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Deep learning (DL) algorithms, predominantly employ-
ing convolutional neural networks, have been associ-

ated with high diagnostic accuracy in a growing number 
of classification tasks in medical imaging (1–3). Compared 
with other machine learning methods, DL algorithms have 
several advantages. DL algorithms have performed with 
similar, if not higher, accuracy for classifying large imaging 
datasets (4–6) compared with conventional machine learn-
ing methods, such as support vector machines. Further-
more, DL algorithms do not require labor-intensive feature 
identification and extraction for data reduction. Reported 
accuracies of DL algorithms are beginning to match or 
even exceed those of radiologists (1,7,8).

As we consider the potential applications of DL algo-
rithms to radiology practice, we must consider whether 
these research results are applicable to the general popula-
tion. Clinical imaging research is particularly challenging to 
interpret because of selection bias and the reliance on retro-
spective data sources (9,10). In both clinical and data science 
research, data represent characteristics that have a certain 
distribution in the research population. Selection bias occurs 
when the distribution in the research population is unknow-
ingly different from that of the general population.

In machine learning research, the issue of selection bias 
has been recognized under alternate names, such as “da-
taset shift” (11). Diagnostic imaging applications of ma-
chine learning algorithms are even more susceptible to this 
problem because their performance is entirely dependent 

on the original development data. If an algorithm’s high 
diagnostic accuracy depends on hidden peculiarities in the 
development data with respect to patient population, clini-
cal setting, imaging equipment, and distribution of imag-
ing findings, then the algorithm may not perform well in a 
general, more diverse population (12,13).

Therefore, to assess real-world clinical efficacy, it is essen-
tial to know an algorithm’s performance on an external data-
set, one derived from a source that is different than the devel-
opment data and not used in the algorithm’s training. While 
the importance of considering external validation in artificial 
intelligence research is increasingly recognized (14,15), it has 
been performed in relatively few published studies (16).

To gain a better estimation of the generalizability of DL 
algorithms for image-based radiologic diagnosis, we con-
ducted a systematic review of studies of DL algorithms that 
employed an external dataset to perform external valida-
tion. We sought to obtain an estimate of the magnitude 
of performance differences on external datasets and to in-
vestigate whether basic study characteristics affect external 
validation results.

Materials and Methods

Literature Search
This study was a systematic review and was therefore ex-
empt from review by our institutional review board. On 
May 1, 2021, we searched PubMed for studies published 
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Data Extraction
For each eligible study, one investigator extracted pertinent in-
formation from the full text, including classification task char-
acteristics, labeling method, DL architecture, use of validation, 
dataset characteristics, performance results, and publication 
characteristics (Table 1). A second investigator reviewed the 
extracted data for accuracy, and discrepancies were resolved by 
consensus. A primary performance measure was identified for 
each study; in order of preference, we looked for area under the 
receiver operating characteristic curve (AUC), sensitivity and 
specificity together, or overall accuracy (proportion of cases 
correctly classified).

For each study, a representative performance difference was 
defined as the difference between the primary performance 
measures of the development and external data sources. Clini-
cally conservative choices were made for studies that reported 
multiple performance measures, such as those involving mul-
tiple institutions. For these studies, the greatest absolute differ-
ence between development and external sources was chosen as 
a representative difference for purposes of categorization and 
statistical analysis. For studies that reported both sensitivity and 
specificity differences, the more negative difference was chosen 
as the representative difference for purposes of analysis. For stud-
ies involving multiple institutions for either the development or 
external datasets, size and disease prevalence were averaged for 
the purposes of analysis.

On the basis of our experience with receiver operating charac-
teristic analysis, the performance differences between the devel-
opment and external data sources were grouped for convenience. 
Performance differences were considered “substantial” if the dif-
ference was 0.10 or greater on a positive or negative unit scale, 
“modest” if less than 0.10 but greater than or equal to 0.05, or 
“little change” if less than 0.05.

Classification task difficulty was captured in two variables: 
conspicuity of image findings and composition of nondiseased 
cases. Conspicuity was classified as “major” (can be confidently 
diagnosed by imaging alone), “subtle” (diagnosis associated with 
uncertainty, usually requiring tissue sampling), or “impercep-
tible” (imaging not usually involved in diagnosis). The second 
variable, composition of nondiseased cases, indicated whether 
the “negative” cases were all normal or contained diagnoses other 
than the index diagnosis. As an indicator of reporting quality, 
we recorded whether each eligible study stated compliance with 
any published guideline, such as the Checklist for Artificial Intel-
ligence in Medical Imaging (ie, CLAIM) (15).

Statistical Analysis
The main dependent variable was the representative perfor-
mance difference between the development and external data 
sources, computed as external performance minus development 
performance. Relationships between the dependent variable and 
pertinent study characteristics were evaluated using various sta-
tistical tests, depending on variable type. Relationships between 
the dependent variable and binary categorical covariates, such as 
CT versus radiography, were explored with the Wilcoxon rank 
sum (Mann-Whitney U ) test. Relationships with dataset size or 

in the English language from January 1, 2015, through April 
1, 2021, on DL algorithms for radiologic diagnosis from medi-
cal images, using the search phrase shown in Figure 1. We also 
reviewed the reference lists of relevant articles for eligible stud-
ies. We chose a starting date that was 2 years prior to the re-
lease of the National Institutes of Health ChestX-ray14 dataset 
(17) and the conclusion of the Radiological Society of North 
America Pneumonia Challenge (18). We assumed that studies 
published prior to these major events were highly unlikely to 
meet inclusion criteria.

Study Selection
We considered all studies that evaluated DL algorithms for per-
forming diagnostic classification using radiologic images as direct 
input. We selected only studies that included external validation 
of the final algorithm using an external data source from a facility 
or institution different from that used to develop the algorithm.

Our review focused on the task of diagnostic classification 
to limit heterogeneity of the included studies. Therefore, we ex-
cluded studies that involved tasks other than patient-level diag-
nostic classification (for example, image segmentation, worklist 
triage). For a similar reason, we also excluded studies that in-
volved nonimaging clinical features (for example, age, biomark-
ers, genomic data), methods other than DL for either feature ex-
traction or classification (for example, support vector machines), 
and feature extraction requiring an expert reader (for example, 
radiomic data). We excluded animal or phantom studies, review 
articles, and clinical applications outside of radiology.

Three physicians with 19 (J.E.), 4 (B.M.), and 1 (A.C.Y.) 
years of experience in conducting systematic reviews in radiology 
independently assessed titles and abstracts to identify potentially 
relevant articles for inclusion. The full text of potentially relevant 
articles was reviewed to identify those meeting inclusion criteria, 
if necessary. Discrepancies between the reviewers were resolved 
by consensus.

Abbreviations
AUC = area under the receiver operating characteristic curve, DL = 
deep learning

Summary
Published external validation studies of deep learning for radiologic 
diagnosis are infrequent, with the vast majority reporting diminished 
performance in the external dataset compared with the dataset used 
for algorithm development.

Key Points
	n Studies of deep learning algorithms for radiologic diagnosis in-

frequently include an external dataset, with our systematic review 
identifying 83 published studies that performed external valida-
tion over a 6-year period.

	n Nearly half of studies that performed external validation reported 
at least a modest decrease in external performance, with nearly a 
quarter reporting a substantial decrease.
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Meta-Analysis, Computer Applications–Detection/Diagnosis, Neural 
Networks, Computer Applications–General (Informatics), Epidemi-
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DL Algorithm External Validation
The median representative performance difference between de-
velopment and external data sources was –0.046, with a range 
of –0.60 to 0.13, and 81% (70 of 86) of studies reporting a 
negative difference (Fig 2). Forty-nine percent of studies (42 
of 86) demonstrated at least modestly lower external perfor-
mance, and 24% of studies (21 of 86) demonstrated substan-
tially lower external performance (Table 4). A few studies re-
ported higher performance with the external dataset than the 
one for development, including one study showing the AUC 
increased from 0.84 with the development test set to 0.97 with 
an external dataset (42).

We found no evidence of relationships between the results 
of external validation and the study characteristics we exam-
ined, using the representative performance difference between 
the development and external data sources as the measure of 
external validation. The study characteristics included body 
part, modality, conspicuity of imaging findings (major vs sub-
tle), composition of negative cases (normal vs other diagno-
ses), labeling method (direct vs natural language processing), 

disease prevalence were explored with the Spearman rank cor-
relation coefficient. The Wilcoxon signed rank test was used to 
compare paired covariates, such as development versus external 
dataset sizes. Statistical analysis was performed with the Stata 
package (version 17; StataCorp). A two-sided P value less than 
.05 was considered statistically significant.

Results

Search Results
A total of 6018 articles were screened, yielding 83 published 
articles that met inclusion criteria (2,19–100) (Fig 1). Three 
of the articles (2,31,68) each reported two major classification 
tasks being performed by separate algorithms. These three ad-
ditional tasks were treated as separate studies in the subsequent 
analysis, resulting in a total of 86 studies.

Study Characteristics
Characteristics of the included studies are shown in Tables 2 
and 3. The full table of extracted data is included in Table E1 
(supplement). The chest was by far the most common body 
part imaged for algorithm categorization (41 of 86 studies, 
48%), followed by the brain (14 of 86, 16%), bone (10 of 86, 
12%), abdomen (seven of 86, 8%), breast (five of 86, 6%), 
and others (Table E2 [supplement]). Almost three-quarters 
of studies involved either radiography or CT as the imaging 
modality. Only three studies implemented prospective data 
collection for either the development or external dataset, with 
two of these studies involving diagnosis of COVID-19 (56,94) 
and one involving thyroid cancer diagnosis (19). The dataset 
size and disease prevalence varied widely (Table 3). The sizes 
of the external datasets were statistically significantly smaller 
than those of the development datasets (P , .001, signed rank 
test). Multiple convolutional neural network architecture types 
were represented in the included studies, with ResNet being 
the most common.

Figure 1:  Diagram summarizing literature search and article selection.

Table 1: Main Extracted Data for Each Eligible Study

Item Value

Task characteristic
  Body part Chest, brain, bone
  Modality Radiography, CT, MRI, 

US
  Conspicuity of findings Major, subtle, imper-

ceptible
  All normal “negative” cases Yes, no
Labeling method NLP, expert reader
Deep learning architecture ResNet, Inception, VG-

GNet
Development included validation 

step
Yes, no

Dataset characteristic (index and 
external populations)

  Prospective data collection Yes, no
  Population size Numerical
  Proportion of “positive” cases Numerical
  No. of institutions Numerical
Performance measure (index and 

external populations)
AUC, sensitivity, speci-

ficity
Publication characteristic
  Bibliographic citation Text
  Adherence to quality guideline STARD, TRIPOD

Note.—Values for body part, modality, labeling method, deep 
learning architecture, performance measure, and publica-
tion characteristics are major examples. AUC = area under the 
receiver operating characteristic curve, NLP = natural language 
processing, STARD = Standards for Reporting of Diagnostic 
Accuracy Studies (102), TRIPOD = Transparent Reporting of 
a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (103), VGG = Visual Geometry Group.
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reasons for the limited number of external validation studies in-
clude the difficulty in obtaining an appropriate external dataset 

institutional diversity (single vs multiple institutions), popula-
tion size, disease prevalence, and presence of a validation step 
during algorithm development.

Study Quality
Only a small number of studies (11 of 86, 13%) stated ad-
herence to a reporting quality guideline. Six used the Nature 
Research Reporting Summary, a nonspecific guideline for re-
search (101); four used the Standards for Reporting of Diag-
nostic Accuracy Studies (ie, STARD) (102); and one used the 
Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (ie, TRIPOD) (103).

Discussion
In this systematic review of external validation of DL for radio-
logic diagnosis, we found that 81% of studies demonstrated at 
least some diminished performance in external datasets, with 
nearly half (49%) of studies reporting at least a modest dimi-
nution and nearly a quarter (24%) showing a substantial dimi-
nution. Balancing accuracy in a study population with that in 
the general population is a challenge not unique to machine 
learning research. This issue, also known as generalizability, has 
long been recognized and studied in clinical trials (104). In 
clinical trials, assessing generalizability can be done through 
a number of methods, such as comparing study and target 
population characteristics and statistical modeling (105–108). 
However, applying such methods to DL studies is problematic 
for two main reasons. First, DL studies seldom provide enough 
demographic or clinical information about the development 
dataset to allow assessment for potential selection or other bias. 
Second, the “black box” nature of DL algorithms means that 
the most important diagnostic features are usually unknown, 
making it difficult to assess whether these features could be 
subject to selection or other bias (12).

Among many hundreds of published DL algorithms for ra-
diologic diagnosis, our systematic 
review identified 83 published 
articles that reported algorithm 
performance on an external da-
taset. This finding corroborates a 
systematic review performed by 
Kim et al (16) that found that 
only 6% of artificial intelligence 
publications in medical imag-
ing included external validation. 
Similarly, Yao et al (109) found 
that only 16 of 155 studies (10%) 
in their systematic review of DL 
applications in neuroradiology 
included external validation, and 
Nguyen et al (110) found that 
one in eight studies (13%) in 
their systematic review of ma-
chine learning algorithms distin-
guishing glioblastoma multiforme from primary central nervous 
system lymphoma were tested in an external dataset. Potential 

Table 2: Characteristics of Included Studies

Study Characteristic No. of Studies (n = 86)

Body part
  Chest 41 (48)
  Not chest 45 (52)
Modality
  Radiography 27 (31)
  CT 37 (43)
  Other 22 (26)
Conspicuity
  Major 30 (35)
  Subtle 45 (52)
  Imperceptible 11 (13)
“Negative” cases all normal
  Yes 24 (28)
  No 62 (72)
Labeling generated by NLP
  Yes 9 (10)
  No 77 (90)
Development included validation step
  Yes 69 (80)
  No 17 (20)
Primary performance measure
  AUC 69 (80.2)
  Sensitivity and/or specificity 9 (10.5)
  Accuracy 5 (5.8)
  Free-response AUC 1 (1.1)
  F measure 2 (2.3)

Note.—Data in parentheses are percentages. AUC = area under 
the receiver operating characteristic curve, NLP = natural lan-
guage processing.

Table 3: Comparison of Development and External Data Sources in Included Studies

Characteristic
Development Data Sources
(n = 86)

External Data Sources
(n = 86)

No. of cases
  Median 1167 240
  Interquartile range 603–11 455 104–724
  Range 25–1 200 000 18–166 578
Prevalence of “positive” diagnosis 

(%)
  Median 37 47
  Interquartile range 23–54 26–53
  Range 1–96 1–100
Multi-institutional (%) 44 (38/86) 43 (37/86)

Note.—Data in parentheses are numerator/denominator.
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impact on external performance, suggesting that other factors 
may be involved.

An unexpected finding was that a few studies reported higher 
performance with the external dataset than the one for develop-
ment. Such a result might be naively interpreted as evidence that 
some algorithms are highly generalizable, but such a conclusion 
should be questioned. Because a machine learning algorithm’s 
“knowledge” is exclusively drawn from the development data-
set, a generalizable algorithm is expected to have similar, if not 
slightly lower, external performance compared with internal de-
velopment performance. Two potential causes of misleadingly 
high external performance should be considered. First, the ex-
ternal dataset might contain only images with heavily weighted 

of medical images and lack of awareness of external validation’s 
importance in establishing clinical value. These challenges may 
diminish as large public datasets become increasingly available 
and major journals begin supporting guidelines that highlight 
the importance of performing external validation (15,111,112).

DL algorithms derived from large datasets are expected to 
have greater generalizability, as larger datasets are more likely to 
include a broader feature distribution than smaller datasets. In-
deed, prior studies of DL algorithms for nonclassification tasks 
in medical imaging found that larger, multi-institutional de-
velopment datasets led to improved generalizability (113,114). 
In contrast, we did not find the size or number of institutions 
in the development dataset to have a statistically significant 

Figure 2:  Plot of representative diagnostic performance difference between external and development datasets. The 
three most common imaging modalities and body parts are indicated. AUC = area under the receiver operating characteris-
tic curve, BO = bone, BR = brain, CH = chest, XR = radiography.
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features responsible for correct classification and not be repre-
sentative of a realistic target population. Second, the image data 
might contain information about the diagnosis that is unrelated 
to the disease process, such as a radiography marker or “burned-
in” text in the images. In machine learning, this unintentional 
information is known as data leakage (115) and is analogous 
to the epidemiologic concept of a confounding variable. Inter-
pretability techniques such as image embedding and activation 
maps can help identify data leakage. In the study with the most 
dramatic external performance increase (42) in our review, the 
authors found that the external dataset, which was a publicly 
available breast US dataset, contained very straightforward ex-
amples and possibly only contained heavily weighted features.

Limitations
Our systematic review had several limitations. First and most 
evident was the heterogeneity of the reviewed studies, especially 
with respect to body part, imaging modality, disease of interest, 
diagnostic complexity, and performance measures. Heterogene-
ity in performance measures includes their inherent sources of 
variation, such as the dependence of sensitivity and specificity on 
the reader’s interpretation threshold. It is reasonable to suspect 
additional, potentially substantial heterogeneity with respect to 
imaging equipment, technique, and protocols, as these details 
were almost always missing from the reviewed studies. Conse-
quently, the overall heterogeneity of included studies precluded 
quantitative pooling of study results and limited the statistical 
power of any subgroup comparisons. It is also possible, however, 
that population and task heterogeneity among medical imaging 
applications of DL may not be as important as we envision, as 
many commonly used DL algorithms already originated from 
tasks outside of medical imaging.

Second, to limit heterogeneity, we focused on a specific type 
of machine learning and classification task, excluding major 
areas such as support vector machines, random forests, image 
segmentation, feature analysis, and image reconstruction. There-
fore, our results do not necessarily apply to these other impor-
tant areas of machine learning. Future systematic reviews should 
be dedicated to external validation of these algorithm types and 
radiologic applications.

Third, most of the reviewed studies were focused on 
technical development and provided little methodological 

information or clinical description about the datasets and 
participant populations that were involved, as evidenced by 
the infrequent use of reporting quality guidelines. Because 
of this serious limitation in the literature, we were unable to 
perform a systematic, meaningful assessment of the quality 
of the reviewed studies and their risk of bias using standard-
ized reporting guidelines (15). The limited methodological 
and clinical information also reduces the chance of detecting 
confounding variables associated with dataset and population 
characteristics. Quality assessment tools like the widely used 
Quality Assessment of Diagnostic Accuracy Studies 2 (ie, 
QUADAS-2) (116) may be limited because they are validated 
for study results derived from a single population, unlike the 
population comparisons sought in our review. Last, we rec-
ognize that our systematic review was subject to potentially 
large publication bias, likely leading us to overestimate the 
summary performance of algorithms in external validation 
studies meeting our selection criteria.

Future Directions
The specific causes of diminished DL algorithm performance 
on external datasets are largely unknown. Questions remain 
about what features are actually important for correct diag-
nosis by machine learning algorithms (117–119), how these 
features may be biased in datasets, and how external validation 
is affected. A better understanding of these questions will be 
necessary before diagnostic machine learning systems achieve 
routine clinical radiology practice.

We found that substantial improvement is needed in pub-
lished descriptions of populations from which DL datasets are 
derived. These improvements are necessary to allow meaningful 
assessment of study quality and generalizability.

Conclusion
In conclusion, our systematic review found that the vast ma-
jority of external validation studies demonstrated diminished 
algorithm performance on an external dataset, some reporting 
a substantial performance decrease. Our findings stress the im-
portance of including an external dataset to evaluate the gener-
alizability of DL algorithms, which would improve the quality 
of future DL studies.
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