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Abstract

Hypoglycemia is a common occurrence in critically ill patients and is associated with significant 

mortality and morbidity. We developed a machine learning model to predict hypoglycemia 

by using a multicenter intensive care unit (ICU) electronic health record dataset. Machine 

learning algorithms were trained and tested on patient data from the publicly available eICU 

Collaborative Research Database. Forty-four features including patient demographics, laboratory 

test results, medications, and vitals sign recordings were considered. The outcome of interest 

was the occurrence of a hypoglycemic event (blood glucose < 72 mg/dL) during a patient’s ICU 

stay. Machine learning models used data prior to the second hour of the ICU stay to predict 

hypoglycemic outcome. Data from 61,575 patients who underwent 82,479 admissions at 199 

hospitals were considered in the study. The best-performing predictive model was the eXtreme 

gradient boosting model (XGBoost), which achieved an area under the received operating curve 

(AUROC) of 0.85, a sensitivity of 0.76, and a specificity of 0.76. The machine learning model 

developed has strong discrimination and calibration for the prediction of hypoglycemia in ICU 

patients. Prospective trials of these models are required to evaluate their clinical utility in averting 

hypoglycemia within critically ill patient populations.
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1 Introduction

Hypoglycemia is common in hospitalized patients and has been linked to serious adverse 

events and mortality [1]. Both severe and moderate hypoglycemia are associated with 

increased risk of neurological impairment, cardiac arrhythmia, ischemia, stroke, seizures, 

and death [2–4]. Recent studies have found that hypoglycemia is common in critically 

ill patient populations, with an incidence between 10.1 and 45% [1, 5]. Furthermore, 

a retrospective analysis of US inpatient electronic health records (EHR) revealed that 

hypoglycemia was associated with a 66% increase in mortality risk and a 50% increase 

in length of hospitalization [6].

There is a clear impetus to reduce inpatient hypoglycemia. One strategy to prevent 

hypoglycemic episodes is to develop prediction tools that provide individualized risk scores. 

If a patient is deemed at high-risk for hypoglycemia, clinicians can provide appropriate 

interventions to reduce the likelihood of a hypoglycemic event, such as foregoing the use of 

insulin sliding scale among those at highest risk and increasing blood sugar thresholds for 

the sliding scale for those with modest risk.

In the last five years, several models which predict hypoglycemia within hospitalized 

patients have been developed using EHR datasets [7–11]. However, all previous studies 

have only predicted hypoglycemia among non-critically ill adult patients and have trained on 

data from a single hospital. Furthermore, previous studies used generalized linear modeling 

to predict hypoglycemic events and achieved only modest predictive power.

In this study, we aimed to develop and validate more complex machine learning models 

to predict the risk of hypoglycemia by using a large, multicenter intensive care unit (ICU) 

database.

2 Methods

2.1 Data set

The eICU Collaborative Research v2.0 database (eICU-CRD) was used for this study. The 

Philips eICU program is an integrated electronic medical record and analytics system that 

is deployed in hospitals across the United States. The Philips eICU Research Institute 

in partnership with the MIT Laboratory for Computational Physiology has previously 

developed and published the eICU-CRD, which is a de-identified, publicly-available 

multicenter critical care database [12]. It holds data for 200,859 admissions which represent 

139,367 patient stays in 335 ICUs across the United States and is openly accessible 

at http://eicu-crd.mit.edu/. This database contains information on patient demographics, 

diagnoses, labs, vitals, medications administered throughout each patient’s ICU stay. 

The eICU-CRD was certified as de-identified and met Safe Harbor standards by an 

independent privacy expert (Privacert, Cambridge, Massachusetts, USA) (Health Insurance 
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Portability and Accountability Act Certification No. 1031219-2). The eICU-CRD database 

has previously received ethical approval from the Institutional Review Boards of their 

hosting organizations. Since the database does not contain any personally identifiable 

or protected health information, a waiver for the requirement for informed consent was 

included in the IRB approval.

All patients within the eICU-CRD who had at least two blood glucose readings during their 

ICU stay were included in the study cohort. This inclusion criterion was applied across 

the entire multicenter dataset, regardless of the hospital where each patient was admitted. 

Patient demographics and prior diagnoses collected upon ICU admission were extracted. 

All laboratory values, vital sign recordings, and medication data from the first 2 h of each 

patient’s ICU stay were extracted from the dataset as well.

2.2 Outcome variable

The outcome of interest was the occurrence of a hypoglycemic event during a patient’s ICU 

stay. Hypoglycemia was defined as a blood glucose reading lower than 4 mmol/L (72.01 

mg/dL), which is a standard cutoff used previously to define hypoglycemia [8, 9].

The outcome variable was binary. A label of 1 was assigned when a patient had any 

hypoglycemic event from 2 h after their ICU admission to the end of their ICU stay. If a 

patient did not have any hypoglycemic events during this period, the outcome variable was 

set to 0.

2.3 Predictor variables

A total of 44 candidate predictors were considered. These predictors included patient 

demographics (gender, age, ethnicity), diagnoses (diabetes, heart disease, kidney injury, 

etc.), laboratory results (sodium, albumin, creatinine, etc.), vital sign recordings (blood 

pressure, temperature, heart rate, etc.), and medications administered (insulin, dextrose, 

etc.). A detailed list of the predictor variables and their missingness is available in Table S1.

For all the laboratory results and vital sign recordings, the mean value of the variable prior to 

the second hour of the patient’s ICU stay was used as the predictor variable. The coefficient 

of variation of the blood glucose readings prior to the second hour was also used as a 

predictor variable. Additionally, the predictor variable associated with each medication was 

binary and was set to 1 if the patient was administered the medication within the first 2 h of 

ICU admission, otherwise it was set to 0.

Predictors which had missing entries over 40% were removed; the total serum protein, 

folate, triglycerides, lactate dehydrogenase, c-reactive protein, and bicarbonate were thus 

dropped. Missing data for all other features were determined using a 4-h fill-forward 

imputation or KNN-based imputation. The area under the receiver operating curve 

(AUROC) for the models trained on the KNN-imputed dataset and the 4-h fill-forward 

dataset differed by less than 1%, but the KNN method was ultimately chosen as it is 

considered more robust [13].
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2.4 Statistical analysis and modeling

The patient cohort was randomly split into an 80% training/validation set and 20% testing 

set. A total of 15 different machine learning models were evaluated to predict hypoglycemia 

as shown in Table S2.

Each model was initially trained and evaluated using tenfold cross validation on the training/

validation subset. The model with the highest AUROC was chosen for further development. 

The best predictive power was achieved with the eXtreme Gradient Boosting (XGBoost) 

algorithm [14].

A backwards stepwise feature selection algorithm was used to identify the 10 most 

important features for the XGBoost model (Fig. S1). An exhaustive grid search strategy 

was performed to identify the best-performing hyperparameters (e.g., tree depth, number 

of nodes, etc.). The continuous predicted output (ŷ) of each model was transformed into 

a binary output (0 or 1) by using a decision threshold (γ). A continuous output was 

transformed to 1 (patient is predicted to be hypoglycemic) if ŷ ≥ γ, otherwise it was labeled 

as 0 (patient is predicted to be non-hypoglycemic). In this study, the value of γ was selected 

to maximize the sum of sensitivity and specificity on the training dataset.

Finally, the XGBoost model was evaluated on the test dataset, and the model predictions 

were used to generate the AUROC plots. As the dataset is class-imbalanced, with the 

majority of patients being non-hypoglycemic, the sensitivity, specificity, and precision 

metrics were also computed to appropriately assess model performance. Model calibration 

was evaluated by building a reliability diagram and plotting the model-predicted probability 

of hypoglycemia against the observed probability in 10 discrete bins [15].

Models were developed using in Python 3.6 with widely used data science modules (pandas 

[16], numpy [17], tableone [18], and scikit-learn [19]). All data pre-processing, modeling, 

visualization, and analysis were performed with these modules. The code is publicly 

available at www.github.com/SreekarMantena/hypoglycemia-modeling.

3 Results

3.1 Patient cohort

In this study, data from 69,736 patients (38,121 males, 31,615 females) was analyzed.

These patients underwent 82,479 hospital admissions in 199 hospitals in the US. A total of 

118,380 patient admissions were excluded from the study cohort because they had fewer 

than two blood glucose readings, as shown in Fig. 1.

The incidence of hypoglycemia (blood glucose <4 mmol/L) was 19.9% in the study cohort. 

This is similar to the prevalence of hypoglycemia previously reported in surveys of ICU 

populations in US hospitals [5]. Notably, 38.7% of patients who experienced hypoglycemic 

events were non-diabetic. A summary of the patient demographics and predictor variables 

is shown in Table 1. In the patient cohort studied, the most common diagnoses at ICU 
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admission were non-operative cardiovascular conditions (40.7%), followed by non-operative 

metabolic and endocrine conditions (25.2%), as presented in Table S3.

3.2 Model performance

The performance of all 15 evaluated machine-learning models is shown in Table S2. 

The AUROC for the models ranged from 0.64–0.85, with a mean AUROC of 0.79. 

The best-performing model was the XGBoost model, with the standard gradient boosting 

model achieving slightly lower, but similar performance. XGBoost models are more 

computationally efficient than standard gradient boosting models, so the XGBoost model 

was ultimately selected as the final model [14].

The XGBoost model achieved an AUROC of 0.85 and a sensitivity, specificity, and precision 

of 0.76, 0.76, and 0.44, respectively. A high sensitivity indicates that the algorithm can 

successfully identify the majority of patients that will experience hypoglycemia. The ROC 

curve for the final XGBoost model is depicted in Fig. 2, and the the feature importance of 

each predictor variable is presented in Fig. 3. Additionally, the XGBoost model achieved 

strong calibration. The predicted probabilities of hypoglycemia were similar to the observed 

probabilities, as shown in Fig. 4. The coefficients for the baseline logistic regression model 

are presented in Table S4.

4 Discussion

To our knowledge, this is the first study to develop a hypoglycemia prediction tool 

within a critically ill patient population. Developing hypoglycemia risk prediction tools for 

critically ill patients is particularly important, as hypoglycemia has the highest incidence and 

morbidity in ICU settings [20].

Using the eICU-CRD, we considered 82,479 admissions from 199 hospitals in the US 

and evaluated the performance of a variety of machine learning models in predicting 

hypoglycemic events. The final XGBoost model demonstrated strong predictive power 

on the held-out test set, achieving an AUROC of 0.85 for detecting hypoglycemia. The 

ensemble models tested (including the random-forest, gradient boosting, and XGBoost) 

all performed better than the baseline logistic regression model, with an improvement 

of 4% in AUROC. Furthermore, the final XGBoost model achieved strong calibration, 

as demonstrated by the reliability diagram in Fig. 4. The model-predicted probability of 

hypoglycemia and the observed probability of hypoglycemia are very similar across the full 

range of probabilities from 0 to 1. Thus, the model can be used to reliably predict a patient’s 

risk of hypoglycemia, rather than just providing a binary classification indicating whether 

or not a patient will experience a hypoglycemic event. Physicians can interpret model 

predictions close to 1 as indicating that a patient has a very high likelihood of experiencing 

hypoglycemia, while model predictions close to 0 indicate that the patient has a very low 

likelihood of experiencing hypoglycemia.

The most important feature for both the XGBoost model (Fig. 3) and the baseline logistic 

regression model (Table S4) was the incidence of a hypoglycemic event during a previous 

hospital admission. Albumin, creatinine, the coefficient of variation of blood glucose, 
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kidney disease, and the administration of glucose-lowering drugs were also found to be key 

predictors of hypoglycemia, which is concordant with the results of previous studies [8–10, 

21]. Hypoalbuminemia is a known risk factor for hypoglycemia and can be brought about 

by hemodilution in fluid resuscitation and capillary leak during a systemic inflammatory 

condition [22, 23]. Moreover, renal failure, evidenced by increased serum creatinine levels, 

is also known to contribute to hypoglycemia risk due to reduced insulin clearance and 

gluconeogenesis [2, 24]. Additionally, a diagnosis of diabetes was also among the most 

important features, as prior studies have shown [21].

This study has several key strengths and builds upon previous work in this field. All previous 

papers which modeled hypoglycemia prediction only trained on data from a single center. 

By leveraging EHR from 199 hospitals, the models developed in our study have stronger 

generalizability to diverse patient cohorts and are less likely to be overfitted to the patient 

population of a single hospital. Moreover, our study’s cohort of 82,479 ICU stays is up to 

ten times larger than the datasets used in previous work [8, 10, 11].

Furthermore, all predictor variables used in our models were available upon ICU admission 

or were collected within the first 2 h of a patient’s ICU stay. This is an important 

advantage of our approach that yields greater clinical feasibility. This prognostic model 

provides actionable information and could be built into a clinical decision support tool 

that automatically extracts the corresponding variables in the EHR and feeds these features 

into the model. Within 2 h of the patient’s ICU admission, physicians could leverage the 

prediction output of this model to determine if a patient has a high risk of developing 

a hypoglycemic event during their ICU stay and can tailor monitoring, prophylactic, and 

therapeutic measures accordingly. Clinicians can decide to adjust between high, medium or 

low insulin sliding scales, or decide to forego the scale altogether based on the risk. These 

interventions, which are informed by the model’s predictions, could enable physicians to 

reduce hypoglycemia and lower rates of hypoglycemia-associated adverse events. Improved 

glycemic control has also been shown to lead to economic benefits by reducing hospital 

length of stay, perioperative morbidity, and surgical site infections [25]. Furthermore, 

this model could be used to identify high-risk patients who stand to benefit the most 

from advanced treatment options, including closed-loop insulin delivery systems, that use 

continuous glucose monitoring to titrate insulin delivery [26].

Moreover, models developed in prior work used a large number of features (over 30) 

to predict hypoglycemic risk [8, 9]. In real-word clinical use, many of these laboratory 

tests may not be available for all patients, making model deployment challenging. The 

final XGBoost model developed in our work only uses 10 features, facilitating clinical 

deployment.

Additionally, 61.3% of hypoglycemic patients included in our study were non-diabetic, and 

many previous studies have focused on predicting hypoglycemia among diabetic patients 

[8, 10]. The results of our analysis suggest that prior approaches may fail to consider the 

significant portion of hypoglycemia cases which occur in non-diabetic patients.
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As with any retrospective modeling effort, our study does have limitations. The availability 

of certain laboratory measurements (such as C-reactive protein) which were shown to be 

associated with hypoglycemia in previous studies widely varied across hospitals in the 

eICU-CRD database, so they were unable to be considered in the modeling.

Predictive models built using retrospective EHR data have significant potential to improve 

clinical care and have been shown to aid in reducing hypoglycemic events. A 2014 single-

center interventional study used a linear regression model with moderate performance 

to identify patients with a high risk of developing hypoglycemia in real-time [7]. The 

implementation of the model resulted in a 68% decrease in hypoglycemic events in alerted 

high-risk patients [7]. Machine learning models which have greater predictive power, such as 

the one described in this study, could further reduce the incidence of hypoglycemia by more 

accurately identifying patients at who are at high-risk.

However, we recognize that there are many critical steps that must be taken before a clinical 

risk-prediction model can be implemented at the bedside. Multicenter prospective trials are 

needed to evaluate the effectiveness of these risk prediction tools in averting hypoglycemia 

in real-world clinical settings. Implementation research must be conducted so that these 

algorithms can be seamlessly integrated into a medical center’s workflow and clinicians 

can regularly review model predictions and optimize a patient’s treatment plan accordingly. 

Additionally, as these models are deployed in hospital environments, it is important to be 

cognizant of the fact that clinical and operational practices evolve over time. It will be 

critical to employ computational methods to identify dataset shift and proactively update 

and recalibrate models so they maintain robust performance in the years following model 

deployment [27].

In summary, our study uses a large, multi-center database to develop and validate a 

predictive model for hypoglycemia which achieves strong performance. Such tools could 

alert clinicians of patients at high-risk of hypoglycemia in real-time, informing clinical 

decision-making and reducing the occurrence of hypoglycemia-associated adverse events.
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Fig. 1. 
Flow diagram of patient cohort development
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Fig. 2. 
ROC curve for the best-performing XGBoost model on test dataset
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Fig. 3. 
Feature importance from best-performing XGBoost model
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Fig. 4. 
Reliability curve (calibration plot) showing predicted and observed probabilities of 

hypoglycemia for XGBoost model
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