Skip to main content
. 2022 May 17;9:890188. doi: 10.3389/fnut.2022.890188

Figure 4.

Figure 4

Optical microscopic image and visual appearances of emulsion gels; (A) Emulsion dispersion droplets, (B) Blank emulsion gel, and (C) Epigallocatechin-3-gallate and quercetin co-loaded emulsion gel. The formed gel showed an encapsulation efficiency of 65.5 and 97.2%, whereas enhanced the bioaccessibility by 48.4 and 49% for (-)-epigallocatechin-3-gallate and quercetin, respectively. In addition, emulsion gel showed lower release rates of 73.3 and 31.7% and improved stability by 63.6 and 82.3% for epigallocatechin-3-gallate and quercetin after 8-h incubation in specific environmental conditions (simulated intestinal fluid) and remained stable to phase separation during 30-days storage at 4°C (D) (103).