory distribution. In the results
of Slingshot (Fig. 3c), the trajectories of the contaminated data
and the filtered datasets of bcds and doubletCells obviously had
one more branches. In contrast, Chord and Scrublet had similar
cell trajectories to the clean data in the two pseudotime analysis
methods, and there were fewer remaining doublets and no new
branches were generated. Thus, we can conclude that Chord was
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equivalent to or even outperformed other methods in DEG
detection and pseudotime analysis on the synthetic scRNA-seq
datasets.

Applying Chord to real-world scRNA-Seq data. To investigate
the application of Chord in real-world data and whether the effect

of downstream analysis has been improved, we tested the Chord
method on a real-world scRNA-seq data dataset without doublets
labelling information that containing 52,698 cells from lung
cancer tumour tissues of 5 patients23. Based on the expected
doublet rate (0.9% per 1000 cells), we estimated the proportion of
doublets in 5 malignant tumour samples (sample 11, 13, 17, 18,
22) with the most expected doublet rate (3.81%, 4.68%, 4.74%,
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4.20%, and 4.42%), as well as the number and proportion of
doublets for different cell types (Supplementary Data 4). After
detecting doublets by Chord on the labelled cell from the original
paper (https://gbiomed.kuleuven.be/scRNAseq-NSCLC), we can
see that T cells contained the largest number of doublets due to
their large cell number. The identified doublets of fibroblasts cells
accounted for only 1.69%, while the proportion of myeloid was
the highest (8.15%) (Fig. 4a). Doublets were unevenly distributed
in the UMAP plots (Fig. 4b), clustered at the edge of some
clusters, and some even formed independent clusters. According
to the number of predicted doublets in different clusters, cluster
10 had the highest doublets enrichment trend (Fig. 4b, c), in
which markers of T cells and plasma cells are simultaneously
expressed (Fig. 4d). Cluster 10 is shown to be the closest neigh-
bour to both cluster 1 and cluster 8 on the UMAP plot (Fig. 4b).
Cluster 1 is T cell cluster, while cluster 8 is plasma cell cluster
which is a cell subtype of B cells. Obviously, the doublet removal
by Chord can have a great impact on the proportion of cells to
avoid these imbalanced distributions, so that numerous doublets
wont result in becoming noise contamination for the quantitative
statistics of the proportion of cell types.

To test whether Chord is able to improve the effectiveness of
downstream analysis, we evaluate the performances of Chord on
real data. We utilised ROGUE24, an entropy-based metric, to assess
the purity of cell types in the original and filtered data. The ROGUE
index has been scaled in the range of zero to one where the larger
value means the higher purity. As a result, the ROGUE value of the
filtered data was improved, the increasing trend of ROGUE value
after filtering doublets was apparent (Fig. 4e). Next, we used
SciBet25, a cell type annotation tool based on Bayes decision, to
annotate the cell types from the original data and filtered data, and
calculated the changes in the cell types before and after applying the
doublet filter. The accuracy of the annotation results of the B cells
(0.726), endothelial cells (0.935), and epithelial cells (0.91) on the
filtered dataset were all greater than those of the B cells (0.705),
endothelial cells (0.908), and epithelial cells (0.904) in the unfiltered
dataset (Supplementary Figure 3d). In addition, more differentially
expressed genes can be found after Chord processing, indicating
doublet removal can improve the effect of DEG analysis (Fig. 4f).
Since a doublet was caused by multiple cells with the same barcode,
doublet cells generally contain a higher unique molecular identifier
(UMI). The UMI of doublets detected by Chord was significantly
higher than singlets in all cell types (Fig. 4g). Since myeloid has the
highest proportion of doublets (8.15%) and have a biological
rationale in tumour microenvironment26. Myeloid cells were
selected to demonstrate that Chord is able to correct the direction
of the cell trajectory. In the pseudotime of myeloid cells in the
dataset, the doublets were unevenly distributed in the dimension-
ality reduction plot and aggregated on the right side. After filtering
the doublets, the direction of the cell trajectory changed, which
might be closer to the real situation (Fig. 4h). We inferred that the
deviation was corrected by removing the doublet data.

Therefore, we believe that Chord’s doublet processing of real
data can improve the purity of cell clusters, allowing researchers

to obtain more accurate cell type identification, accurately
identify DEGs between cell types and obtain better pseudotime
analysis results.

Discussion
A number of tools have been developed to remove doublets from
scRNA data, but most of them cannot perform consistently well
on all datasets (Fig. 2b). For users, it is difficult to evaluate and
choose the most suitable method. To solve this problem, Chord
integrates the results of different methods through the GBM
algorithm. The benefits of each method are retained, and the
disadvantages are minimised. According to our evaluation,
Chord, with a high average ranking and stability, is widely
applicable to various datasets and is able to integrate the doublet
prediction scores from any method. It can accept any updates to
the existing approaches and it will be compatible with any new
approaches in the future (Supplementary Fig. 1a). As novel
methods continue to emerge, the better ones can always be
selectively integrated to improve Chord’s accuracy (Fig. 2b, c). It
will be compatible with some new approaches in the future, and it
can accept any update to the existing approaches (Supplementary
Fig. 1a).

Doublets contained in scRNA data affect not only the quantity
of cell types but also the accuracy of downstream analysis. The
data filtered with Chord were accurately identified in cell type
annotation (Supplementary Fig. 3d), and more potential DEGs
(Fig. 4f) were found with Chord than with other methods. These
results can help researchers obtain more accurate results and
conclusions in subsequent analyses.

We also optimised the construction of simulated training sets.
In this general step, most doublet detection methods add simu-
lated doublets to real data to generate a training set. However, the
training set may contain undiscovered doublets, which could
limit the training of doublet detection models and reduce accu-
racy. Therefore, Chord includes “overkill” step. First, built-in
methods are used to evaluate the data. Then, filtered doublets
identified with various methods are removed, and doublets
simulated based on the remaining cells are used to generate a
training set. In this way, the number of undiscovered doublets in
the training set is greatly reduced, thus improving the accuracy of
training and doublet detection. The use of an “overkill” step
might also improve the performance of other methods.

Chord requires the integration of the results of multiple
methods, so it is not optimal in terms of time efficiency. The use
of refactoring the integrated methods may solve this problem.
Also, other pre-processing methods, e.g., ambient mRNA removal
steps for droplets, should be considered to improve the accuracy
of downstream analysis27.

Overall, we proposed a computational approach for doublet
detection that utilizes an ensemble algorithm model. This is the
first study of its kind to use an ensemble algorithm for doublet
detection. This work could help researchers concisely and effi-
ciently remove doublets from scRNA data.

Fig. 2 Comparison of the doublet detection approaches on the ground-truth datasets. a DM-A and HTO8 tests were evaluated by nine methods and
their ROC curves. b The AUCs of the nine methods on seven datasets and the heatmap of the AUC results. The number in the heatmap indicates the rank
of the method in the dataset (only the top three methods are marked). c The standard deviation of the rank values for each method, the mean of the rank
values of each method, and the mean AUC of each method across seven datasets. d Heatmap of average pAUC800 pAUC900, pAUC950 pAUC975, AUC
and PR in DM-A, DM-B, DM-C, HTO12, HTO8, DM-2.1 and DM-2.2 dataset. The number in the heatmap indicates the performance rank of methods in the
dataset (only the top four methods are marked). e By random sampling from the real DM-2.1 dataset, simulated datasets with varying numbers of cell
number (from 1000 to 12,000 cells with an interval of 1000) were constructed, and the runtime of each method on the simulated datasets was recorded
using the same computer server (E5-2678v3 CPU processor and 256 GB memory).
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Methods
Chord overview. Data input. The input format used in Chord was a comma-
separated expression matrix, which was a background-filtered, UMI-based count
matrix for a single sample. Chord pre-processes the count expression matrix
according to the Seurat analysis pipeline. Chord can also directly accept object files
generated by the Seurat analysis pipeline. In addition, it is suggested that users
estimate a doublet rate (Supplementary Fig. 1) based on the loading conditions so
that Chord can simulate a simulated training set that is similar to the real dataset

selected. It should be mentioned that the doubletrate, which is the estimated
doublet rate parameter, has generally robust, and a certain degree of deviation will
not greatly affect the results of Chord (Supplementary Fig. 3e, Supplementary
Table 8).

Data pre-treatment. To train the results of bcds, cxds, DoubletFinder, and
DoubletCell based on ensemble learning, Chord generates SingleCellExperiment
object data conforming in the input format of bcds and cxds through the R package
SingleCellExperiment28.
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Preliminary deletion of doublets. We tend to reduce the number of doublets in a
sample as much as possible before generating simulated doublets to avoid training
datasets that contain real doublets because real doublets are not preliminarily
labelled and are thus labelled as singlets in the training set. We applied three
doublet detection methods, evaluated the selected datasets, and roughly filtered the
doublets.

We used the scds() function, cxds, and bcds to evaluate the data based on the
parameters ntop= 500, binThresh= 0, and retRes= T; then, we extracted the
doublet scores obtained with the two methods for each cell. Next, we used the no
ground-truth process of DoubletFinder for evaluation. The parameters were set as
PCs= 1:10 and pN= 0.25, and automatically extracted the pk value corresponding
to the highest bimodal coefficient, and obtained the doublet score.

Chord introduced an adjustable parameter called overkillrate. According to this
paremeter, we filtered the doubletrate*overkillrate percentage of cells that were
most likely to be doublets according to the evaluation results of each method and
obtained the ‘prefiltered data’. By default, we set this parameter to 1 to exclude the
doublets identified by the three built-in methods at the selected doublet rate.

Generating the simulation dataset. To avoid the generation of doublets
synthesised from the same cell type, Chord randomly sampled pairs of cells in the
pre-filtered data, generated simulated doublets from the raw UMI count by mixing
the gene expression profiles of the selected cell pair4 and then added simulated
doublets to the pre-filtered data:

1. Perform a Seurat standardisation process on the data and call the functions
NormalizeData(), FindVariableFeatures(), and ScaleData() with default
parameters.

2. Cluster cells, perform dimensionality reduction operations on the data with
RunPCA(), taking PC1 to PC30 as inputs, and perform k-means clustering
(k= 20). After clustering, the cells were divided into 20 clusters.

3. Randomly sample pairs of cells at a ratio of doubletrate/(1-doubletrate) for
each cell type, and weight the cells with introduced biological random
number from a N(1, 0.1) distribution which was set to roughly represent
experimental randomness.

4. Average the weighted gene expression profiles of the cell pair as simulated
doublets.

5. Add the simulated doublets to the pre-filtered data; take this new dataset as
the training set.

Model training. For the training set,in which all cells were labelled, Chord used
the same parameter settings to evaluate the doublet scores through the bcds, cxds,
DoubletFinder methods. GBM (from R package gbm) which performed better than
AdaBoost, XGBoost, and LightGBM (Supplementary Fig. 3a) was used to combine
the prediction scores of the built-in methods to fit a model for robust estimation. In
GBM, each individual model consists of classification or regression trees, also called
boosted regression trees (BRTs). We defined 1000 trees for fitting, and set
parameter shrinkage= 0.01and cv.folds= 5. The function DBboostTrain() was
defined to implement model training, and it combined the scoring results of these
built-in methods into a matrix. Then the matrix was input data into the function
gbm() in the R package gbm. The simulated doublets were set as true positives
(TPs), and the singlets were set as true negatives (TNs) for model training.

Scoring the original data. We defined DBboostPre(), used the model trained on
the training set to predict the doublet scores of the original dataset, and output the
doublet score of each cell based on the result of the ensemble model.

Expandable interface. To incorporate version updates of the integrated doublet
tools and the release of new doublet tools, Chord included an extendible interface
that could be customised based on the doublet evaluation results of any tool. To
incorporate the selected methods, at first the chord() function was used to extracted
the expression matrix after generating the simulated doublets. Next, we exported
prefiltered data, evaluated both the original and prefiltered data using the selected
methods, and then imported the scores into Chord. Based on the evaluation scores,
Chord used the GBM algorithm to the extra methods together with bcds, cxds and
DoubletFinder. At last the ensemble model was used to score the original dataset.

DoubletCells settings. DoubletCells from the R package scran 1.16.0 with the
parameters k= 50 and d= 50 was selected and ran in the R 4.0.2 environment.

Solo settings. Solo was run in the Python 3.7.9 environment, and the parameters
were set according to the reference file solo_params_example.json downloaded

from https://github.com/calico/solo. The doublet scores of each cell were read
through the softmax_scores.npy file.

DoubletDetection settings. Double detection was run in the Python 3.7.9
environment using the operating parameter settings from https://nbviewer.jupyter.
org/github/JonathanShor/DoubletDetection/blob/master/tests/notebooks/PBMC_
8k_vignette.ipynb. Scoring results were obtained with
BoostClassifier.fit.voting_average_.

Scrublet settings. Scrublet was run in the Python 3.7.9 environment, based on the
instructions at https://github.com/AllonKleinLab/scrublet/blob/master/examples/
scrublet_basics.ipynb. The doublet scores of each cell were read through
Scrublet.scrub_doublets.

Doublet rate gradient. The doublet gradient dataset was composed of random
samples from real datasets. The HTO8 dataset was randomly sampled from the
DM-A dataset with an interval of 0.02, and the ratio of the doublet rate was baried
from 0.02 to 0.30. DM-A dataset was randomly sampled from the DM-A dataset at
an interval of 0.01, and the ratio of the doublet rates was baried from 0.01 to 0.10.

Rank variance comparison for different methods. Because of the unstable per-
formance of the methods for different datasets, we calculated the AUC rank var-
iance coefficient to characterise the stability of each method based on different
datasets. The methods used in the evaluation, were ranked according to their AUC
results, and the variance of the AUC ranking of each method was calculated for
different datasets as the AUC rank variance coefficient (SDrank). The method with
the highest SDrank was unstable for different datasets, it represented the gen-
eralisability of methods.

AUROC and AUCPR calculations. Each method was evaluated using the AUC
with ground-truth labels for the original datasets or labels for simulated datasets. In
addition, the AUPRC and partial area under the ROC curve (pAUC) were calcu-
lated. We calculated the AUC and AUPRC with the PRROC R package29, and
plotted the ROC curves for individual method by setting the option ‘ROC curve‘ to
‘TRUE’. For the pAUC at 0.9, a 0.95 specificity value was calculated by using the
‘pROC’30 R package.

Evaluating DEGs with simulated datasets. We used the published simulated
single-cell sequencing dataset7 to test the changes in the number of DEGs correctly
detected before and after doublet removal by different methods. The simulated
single-cell dataset was generated with scDesign31 and contained 1,667 cells and
18,760 genes. It was divided into two cell types each counted 500 cells, and 667
doublets simulated by those singlets. Among them, high-expression and low-
expression DEGs, which were known at the time of data generation, accounted for
6% of all sample (3% upregulated genes and 3% downregulated genes). The dataset
without doublets was used as the clean dataset, and the data with doublets were
added as the contaminated dataset. After the contaminated dataset was evaluated
with a doublet detection method, the dataset of 40% of the cells with the highest
score was filtered according to the result. We performed the process described
above for each method. Then, we used Seurat’s FindAllmarkers() function with the
methods ‘wilcox’18 and ‘MAST’19 to perform DEG calculations on the dataset. In
order to find DEGs, we removed genes with fold changes below 0.25; then, genes
with Bonferroni-corrected p values below 0.05 and genes detected in a minimum
fraction of 10% cells in either of the two clusters were defined as DEGs. Finally, we
calculate the accuracy, TPR, and TNR for all datasets.

Pseudotime analysis of the simulated data. We used the published dataset of
simulated single-cell sequencing7 to test the effects of different methods on pseu-
dotime analysis. The simulated single-cell dataset, which was generated with
Splatter, consisted of 600 cells and 1000 genes. There were two cell tracks con-
taining 250 simulated cells and 100 simulated doublets. The dataset without the
doublets was used as a clean dataset, and the data containing the doublets were
used as contaminated dataset. After evaluating the contaminated dataset through a
doublet detection method, cells predicted to be doublets were deleted. After then,

Fig. 3 Evaluation of the doublet detection methods using the realistic synthetic datasets on DEG analysis and pseudotime analysis. a The dataset of
labelled DEGs was processed by each doublet detection method, and the top 40% of cells based on the doublet score were excluded. Then, the DEGs were
detected using MAST19 and Wilcoxon rank-sum tests18. Taking the DEGs as positive, three accuracy measures (i.e., the TPR, TNR and accuracy) were
calculated. b, c After processing the dataset for the pseudotime analysis using each doublet detection method, the top 20% of cells according to the
doublet score were excluded. Monocle (B) Slingshot (C) were used to construct the trajectories of these results. d The UMAP was embedded for the two
realistic synthetic datasets (DataDEG and DataPSE), in which the doublets are shown in red and the singlets are shown in grey. DataDEG is a simulation
dataset containing two synthetic cell types, including 1667 cells, 40% of which are correctly labelled doublets. DataPSE consists of 600 cells, 20% of which
are synthetic labelled doublets containing a bifurcating trajectory. e The AUC of each method on DataDEG and DataPSE and their ROC curves.
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the R package monocle and Slingshot software were used for a pseudotime analysis
of the dataset. We implemented the process described above for each method. In
addition, we calculated the trajectories of the clean and contaminated datasets.

Time cost. Based on random sampling from the real DM-2.1 dataset, we con-
structed test datasets of 1,000 to 12,000 cells with a gradient of 1,000 cells and
tested various methods with the same processor. Then, the runtime of each method

for the simulated datasets on the same computer server (E5-2678v3 CPU processor
and 256 GB memory) was recorded.

Base analysis process for lung cancer data. We obtained the Seurat object from
SCope (https://gbiomed.kuleuven.be/scRNAseq-NSCLC) including 19 samples
from five patients.
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After evaluating the predicted double cell rate for each sample based on the
number of cells, we selected the 5 tumour samples (sample 11, 13, 17, 18, 22) with
the highest predicted double cell rate and applied Chord individually to each
sample. Then we performed a standard Seurat analysis:

1. The expression matrix and metadata for samples 11, 13, 17, 18 and 22 (33694
genes across 24280 cells) was extracted, and a new Seurat object was created.

2. After the data were normalised, 2000 variable genes were screened with the
function FindVariableFeatures().

3. PCA was used to reduces the dimension of the data to 50 dimensions, and
PC1 to PC30 were used for clustering. Through the FindNeighbors function
(resolution= 1.5), we divided the cells into 22 clusters, and we computed
the UMAP embeddings to display the results23.

Cluster purity. We calculated the rogue() (R package ROGUE) value for each cell
type in each sample. Comparisons between two original datasets and filtered
datasets were performed using paired two-tailed t-tests.The parameters of ROGUE
were set as “platform=UMI” and “span= 0.6”.

Cell type identification using SciBet. We used the function SciBet() (R package
SciBet25) to perform cell type analysis on epithelial, endothelial, myeloid, T, and B
cells before and after processing. The reference of human cell types were provided
by SciBet (http://scibet.cancer-pku.cn/major_human_cell_types.csv).

Calculated number of DEGs. The number of DEGs were calculated by the Wil-
coxon rank-sum test (Seurat) with the following parameters: min.pct= 0.1, and
test.use= ‘wilcox’, additionally, and the threshold of logFC was varied from 0.25 to
0.75 at an interval of 0.05. Then, we counted the number of DEGs at different
logfc.threshold values.

Statistics and reproducibility. The details about the steps and statistics of each
analysis were recorded in each part of methods. Statistical analyses were performed
using R package ggpubr (https://rpkgs.datanovia.com/ggpubr/) or build-in function
of R 4.0.2 (https://www.r-project.org/). A P value less than 0.05 was considered as
statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data analysed during this study were collected from public studies or databases. The
access to data was shown in Supplementary Table 9.

Code availability
The Chord software package, including documentation, tutorials is available at https://
github.com/13308204545/Chord32.
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Fig. 4 Doublet removal by Chord improves the analysis performance on real-world scRNA-Seq data. a Doublet detection was performed on the
published lung cancer dataset23 using Chord. The number and the proportion of doublets for each cell type which was labelled by original paper were
recorded. b UMAP of the 24,280 cells in this dataset. The cells were coloured by cell type (left), the predicted result of doublet detection (middle) and the
clusters were defined by Seurat (right). c A bar chart showing the number of doublets and total cells in each cluster. d Heatmap of marker genes for
doublets (in cluster 10), T Cells, and Plasma cells. e The ROGUE value24 of each cell type for each sample. A paired t-test was used to test the difference in
each cell type in each sample between the two groups before and after doublet filtration (paired t-test, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
f A bar chart showing the changes in the total number of differentially expressed genes before and after doublet removal. The DEGs were calculated by the
Wilcoxon rank-sum test (Seurat). The threshold value of logFC was measured by a gradient from 0.25 to 0.75 at 0.05 intervals. g The RNA UMI numbers
predicted by Chord in each cell type were significantly different between the doublets and singlets (unpaired t-test, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001). h The myeloid cells in original and filtered data for the pseudotime analysis were processed using Slingshot20. The trajectory of the original
data and the filtered data are shown respectively.
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