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SUMMARY

Several infections have been linked to telomere shortening and in some cases these associations
have varied by sex. We assessed the association between seropositivity to four persistent
pathogens (cytomegalovirus (CMV), herpes simplex virus-1, Helicobacter pylori, Chlamydia
pneumoniae), and total pathogen burden on leukocyte telomere length in a diverse US sample.
Data came from the Multi-Ethnic Study of Atherosclerosis, a population-based cohort study.
We utilized cross-sectional survey data, and biological samples from participants tested for
pathogens and telomere length (N= 163). Linear regression was used to examine the association
between seropositivity for individual pathogens as well as total pathogen burden and telomere
length, adjusting for various confounders. CMV seropositivity and increased total pathogen burden
level were significantly associated with shorter telomere length among females (β=−0·1204
(standard error (S.E.) 0·06), P= 0·044) and (β=−0·1057 (S.E. = 0·05), P= 0·033), respectively. There
was no statistically significant association among males. Our findings suggest that prevention or
treatment of persistent pathogens, in particular CMV, may play an important role in reducing
telomere shortening over the life course among women. Future research is needed to confirm these
novel findings in larger longitudinal samples.

Key words: Chlamydia pneumonia, cytomegalovirus, Helicobacter pylori, herpes simplex virus,
pathogen burden, telomere.

INTRODUCTION

The mechanisms underlying inter-individual vari-
ation in telomere length are not well understood.

Telomeres are the nucleoprotein ends of chromo-
somes that function to protect chromosome ends
from degradation or fusion and they shorten each
time a cell divides, while the enzyme telomerase reg-
ulates the elongation process [1]. The process of telo-
mere shortening has important health implications
as reduced leukocyte telomere length has been linked
to many chronic diseases of aging including
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cardiovascular disease and some cancers [2–5], as
well as all-cause mortality [6].

Some preliminary studies have suggested that per-
sistent herpesvirus infections, such as cytomegalovirus
(CMV), and persistent bacterial infections including
Helicobacter pylori (H. pylori) and Chlamydia pneu-
moniae (C. pneumoniae) may influence telomere length
[7–9]. The mechanisms implicated are common across
these pathogens, including induction of inflammation,
generation of reactive oxygen species, and auto-
immune changes – all of which may influence cellular
machinery and ultimately telomere length [10].

Given that numerous persistent pathogens may
contribute to physiologic processes related to telomere
shortening, the total number of pathogens to which
individuals have been exposed in their lifetime (i.e.
total pathogen burden), may also play an important
role in predicting telomere length. To our knowledge,
no studies have examined the association between
total pathogen burden and leukocyte telomere length.

It has been well established that female sex hor-
mones influence telomere dynamics [11, 12]. At the
same time, there is evidence that infectious disease sus-
ceptibility and immune response differ by sex, which
may partly be driven by hormonal differences or gen-
der disparate exposures, such as child care [13, 14]. In
addition, previous work has shown an association
between CMV infection and lower telomerase, an
enzyme that helps maintain telomere length, in
women but not in men [9]. Therefore, it is possible
that sex (and/or gender) may modify the influence of
pathogen burden on telomere length.

To address the gaps in research linking infections to
telomere length in humans and potential variability in
these associations by sex, we examined the association
between seropositivity to four persistent pathogens
(CMV, herpes simplex virus (HSV)-1, H. pylori and
C. pneumoniae) as well as total pathogen burden and
leukocyte telomere length among a sample of men
and women participating in the Multi-Ethnic Study
of Atherosclerosis (MESA).

METHODS

Study population

MESA is a longitudinal, US multi-site study of 6814
participants ages 45–84 who were recruited from six
US communities, were free of clinical cardiovascular
disease at the time of the baseline visit from July
2000 to September 2002, and who identified

themselves as white, black, Hispanic, or Chinese
[15]. All individuals were tested for C. pneumoniae
and a subset of 1000 participants were randomly
selected from the baseline cohort for serotesting for
CMV, HSV-1 and H. pylori, 999 of which had com-
plete information on serostatus for all four pathogens
[16]. Telomeres were assessed on a random subsample
of approximately 1000 white, black, and Hispanic
participants who agreed to participate in an ancillary
study examining the effects of stress on cardiovascular
outcomes (i.e. The MESA Stress Study) [17]. In total,
163 participants with overlapping data on pathogens
and telomere length were included in the present
study, which was reviewed by the Institutional
Review Board of the University of Michigan and at
each MESA site.

Measures

Exposures

Serum IgG antibodies to CMV, HSV-1, and H. pylori
were detected using commercially available kits,
employing an indirect enzyme immunoassay
(DiaMedex Corp., Miami, Florida, USA). The sensi-
tivity and specificity of the tests ranged from 94% to
100% (DiaMedex Corp). IgG antibodies to C. pneu-
moniae were detected using a microimmunofloures-
cent antibody assay (Focus Technologies, Cypress,
California, USA). Serum IgG antibodies for each
pathogen were treated as continuous or dichotomized
according to the below cutoff values. Individuals were
classified as CMV seronegative, equivocal, or sero-
positive if values were <8·0, between 8·0 and 9·0, or
10·0+ ELISA Units (EU)/ml, respectively. Cutoff
values for being classified as HSV-1 seronegative,
equivocal, and seropositive were <16·0, 16·0–19·9,
and 20·0+ EU/ml, respectively. For H. pylori, EU/ml
values of <0·90 were classified as negative, 0·90–1·09
as equivocal, and 51·10 as positive. All individuals
with equivocal values (CMV; N= 0, HSV-1; N= 0,
H. pylori; N= 6, C. pneumoniae; N= 0) were categor-
ized as seropositive. Total pathogen burden level was
constructed by summing the number of pathogens for
which individuals were seropositive and then dichot-
omizing individuals into low/reference group (sero-
positive for 0–2 pathogens) and high (seropositive
for 3–4 pathogens) total pathogen burden level.
These cut points were based on prior literature and
the need to ensure adequate sample size among the
reference group (low category) [18, 19].
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Outcome

Leukocyte telomere length was measured by quantita-
tive polymerase chain reaction (Q-PCR) performed
using DNA isolated from purified leukocytes [20]. A
four-point standard curve (twofold serial dilutions
from 10 to 1·25 ng DNA) was used to transform
cycle threshold into nanograms of DNA. Baseline
background subtraction was performed by aligning
amplification plots to a baseline height of 2% in the
first five cycles. The cycle threshold was set at 20% of
maximum product. All samples were run in triplicate,
and the median was used for calculations. The amount
of telomeric DNA (T) was divided by the amount of
single-copy control gene (36B4) DNA (S), producing
a normalized measurement of leukocyte telomere
length (T/S ratio). Two control samples were run in
each experiment to allow for normalization between
experiments, and periodical reproducibility experi-
ments were performed to guarantee correct measure-
ments. The intra-assay and inter-assay coefficient of
variability for Q-PCR was 6% and 7%, respectively.
Leukocyte telomere length was treated as continuous.

Covariates

Socio-demographic, behavioral, and clinical informa-
tion was collected via questionnaire at baseline.
Demographic covariates for which data were collected
and were hypothesized to be potential confounders of
interest included age, sex, race/ethnicity, and socio-
economic status. Race/ethnicity was self-reported as
non-Hispanic black, Hispanic, and non-Hispanic
white. Annual family income was categorized as <US
$25 000, $25 000–$50 000, and >$50 000 and education
level was categorized as high school or less; some college
(including Associate’s Degree or technical school); or
bachelor’s or graduate degree. In addition, hypothesized
behavioral and clinical confounders were pack-years of
smoking (the number of packs of cigarettes smoked per
day times the number of years the person reporting
smoking), body mass index (BMI) (kg/m2) calculated
from measured weight and height, and diabetes history.
Diabetes history was assessed according to the 2003
American Diabetes Association criteria and categorized
as normal, impaired fasting glucose (IFG), untreated
diabetes, or treated diabetes [21, 22].

Statistical analysis

We first examined the association between seropositiv-
ity for individual pathogens as well as total pathogen

burden and covariates of interest. For continuous,
normally distributed characteristics (i.e. leukocyte
telomere length and BMI), t tests were used to detect
statistically significant differences for mean values
between groups. For continuous, but not normally
distributed characteristics (i.e. age and pack-years of
smoking) Wilcoxon rank-sum tests were performed
and medians and interquartile ranges (IQRs) were
estimated for each group. Fisher’s exact tests were
used to test for significant differences in proportions
for categorical characteristics to accommodate small
cell sizes.

We used linear regression to first estimate the asso-
ciation between seropositivity for each individual
pathogen and telomere length adjusting for age, sex,
race/ethnicity, and education level. Next, we addition-
ally adjusted for pack-years of smoking, BMI (kg/m2),
and diabetes history. Analogous models were run for
the association between total pathogen burden and
telomere length. We repeated all models stratified by
sex and also ran models including an interaction
term between sex and the primary exposure (i.e.
pathogen seropositivity or total pathogen burden).
Analyses were performed using PROC MIXED in
SAS to adjust for clustering by MESA sites (SAS
Institute Inc., Cary, North Carolina, USA).

RESULTS

Table 1 shows the demographic and health character-
istics of our study population by pathogen burden
level. A higher proportion of blacks, participants
with lower education, pack-years of smoking, and
hormone use were associated with higher pathogen
burden. The unadjusted associations between partici-
pant characteristics and telomere length are shown
in Table 2. In the full sample, individuals seropositive
to CMV, HSV-1, and C. pneumonia as well as those
with high pathogen burden had shorter mean telomere
lengths than those who were seronegative to these
pathogens or had low total pathogen burden, respect-
ively, but no statistically significant associations were
observed. Of the other covariates of interest, only
increased age was statistically significantly associated
with shorter telomere length (β =−0·0029 (standard
error, S.E. = 0·0014), P-value 0·0400). Among females,
increased pack-years of smoking was statistically sign-
ificantly associated with shorter telomere length
(β =−0·0041 (S.E. = 0·0018), P-value 0·025), and
there was a marginally statistically significant associ-
ation between increasing BMI (kg/m2) (β=−0·0045
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(S.E. = 0·0025), P-value = 0·068), CMV seropositivity
(β=−0·0998 (S.E. = 0·0548), P-value 0·0720) and
shorter telomere length. Among males, the only cov-
ariate that was statistically significantly associated
with shorter telomere length was education level,
with individuals with some college education having
statistically significantly shorter telomere length than
those that completed high school/GED or less (β =−
0·1282 (S.E. = 0·0496), P-value = 0·012).

Table 3 shows the covariate-adjusted associations
between pathogen seropositivity as well as total patho-
gen burden level and telomere length among the total
sample and stratified by sex. Among the full sample,
there were no statistically significant associations
between seropositivity for individual pathogens or
total pathogen burden level and telomere length. In
stratified models, however, there was a statistically

significant association between CMV seropositivity
and telomere length among women after adjusting for
age, race/ethnicity, education level, pack-years of
smoking, BMI (kg/m2), and diabetes history (β=−
0·1204 (S.E. = 0·06), P-value = 0·044). Higher total
pathogen burden level was also statistically signifi-
cantly associated with shorter telomere length among
women only (β=−0·1057 (S.E. = 0·05), P-value =
0·033) in the fully adjusted model. There was a margin-
ally statistically significant interaction between CMV
seropositivity and sex (P= 0·08) and between total
pathogen burden level and sex (P= 0·11).

DISCUSSION

To our knowledge, this is the first study to examine
the association between seropositivity for a wide

Table 1. Selected characteristics of the Multi-Ethnic Study of Atherosclerosis (MESA) study sample by pathogen
burden level

Mean (S.E.)a, median (IQR)b, or N (%)c

P-value
Low pathogen burden
(N = 34)

High pathogen burden
(N= 129)

Telomere lengtha 0·917 (0·159) 0·900 (0·166) 0·6
Age in yearsb 58 (50–66) 55 (51–63) 0·472
Sexc

Female 17 (50) 83 (64·3) 0·127
Male 17 (50) 46 (35·7)

Race/ethnicityc

White 17 (50) 18 (14) <0·001
Black 3 (8·8) 38 (29·5)
Hispanic 14 (41·2) 73 (56·6)

Educationc

Complete HS/GED or less 5 (14·7) 68 (52·7) <0·001
Some college 14 (41·2) 39 (30·2)
Bachelor’s Degree or more 15 (44·1) 22 (17·1)

Incomec

<$5000–$24 999 7 (20·6) 40 (32·8) 0·063
$25 000–$49 999 10 (29·4) 47 (38·5)
$50 000–$100 000+ 17 (50) 35 (28·7)

Pack-years of smokingb 4·3 (0–15·0) 0 (0–3·8) 0·005
BMI (kg/m2)a 28·1 (5·8) 29·1 (5·5) 0·351
Diabetes mellitusc

Normal 28 (82·4) 104 (80·6) 0·717
IFG 2 (5·9) 13 (10·1)
Untreated/treated DM 4 (11·8) 12 (9·3)

Hormone medication usec

No 23 (67·7) 106 (82·8) 0·051
Yes 11 (32·4) 22 (17·2)

aT test (mean and S.E. displayed).
bWilcoxon rank-sum test (median and IQR displayed).
c Fisher’s exact test (n and % displayed).
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array of persistent pathogens as well as total patho-
gen burden and telomere length. We identified a
stronger association between CMV seropositivity
as well as higher total pathogen burden level and
telomere length among females compared with
males, suggesting a sex-specific association of per-
sistent pathogens on telomere shortening. Taken
together, seropositivity for persistent pathogens

may be a particularly salient risk factor for cellular
aging among women.

Few studies have examined the association between
individual persistent pathogens and leukocyte telo-
mere length [4, 23–25]. Van de Berg et al. showed
that CMV seropositivity was associated with T-cell
telomere shortening in a cohort of 159 healthy volun-
teers 20–95 years of age and attributed this finding to

Table 2. Mean difference in leukocyte telomere length for selected characteristics of the Multi-Ethnic Study of
Atherosclerosis (MESA) study sample, overall and stratified by gender

Total sample (n= 163) Female (n= 100) Male (n= 63)

Mean diff. (S.E.) P-value Mean diff. (S.E.) P-value Mean diff. (S.E.) P-value

Age in years −0·0029 (0·0014) 0·04 −0·0030 (0·0018) 0·094 −0·0028 (0·0023) 0·23
Sex

Male REF
Female 0·0118 (0·0265) 0·656

Race/ethnicity
White REF REF REF
Black −0·0167 (0·0381) 0·662 −0·0350 (0·0482) 0·47 0·0270 (0·0622) 0·666
Hispanic −0·0123 (0·0331) 0·712 0·0234 (0·0430) 0·587 −0·0673 (0·0517) 0·198

Education
Complete HS/GED or less REF REF REF
Some college −0·0450 (0·0297) 0·131 0·0056 (0·0368) 0·878 −0·1282 (0·0496) 0·012
Bachelor’s Degree or more −0·0213 (0·0332) 0·521 0·0108 (0·0425) 0·8 −0·0754 (0·0533) 0·162

Income
<$5000–$24 999 0·0233 (0·0334) 0·486 −0·0087 (0·0426) 0·838 0·0611 (0·0597) 0·311
$25 000–$49 999 0·0030 (0·0319) 0·926 −0·0290 (0·0417) 0·488 0·0370 (0·0529) 0·488
$50 000–$100 000+ REF REF REF

Pack-years of smoking −0·0009 (0·0011) 0·387 −0·0041 (0·0018) 0·025 0·0007 (0·0014) 0·605
BMI (kg/m2) −0·0030 (0·0023) 0·196 −0·0045 (0·0025) 0·068 0·0029 (0·0059) 0·619
Diabetes mellitus

Normal REF REF REF
IFG −0·0125 (0·0450) 0·781 −0·0138 (0·0593) 0·816 −0·0066 (0·0701) 0·926
Untreated/treated DM 0·0396 (0·0437) 0·366 −0·0066 (0·0537) 0·902 0·1164 (0·0751) 0·127

Hormone medication use
No REF REF REF
Yes 0·0195 (0·0322) 0·547 0·0249 (0·0342) 0·469 −0·1853 (0·1757) 0·296

Pathogen burden
Low (0–2) REF REF REF
High (3–4) −0·0167 (0·0318) 0·6 −0·0567 (0·0421) 0·181 0·0245 (0·0498) 0·624

CMV serostatus
Negative REF REF REF
Positive −0·0267 (0·0352) 0·449 −0·0998 (0·0548) 0·072 0·0121 (0·0499) 0·809

HSV serostatus
Negative REF REF REF
Positive −0·0095 (0·0461) 0·836 −0·1058 (0·0807) 0·193 0·0273 (0·0605) 0·654

Helicobacter pylori serostatus
Negative REF REF REF
Positive 0·0087 (0·0269) 0·747 0·0139 (0·0334) 0·679 −0·0002 (0·0456) 0·997

Chlamydia pneumoniae serostatus
Negative REF REF REF
Positive −0·0393 (0·0285) 0·17 −0·0635 (0·0330) 0·058 0·0199 (0·0564) 0·725

S.E., standard error.
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Table 3. Covariate-adjusted association between pathogen serostatus, pathogen burden, and leukocyte telomere length, overall and stratified by gender

Total sample (N = 163) Women (N = 100)c Men (N = 63)c

Model 1a Model 2b Model 1a Model 2b Model 1a Model 2b

N β (S.E.) P-value β (S.E.) P-value N β (S.E.) P-value β (S.E.) P-value N β (S.E.) P-value β (S.E.) P-value

CMV
Negative 26 REF REF 9 REF REF 17 REF REF
Positive 137 −0·0400

(0·04)
0·291 −0·0377

(0·04)
0·323 91 −0·1209

(0·06)
0·042 −0·1204

(0·06)
0·044 46 −0·0039

(0·05)
0·940 −0·0112

(0·05)
0·827

HSV-1
Negative 14 REF REF 4 REF REF 10 REF REF
Positive 149 −0·0038

(0·05)
0·938 0·0008 (0·05) 0·987 96 −0·1034

(0·0820)
0·211 −0·1057

(0·08)
0·211 53 0·0389

(0·06)
0·537 0·0498

(0·06)
0·416

Helicobacter
pylori
Negative 59 REF REF 35 REF REF 24 REF REF
Positive 104 −0·0039

(0·03)
0·890 −0·0108

(0·03)
0·706 65 0·0042

(0·04)
0·909 −0·0156

(0·04)
0·683 39 0·0064

(0·04)
0·883 −0·0132

(0·04)
0·761

Chlamydia
pneumonia
Negative 46 REF REF 34 REF REF 12 REF REF
Positive 117 −0·0470

(0·03)
0·121 −0·0412

(0·03)
0·182 66 −0·0469

(0·04)
0·190 −0·0495

(0·04)
0·178 51 −0·0271

(0·05)
0·617 0·0011

(0·05)
0·984

Pathogen burden
0–2 34 REF REF 17 REF REF 17 REF REF
3–4 129 −0·0354

(0·04)
0·314 −0·0367

(0·0354)
0·301 83 −0·0648

(0·05)
0·163 −0·1057

(0·05)
0·033 46 0·0095

(0·05)
0·858 0·0091

(0·05)
0·859

a Adjusted for age, race/ethnicity, sex, education level.
b Adjusted for age, race/ethnicity, sex, education level, pack-years of smoking, BMI (kg/m2), and diabetes history.
c Sex was not included in the sex-stratified model.
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CMV seropositive individuals having increased pro-
portions of highly differentiated CD4+ and CD8+ T
cells [26]. A similar study by Dowd et al. found no
association between CMV seropositivity or IgG anti-
body level and telomere length among 434 adult
men and women in the Whitehall II cohort [9].
However, similar to our findings, Dowd et al.
observed a statistically significant inverse association
between CMV seropositivity as well as elevated
CMV IgG antibody level and telomerase activity
among females compared with males [9]. We are
aware of only one study conducted among a clinical
population that has examined the association between
H. pylori and leukocyte telomere length [4]. In a case–
control study of gastric cancer conducted among 300
cases and 416 age- and sex-matched controls in
Poland, Hou et al. found among controls that H. pyl-
ori seropositivity was statistically significantly asso-
ciated with shorter telomere length in peripheral
leukocyte DNA [4]. In another study Aslan et al.
assessed change in gastric mucosal tissue telomere
length and telomerase activity before and after H. pyl-
ori eradication treatment among 21 H. pylori-infected
individuals, finding a statistically significant increase
in telomere length in gastric mucosa after treatment
[27]. While H. pylori seropositivity was associated
with shorter leukocyte telomere length in our study,
the association did not reach statistical significance
possibly due to limited statistical power in our sample.

To our knowledge, no other studies have examined
the relationship between HSV-1, C. pneumoniae sero-
positivity nor pathogen burden and leukocyte telo-
mere length. While we did not observe an
association between these less well-studied individual
pathogens and telomere shortening in the total sam-
ple, we did find that increased total pathogen burden
level was statistically significantly associated with
shorter telomere length among women. Given the
association between pathogen burden and telomere
length identified here, our findings suggest that there
may be a cumulative impact of increased total patho-
gen burden on telomere shortening, particularly
among women. Further research assessing the
mechanisms by which pathogen burden may influence
telomere shortening and differences in these associa-
tions by sex is warranted.

Interestingly, while the severity and prevalence of
most viruses is higher among males, Herpesviridae
family viruses, including CMV, Human Herpes
Virus Type 6 (HHV-6), Human Herpes Virus Type
7 (HHV-7), Varicella Zoster Virus (VZV) and

HSV-2 appear to be exceptions [28, 29]. Some have
suggested that sex hormones and chromosomes under-
lie these differences. For example, the female sex hor-
mone estrogen serves to enhance T-cell-mediated
immune processes, potentially via the presence of the
estrogen response element in the promoters of many
of the upregulated inflammation genes [30]. In vitro
studies suggest that estradiol may trigger the reactiva-
tion of CMV and cervical shedding of CMV has been
shown to increase during the luteal phase of the men-
strual cycle and in later stages of pregnancy – both of
which are dominated by progesterone production [31–
33]. Together, these hormone-driven differences in
immunity and maintenance of latency may be respon-
sible for the observations in population-based studies
that women are not only more likely to be seropositive
for CMV but to also have elevated levels of circulating
CMV IgG antibodies, compared with men [34, 35].
Given the well-established effects of female sex hor-
mones on telomere dynamics, further research exam-
ining this shared pathway is warranted [11, 12].
Furthermore, future studies should aim to elucidate
the biological mechanisms by which exposure to mul-
tiple persistent pathogens over the life course may be
particularly detrimental for telomere shortening
among women.

There are several reasons why CMV, more so than
other pathogens, may contribute to telomere shorten-
ing. CMV contributes to oligoclonal T-cell expansion
resulting in the accumulation of highly differentiated
late-stage CD8+ T cells specific for CMV [36]. For
this reason, CMV in particular, may be an important
driver of replicative senescence within the T-cell com-
partment, particularly among those who undergo
more frequent subclinical reactivation over time [37].
The pathogen-specific interaction of CMV with the
stress hormone cortisol – shown to inhibit telomerase
activity in CD4 and CD8 T cells [38] –may also explain
why CMV, more so than other pathogens, contributes
to telomere shortening. For example, CMV can infect
and replicate in human adrenocortical cells, thereby
triggering steroidogenesis [39]. Moreover, there are
many CMV strains and individuals can be re-infected
throughout the course of their lifetime [40–42].
However, much of the incidence of infection occurs
early in life and therefore it is unlikely that new
CMV infection fully explains our results [43].

This study has several limitations. Given the lack of
overlap of those tested for both telomere length and
pathogen seropositivity among participants in
MESA, our sample size was limited (n = 163), and
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may have reduced our ability to detect statistically
significant associations and sex-specific interactions.
Given that coefficients were consistently in the
expected direction in the overall sample with pathogen
seropositivity and higher total pathogen burden pre-
dicting shorter leukocyte telomere length, further ana-
lysis with larger samples are warranted. The
cross-sectional nature of our study did not permit
assessment of the timing of initial infection nor the
effect of pathogen seropositivity and total pathogen
burden on changes in telomere length over time.
Additionally, measurement of the shortest telomere
and telomere uncapping have been suggested as more
accurate measures of senescence, but these methods
have not been widely adopted in epidemiological stud-
ies because of the expense related to conducting these
assays on a large scale [3, 44]. Nonetheless, to our
knowledge, our study represents the largest study to
date to examine the association between multiple
persistent pathogens and leukocyte telomere length.

Overall, our study confirms earlier findings, which
suggest that CMV seropositivity may play an import-
ant role in telomere shortening, particularly among
women and moreover, some evidence that there may
be a cumulative effect of exposure to CMV in the pres-
ence of other persistent pathogens on telomere length.
Our results suggest that if persistent pathogens are
causally related to telomere shortening, treatments to
manage reactivation or prevent infection through the
development of vaccinations may serve to decrease
telomere attrition across the life course. Future
research corroborating these findings in larger
population-based studies is therefore warranted.
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